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Abstract: Mapping and monitoring forest extent is a common requirement of regional 
forest inventories and public land natural resource management, including in Australia. 
The state of Victoria, Australia, has approximately 7.2 million hectares of mostly forested 
public land, comprising ecosystems that present a diverse range of forest structures, 
composition and condition. In this paper, we evaluate the performance of the Random 
Forest (RF) classifier, an ensemble learning algorithm that has recently shown promise 
using multi-spectral satellite sensor imagery for large area feature classification. The RF 
algorithm was applied using selected Landsat Thematic Mapper (TM) imagery metrics and 
auxiliary terrain and climatic variables, while the reference data was manually extracted from 
systematically distributed plots of sample aerial photography and used for training (75%) and 
accuracy (25%) assessment. The RF algorithm yielded an overall accuracy of 96% and a 
Kappa statistic of 0.91 (confidence interval (CI) 0.909–0.919) for the forest/non-forest 
classification model, given a Kappa maximised binary threshold value of 0.5. The area 
under the receiver operating characteristic plot produced a score of 0.91, also indicating 
high model performance. The framework described in this study contributes to the 
operational deployment of a robust, but affordable, program, able to collate and process 
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large volumes of multi-sourced data using open-source software for the production of 
consistent and accurate forest cover maps across the full spectrum of Victorian sclerophyll 
forest types. 

Keywords: large area monitoring; forest extent; random forests; operational; Landsat TM; 
MODIS 

 

1. Introduction 

Forest extent is a measure commonly assessed in national forest inventories (NFI) [1] and, under the 
Montreal process [2], is a specific indicator used for monitoring and reporting sustainable forest 
management. For natural resource management agencies, current and accurate forest area estimates are 
critical for effective environmental monitoring. While ground-based (field plot) forest inventories 
provide accurate and unbiased forest area estimates, spatially explicit remote sensing-derived forest 
extent maps can be used to assess the spatial configuration of forest at the landscape scale and used in 
combination with a high resolution sample (two-staged sampling) to improve forest area estimates [3]. 

In Australia, under the Australian National Forest Inventory, forest is defined as “A land area, 
incorporating all living and non-living components, dominated by trees having usually a single stem 
and a mature or potentially mature stand height exceeding two metres and with existing or potential 
crown cover of overstory strata about equal to or greater than 20 percent. This definition includes 
native forests and plantations and areas of trees that are sometimes described as woodlands” [4]. The 
structural components in this definition encompass a wide range of forest types, from open low sparse 
canopy woodland to tall dense canopy forests (as illustrated by Figure 1, [5]). 

In Australia (and the state of Victoria, in particular), dry, damp and wet sclerophyll forests and 
woodlands comprise many of the forested ecosystems. The canopies in these ecosystems are dominated by 
eucalypt species and are characteristically open with irregular (asymmetrical) crown configurations and 
low foliage density [6]. Canopy foliage is often clumped, leaves tend to concentrate around crown 
perimeters [7] and exhibit an erectophile (vertical) leaf angle distribution. In Victoria, as in much of 
Australia’s forests, there is a high diversity of forest development phases, vertical and horizontal forest 
structures, topography and soil types [8], as well as dynamic phenological processes in understory 
vegetation [9]. 

These characteristics pose a number of challenges to the use of remote sensing in these 
environments for classifying and mapping forests. The mid- and under-story components, shadows and 
background soils all exhibit a strong influence on spectral reflectance characteristics. From a synoptic 
perspective, forest cover in Victoria can appear indistinguishable from shrub and other low and sparse 
woody vegetation species. Complexity and background noise in remote sensing signatures from open 
sclerophyll eucalypt forests is further intensified by the influence of dynamic understory elements and 
variation in forest structures [10]. The challenges and complexities associated with forest extent 
mapping across state and territories in Australia is evidenced by large differences and inconsistencies 
in forest extent maps and forest area estimates produced by state and federal government agencies and 
the variability in forest area estimates published in Australia’s national five-yearly State of the Forests 
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reports [11]. The processing of large area remote sensing datasets poses a further challenge for state 
land management agencies. 

Figure 1. Australian forest structural definitions [5]. 

 

Random Forests (RF) [12] offers a possible solution to address these large area forest classification 
challenges, universal across many of Australia’s forest ecosystems. Machine learning classifiers, such 
as RF, are increasingly being used for environmental mapping and modelling applications in fields, 
such as natural resource management and forestry [13–15]. RF is an ensemble decision tree classifier, 
which combines bootstrap sampling to construct many individual decision trees, from which a final 
class assignment is determined [12]. 

RF can be used to learn complex non-linear relationships, such as those present in variable vertical 
forest structure and the association of overstory to understorey forest vegetation. RF has been 
demonstrated to be very effective for accurate land cover mapping across complex and heterogeneous 
landscapes [15] and to be relatively insensitive to noise [15], making it suitable for application in 
complex and dynamic forest environments. As RF does not require normally distributed model training 
data, its application is appropriate for areas where species distributions of ecological communities follow 
non-linear patterns across the landscape [16] and where complex terrain effects data normality [17]. 
Other reported benefits of RF include its relative insensitivity to outliers [12,18], common characteristics 
of open canopies across large areas of dynamic and highly variable forest ecosystems. Furthermore, 
the RF classifier runs efficiently on large datasets [15], making it suitable for regional-scale mapping, 
comprising millions of hectares. 
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As only a random subset of variable data is used to construct each decision tree in a random forest 
classifier ensemble, correlation between decision trees is reduced, thereby improving predictive power 
and classification accuracy, whilst decreasing the computational complexity of the algorithm. As has 
been demonstrated in recent studies [19–22], RF can incorporate multiple-sources of remote sensing 
data with ancillary continuous and categorical biophysical spatial data to improve classification 
performance and discriminate between forest and non-forest. 

Moderate resolution multi-spectral imagery, such as Landsat Thematic Mapper (TM)/Enhanced 
Thematic Mapper (ETM+) has been commonly applied for estimating forest cover [23,24], 
discrimination of some forest types [25], forest cover change detection [26,27] and for model-based 
forest area estimation [1]. Because of the challenges described above, limitations arise in classifying 
forest extent where different forest structures and composition and land cover types can appear 
spectrally alike using traditional remote sensing data analysis techniques. Improved forest 
classification accuracy and forest area estimates have been achieved for large areas using multi-
temporal imagery, e.g., MODIS [28,29]. The high temporal resolution of the MODIS sensor can 
provide valuable information about the phenological variability of different land covers and, as such, 
help address the challenge of forest canopy-to-understory discrimination in the type of open canopy 
forest environments described above. 

In the context of open-canopy forest extent classification, textural information (spatial variation data 
derived from optical imagery) can provide additional information to a RF classifier, by differentiating 
vegetation that appears spectrally similar when integrated into a remote sensing image pixel, but whose 
spatial patterns differ [30]. Recent studies have used satellite image-derived texture indices to improve 
forest stand classification [31], biomass and carbon estimation [25,32] and forest structure derivation [33]. 
In a large heterogeneous landscape RF classification study, Rodríguez-Galiano et al. [34] increased 
overall accuracy by 8% (and Kappa by 9%) through the inclusion of textural information. 

The conditional relationships between forest vegetation and biophysical factors can also be used to 
further improve forest/non-forest discrimination. Species-environment relationships are central to 
predictive geographical modelling [35]. Topographic variables (e.g., elevation, slope and aspect) used 
in combination with spectral data have been demonstrated to enhance forest, habitat and vegetation 
classification [19–22]. Bioclimatic maps (e.g., temperature, precipitation) are an additional source of 
commonly used ancillary classification data. These maps are typically developed using  
elevation-sensitive interpolation of climate station data and digital elevation models [35], which 
support the assumption that climate has a major influence on species distribution at broad geographic 
scales [36] and that similar compositions of vegetation can be expected to occur at sites with 
comparable soil, climate and topography [37]. In this paper, we evaluate the operational performance 
and utility of RF for classifying forest extent across Victoria, Australia, using remote sensing, 
topographic and climate predictor variables. The originality of this study lies firstly in the scale of the 
application of the RF algorithm, to construct, evaluate and implement an RF classifier to produce an 
accurate ~220,000 km2 land management agency forest map. As far as we know, this scale of RF 
operation is unique. The second novel aspect to this study is in its application setting, which, to our 
knowledge, is the first time RF has been used in an operational environment at a regional scale 
comprising highly diverse and complex Australian forest ecosystems and topography, dominated by 
open canopy sclerophyll forests and woodland. 
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While studies on the production of forest and land cover maps derived from RF (or similar) 
classification techniques using multi-source remote sensing and ancillary data are published routinely 
in the academic literature, a secondary objective of this paper is to describe a framework for 
operational implementation of the RF algorithm using open-source software. The framework includes 
each phase of the RF classification process (from predictor variable pre-processing, through model 
development and implementation), to support transfer of this technology in an operational land 
management agency context and make use of the freely available and growing archives of remote 
sensing and geographic data. 

2. Random Forests 

Random Forests uses bootstrap aggregated sampling (bagging) to construct many individual 
decision trees from which a final class assignment is determined [18]. The RF algorithm constructs each 
decision tree using a bootstrap sample from available training data, with the remaining assigned as out-of-
bag (OOB) samples. At each decision tree node, a random subset of predictor variables are tested to 
partition the observation data into increasingly homogeneous subsets. The node-splitting variable 
selected from the variable subset is that which results in the greatest increase in data purity (variance or 
Gini) before and after the tree node split [18]. Tree building continues until there are no further gains 
in purity. A response variable can be predicted as an average (continuous variable classification) or 
model vote (categorical classification) among all decision trees built in the forest. The OOB sample 
data are used to compute accuracies and error rates averaged over all predictions [18] and estimate 
variable importance in the classification. The computational complexity of the algorithm is reduced, as 
only a random subset of variables is used at each node split. This process also reduces correlation 
between trees, thereby improving both predictive power and classification accuracy. RF includes two 
methods to estimate the importance of each predictor variable in the model. The mean decrease in 
accuracy (MDA) importance measure is calculated as the normalised difference between OOB 
accuracy of the original observations to randomly permuted variables [18]. An alternative variable 
importance measure is calculated by summing all of the decreases in Gini impurity at each tree node 
split, normalised by the number of trees [38,39]. 

3. Open-Source Software 

By adopting an open-source framework for spatial data management, processing and analysis, 
users, such as land management agencies, can benefit from freely available software products and 
access to source code through which new algorithms can be integrated and manipulated. Stallman [40] 
describes the four freedoms of the free and open-source software approach, as freedom to (i) run the 
program for any purpose, (ii) study how the program works, (iii) redistribute copies and (iv) improve 
the program and release such improvements to the public [41]. 

3.1. Geographic Resources Analysis Support System (GRASS) 

GRASS (Geographic Resources Analysis Support System) [42] is an open-source geographical 
information system capable of handling raster, topological vector, image processing and graphic data. 
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Released under the GNU General Public License (GPL), GRASS is developed by a multi-national 
group of developers and is one of the eight initial software projects of the Open Source Geospatial 
Foundation. GRASS has a modular structure into which may be plugged new routines programmed in 
a variety of languages (e.g., Python, C, shell), and there are over 300 modules and more than 100 add-
on modules for the creation, manipulation and visualisation of both raster and vector data. The GRASS 
modules are designed under the UNIX philosophy (i.e., that programs work together and handle text 
streams) and can be combined using shell scripting to create more complex or specialized modules by 
a user. GRASS supports an extensive range of raster and vector formats through GDAL/OGR libraries, 
including OGC-conformal (Open Geospatial Consortium) Simple Features for interoperability with 
other GIS. 

3.2. R and Python 

R [43] is an open-source language and software environment commonly used in research fields for 
statistical computing and graphics. One of the main advantages of R is its object-orientated approach, 
which allows results of statistical procedures to be stored as objects and used as input in further 
computations. R is a simple and effective formal complete programming language, and the R 
environment is, therefore, highly extensible. GRASS and R software can be integrated through the R 
package, spgrass [44], an interface allowing GRASS GIS functions to be implemented within R code 
and data to be easily exchanged between the two software packages. Python [45] is an  
object-orientated high-level programming language that is widely used as a scripting language in the 
spatial analysis environment. Python’s popularity has led to the creation of many useful libraries, 
increasing its flexibility and interoperability, and it has well developed modules for linking with 
GRASS and R. 

4. Methods 

4.1. Study Area 

The study area comprises approximately 7.2 million hectares of public land forests and parks tenure 
(hereafter, referred to as public land forests) in the state of Victoria, in southeast Australia. This area 
includes 4 million ha of national parks and conservation reserves, managed primarily for ecosystem 
and biodiversity protection, tourism and recreation. The remaining 3.2 million ha are multiple-use state 
forest tenure, which include the provision of timber and non-timber forest products. Bounding extents 
of Victoria are north 141°47'36" E 33°58'54"S, east 149°58'36"E 37°30'20"S, south 146°17'13"E 
39°9'33"S and west 140°57'29"E 34°28'23"S. 

Public land forests extend to all parts of the state and range from low multi-stemmed Mallee 
woodland across flat and gently undulating topography in the Northwest and Box-Ironbark forests, 
characterised by sparse to dense canopies of box, ironbark and gum-barked eucalypts up to 25 m tall, 
on flat to undulating landscapes on rocky, auriferous soils across central Victoria. Highly variable 
medium and tall canopy damp sclerophyll forests are widespread across the study area, found on a 
range of loamy, clay-loam and sandy-loam soils. Tall (up to and above 75 m) wet sclerophyll forests 
are found mostly in the eastern part of the study area on deep loamy soils at higher elevations. Dry 
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sclerophyll forests are prevalent throughout the east, central and southwest parts of the study area on 
clay-loam, sandy-loam and shallow rocky soils of exposed hillsides, with canopies typically less than 
25m tall, with crooked, spreading trees [46]. 

The study area is characterised by a range of different climate zones and diverse topography. The 
northwest region experiences semi-arid conditions, with low median annual rainfall (less than 250 mm 
in parts), with coastal areas experiencing a cooler temperate climate. Dry inland plains dominate much 
of the central and western parts of the state. The Victorian Alps—part of the Australian Great Dividing 
Range mountain system—extend east-west from the centre of the study area, with elevation up to 
2,000 m. The Victorian Alps experience the lowest average temperatures and highest precipitation 
(greater than 1,400 mm/yr) in the study area. This variety of climate and topography is reflected in the 
variation in forest types and structure across the study area. 

4.2. Training Data  

Classification training data were derived from seven hundred and sixty-six 2 × 2 km land cover maps, 
systematically distributed across the Victorian Forest Monitoring Program (VFMP) [47] random stratified 
grid (Figure 2). On-screen digital aerial photographic interpretation (API) of high-resolution (30 cm and 
50 cm pixels) colour aerial photographs (photoplots) across the study area (acquired over the period 2006 
to 2010) were used to create the land cover maps, based on a land cover classification system [48] 
comprising broad forest type, canopy height and cover. The delineation of landscape objects into broad 
forest type/land cover classes, three canopy cover and three height classes, was undertaken by trained 
interpreters. Crown shape, size and arrangement, shadow and photographic image colour were all used 
for interpretation of the aerial photography. For the classification of forest, the Australian National 
Forest Inventory (NFI) forest definition [49] was used, with an applied 0.5 ha minimum mapping unit, 
consistent with the UNFAO forest definition [50]. 

API data were aggregated into forest and non-forest training data classes. Mapping on pre- and 
post-2008 photography was adjusted to a baseline date of December 31, 2008, using ancillary GIS data 
to re-attribute and update API polygons, based on major known land cover changes associated with 
wildfire and clear fell logging. Training data API maps are further stratified by IBRA (Interim 
Biogeographic Regionalisation for Australia) Bioregions—relatively large, geographically distinct 
areas of land that share common characteristics, including geology, landform patterns, climate, 
ecological features and plant and animal communities. Eleven Bioregions are located within the study 
area. Figure 2 shows the distribution of VFMP sample land cover maps across the study area and 
Bioregions and example API land cover maps. For further information on the API method, refer 
to [51]. API vector data were converted to raster format to align with the 30 × 30 m pixels of Landsat 
satellite imagery (described in Section 4.3). 

4.3. Predictor Variables 

Nineteen cloud-free Landsat TM scenes were used to build a study area mosaic; selected and 
downloaded from USGS Earth Explorer [52]. Satellite images were acquired between February and 
March 2009, corresponding to late summer conditions with relatively high scene sun angles (to 
minimise shadow and terrain effects) and designed to maximise spectral differences between overstory 



Remote Sens. 2013, 5 2845 
 
evergreen woody vegetation and seasonal understory vegetation. Where cloud-free images were 
unavailable, the acquisition period was extended to December 2008 or the summer period in the 
preceding or following year. Images were downloaded in USGS L1T georectified and terrain-corrected 
format, at a spatial accuracy considered acceptable for the study (± one 30 m/pixel). Landsat TM 
spectral bands 1–5 and 7 were pre-processed to minimise sources of between-scene spatial and 
temporal variation associated with different atmospheric conditions, topography, sensor location and 
sun elevation. A physical model was applied to convert image digital numbers (DNs) to surface 
reflectance standardised to a fixed viewing and illumination geometry, incorporating the Shuttle Radar 
Topography Mission (SRTM) Digital Elevation Model [53], using a methodology described in [54].  
Pre-processed image tiles were mosaicked to create six study area surface reflectance Landsat TM bands. 

Figure 2. Victorian Interim Biogeographic Regionalisation for Australia (IBRA Bioregions) 
and aerial photographic interpretation (API) land cover maps. 

 

Textural indices were derived from an NDVI layer produced using the Landsat TM surface 
reflectance bands 3 and 4, rescaled to a 6-bit raster (64 grey levels). Three first order (occurrence) 
texture measures were calculated using 3 × 3, 5 × 5 and 7 × 7 cell neighbourhood moving windows 
across the grey-scaled [55] NDVI layer—these were variance, diversity (number of different values 
within the neighbourhood) and interspersion (proportion of cells in the neighbourhood, which differ from 
values assigned to the centre cell in the neighbourhood plus one). Three different sizes of neighbourhood 
windows were designed to capture the range in ecosystem textural variance across the study area. 
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Phenological temporal-variance in the study area was derived from state-wide multi-temporal 
MODIS NDVI data (MOD13Q1). A multi-temporal raster stack of twenty-three 250 m spatial 
resolution MODIS (16-day) NDVI images were extracted for Victoria, over the calendar year January 
2008 to January 2009, from Australian mosaics (produced using the methodology described in [56]). 
To generate the temporal variance in NDVI, a one standard deviation raster was calculated from each 
annual multi-temporal image pixel-stack.  

Elevation (metres), slope (degrees) and aspect (degrees) were derived from a one second (~30 m) 
smoothed digital elevation model [53]. Climate surfaces were generated using the BIOCLIM 
component of the ANUCLIM (version 5.1) software package [57], a correlative modelling tool that 
interpolates climate parameters using spatially explicit digital elevation data and point-based long-term 
monthly averages of climate variables. A full description of the process can be found in [36,57]. 
Elevation data raster cells were resampled to 250 m (an appropriate resolution for the distribution of 
climate stations across the study area) and used as an input to run the BIOCLIM climate model. A 
subset of the 35 climatic parameters generated by BIOCLIM was selected for inclusion in the model 
associated with precipitation, temperature, radiation and moisture.  BIOCLIM and MODIS NDVI 
variance surfaces were resampled from 250 m spatial resolution, using the nearest neighbour method, 
to align with the 30 × 30 m Landsat TM data, elevation layers and textural indices. 

4.4. Data Collation 

Training and predictor variable data were collated in a GIS database—open-source GRASS 
Geographic Resources Analysis Support System [42]—and exported into statistics package R [43] for 
model implementation and analysis, together with training sample raster pixel centroid coordinates. To 
reduce data redundancy and facilitate interpretation of the model, Pearson correlation coefficients were 
calculated between all paired combinations of predictor variables. Highly correlated variables (r2 > 0.9, 
p < 0.001) were further examined to calculate biserial correlation coefficients between these predictor 
variables and a dichotomous forest/non-forest training sample class. Of the highly correlated variable 
pairs, those with the weaker forest/non-forest relationship were excluded from the model. Table 1 
shows the final predictor variables used in the RF model. Variables excluded from the model were the 
climate layers mean diurnal range, temperature seasonality and annual mean radiation; and textural 
indices variance (5 × 5 and 7 × 7 windows), diversity (3 × 3 and 7 × 7 windows) and interspersion 
(3 × 3, 5 × 5 and 7 × 7 windows). 

Table 1. Random Forests (RF) predictor variables. 

Predictor Variable Units/Data Source Spatial Resolution (m) 
Surface Reflectance 
Landsat TM band 1 0.45–0.52 µm 30 
Landsat TM band 2 0.52–0.60 µm 30 
Landsat TM band 3 0.63–0.69 µm 30 
Landsat TM band 4 0.76–0.90 µm 30 
Landsat TM band 5 1.55–1.75 µm 30 
Landsat TM band 7 2.08–2.35 µm 30 
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Table 1. Cont. 

Predictor Variable Units/Data Source Spatial Resolution (m) 
Textural Indices 
Variance (3 × 3) 

Landsat TM NDVI 
30 

Variance (5 × 5) 30 
Diversity (3 × 3) 30 
Phenological Variability 
NDVI Variance MODIS NDVI 250 
Topography and Climate 
Elevation SRTM DEM 30 
Slope SRTM DEM 30 
Aspect SRTM DEM 30 
Annual Precipitation mm 250 
Annual Temperature Range ○C 250 
Annual Mean Temperature ○C 250 
Annual Mean Moisture Index 0–1 250 

4.5. Random Forest Model 

4.5.1. Construction and Evaluation 

The randomForest package [58] in R [43] was used to build the RF model, for which there are 
several adjustable implementation parameters. The primary parameters being (i) number of predictor 
variables randomly sampled as candidates at each decision tree node split (parameter mtry); (ii) the 
number of decision trees (or base classifiers) constructed as part of the classifier ensemble (parameter 
ntree); and (iii) the type of model—classification, regression or unsupervised (parameter type). For 
model construction in this study, the default mtry value was used (equal to the square root of the total 
number of predictor variables). To optimize the number of trees (ntree) constructed in the final model, 
an initial decision tree ensemble was produced with 1,000 trees. Error estimates from the OOB sample 
showed stabilization of the overall error at 100 trees; therefore, 100 was used for the parameter ntree in 
the final model. 

In addition to the RF model OOB test data, for performance evaluation, a 25% subset of training 
data was randomly sampled, left out of the training dataset (stratified evenly by forest and non-forest 
classes). The R package PresenceAbsence [59] was used to calculate the optimal threshold for 
converting forest probability (0–100) into a binary forest/non-forest classification, based on maximum 
Kappa. Kappa, percent correctly classified, user’s and producer’s accuracy and area under receiver 
operator curve were calculated to evaluate classification performance. The area under receiver operator 
curve (ROC) is a measure of a model’s ability to discriminate presence (i.e., forest) and absence (i.e., 
non-forest) [60], calculated from predicted forest probabilities. The ROC is a plot of sensitivity (true 
positive rate) against specificity (false positive rate). Poor model performance (i.e., where predictive 
ability is essentially random) returns a near-diagonal ROC plot (true positive rate equal to false 
positive rate). The area under ROC curve ranges from 0.5 (poor) up to 1. Producer’s accuracy (or 
omission error, one minus producer’s accuracy) is the proportion of a land cover class on the ground 
(i.e., reference) that is correctly classified in the map (prediction). User’s accuracy (or commission 
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error, one minus user’s accuracy), is the proportion of a mapped (predicted) class on a map, which 
matches the corresponding class on the ground (reference). Producer’s accuracy measures classification 
scheme accuracy, while user’s accuracy measures the output map generated from the classification [61]. 

4.5.2. Implementation 

The RF model was implemented to predict and map forest probability across the study area. As R 
holds objects in virtual memory, there are limitations on the resources available for data processing. 
Therefore, the RPy Python package [62] was used, allowing R functionality to be managed within the 
Python environment outside of R. The study area was divided into two hundred 40 km2 tiles, and the 
RF model was implemented using parallel processing to calculate forest probability across multiple 
tiles simultaneously, after which the forest probability tiles were mosaicked together into a single 
forest probability layer. 

Figure 3. Implemented Random Forests model forest probability map (a) inset forest 
probability map (0–100); (b) final forest classification, based on a binary threshold. 

 

Probability values (calculated from the proportion of decision tree votes among all base classifiers 
in the ensemble) were converted into binary forest and non-forest classes using the probability 
threshold calculated to maximise the Kappa statistic. To apply the forest definition 0.5 ha minimum 
mapping unit (MMU) and remove noise from the map, the forest/non-forest classification raster was 
first re-sampled from 30 m to 28.86 m, so that a 0.5 ha MMU area comprised six whole raster pixels. 
Horizontally, vertically and diagonally contiguous forest and non-forest cells were grouped together 
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and attributed a count of the cells within each group. Raster cells within forest cell groups comprising 
less than six cells (i.e., less than 0.5 ha) were re-labelled as non-forest, and raster cells within  
non-forest cell groups comprising less than 6 cells were re-labelled as forest. Figure 3 shows the forest 
probability and final binary forest/non-forest maps. 

5. Results and Discussion 

5.1. Classification Accuracy 

Overall accuracy (percent correctly classified) and Kappa results were high for forest and non-forest 
prediction using the RF model. Overall accuracy of 96% was achieved, with a Kappa coefficient of 0.91. 
The threshold value for converting continuous forest probability scores into forest/non-forest classes, 
optimized to maximize overall Kappa, was 0.5. User’s accuracy was marginally higher for the forest 
class than the non-forest class, indicating a greater tendency for the model to misclassify non-forest 
land cover as forest, leading to a slight overestimation of forest extent. A comparison of model 
performance (user’s and producer’s accuracy) between the test data and the RF OOB accuracy 
assessment shows marginally lower producer’s and user’s accuracy for non-forest classification, and 
user’s accuracy in the forest class was returned by the OOB; however, differences between the two 
accuracy assessment data sources are minor. 

The high Kappa coefficient (0.91) for the forest/non-forest classification model is encouraging, and 
the model accuracy performance is consistent with studies that have successfully discriminated forest 
from non-forest land cover categories in other natural environments using RF [22,63]. The area under 
curve (AUC) score (0.91) shows that the RF forest/non-forest classifier has excellent overall  
model accuracy. 

Table 2. Random Forests accuracy assessment. CI, confidence interval; OOB, out-of-bag. 

Kappa (CI 95%) 0.914 (0.909–0.919) 
AUC (CI 95%) 0.992 (0.991–0.992) 
Percent Correctly Classified (CI 95%) 95.7 (95.4–95.9) 
 Forest Non-forest 
Kappa maximised binary threshold value 0.5 
Sensitivity 94.42 96.94 
Specificity 96.94 94.42 
Test (Validation Data) 
Producer’s accuracy (omission) 94.42 96.94 
User’s accuracy (commission) 96.86 94.56 
Test OOB 
Producer’s accuracy 94.60 96.44 
User’s accuracy 96.51 94.49 

5.2. Variable Importance 

Landsat TM band 5 (shortwave infrared) was shown to be the most important variable in predicting 
forest (Figure 4(a)) based on the calculated mean decrease in accuracy (MDA) score. Band 5 was 
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considerably more important than the next most important predictor variables—Landsat TM bands 2, 3 
and 7, followed by elevation and the four climate surfaces. The high importance of the middle-infrared 
band 5 (1.55–1.75 µm) in differentiating forest from non-forest at the pixel-level is likely to be 
associated with its vegetation and soil moisture sensitivity properties. For non-forest classification, 
based on MDA, elevation was the most important variable in the RF model, followed by bands 2 and 
5. The influence of elevation may be associated with less rainfall at lower elevations, but is also very 
likely to reflect the land use history of the study area, whereby low flat land productive agricultural 
land has been extensively cleared [64]. Landsat bands 5, 2, 3 and 7 were the most important predictor 
variables for forest/non-forest differentiation (Figure 4(c)).  

Landsat TM band 2 was the most important predictor variable, followed closely by band 5, based on 
the mean decrease Gini (MDG) measure (calculated for each predictor variable as the cumulative 
increase in data purity associated with each decision tree node split). Bands 3 and 4 were the next most 
important variables, followed by NDVI variance and band 7. In comparing the variable importance 
ranks between the two measures, MODIS NDVI variance was ranked 7 places higher in the MDG 
measure compared to MDA and band 4 (near-infrared), six places higher. These bands can be 
considered more important with respect to increasing the purity of training data samples after splitting 
at decision tree nodes, but less important based on the mean decrease accuracy. 

Figure 4. Random Forests predictor variable importance measures. (a) Mean decrease 
accuracy for forest prediction; (b) mean decrease accuracy for non-forest prediction;  
(c) mean decrease accuracy for forest and non-forest prediction; and (d) mean decrease 
Gini for forest and non-forest prediction. 

(a) (b) 
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Figure 4. Cont. 

(c) (d) 

The MODIS NDVI variance was included in the model as a means of discriminating seasonally 
dynamic grasses and understory vegetation from more phenologically ‘stable’ forest canopy reflectance. 
While results rank this variable as having a reasonably high degree of importance in decision tree node 
splitting (Gini purity), the low spatial resolution of this layer (250 m) and high spectral heterogeneity 
within MODIS pixels is likely to be a factor in its lower MDA importance ranking for forest prediction. 

Results of this study on application of RF for large area forest classification are encouraging and 
demonstrate the classifier’s utility in an operational land management agency context. Our results 
confirm the findings of other studies using RF, that this ensemble classifier can be used to learn 
complex non-linear relationships. Variable importance measures demonstrate the successful 
integration of multiple sources of data in predicting forest—remote sensing spectral data and 
contextual topographic-climate variables. 

This study demonstrates the feasibility of using an open-source framework for constructing and 
evaluating an RF model and its implementation to produce an accurate operational land management 
agency forest cover map. The framework established successfully integrates freely available spatial 
data—pre-processed and collated in GRASS—into the R statistical analysis environment. After 
construction and validation of an RF classifier, the resulting model was implemented in GRASS using 
an R-GRASS interface package, spgrass [44], before finally using GRASS to filter the forest 
prediction map and apply the minimum mapping unit of the adopted forest definition to the final forest 
extent spatial product. 

In this study, we evaluated the operational performance and utility of the ensemble decision tree 
classifier, Random Forests (RF), for producing an accurate large area (about 220,000 km2) land 
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management agency forest map. This study is unique in demonstrating the operational 
implementation of RF at the regional-scale within an open-source software framework, using 
GRASS GIS [42] and R [43] statistics software. The framework described, comprising stages of data 
pre-processing, collation, modelling, evaluation and implementation, contributes to the deployment 
of affordable programs for collating and processing large volumes of multi-source remote sensing 
and ancillary GIS data to produce consistent and accurate forest cover maps across complex, noisy 
and heterogeneous landscapes. 

We incorporated Landsat TM and MODIS satellite imagery, textural indices, modelled climate 
surfaces and topographic layers into an RF model, to accurately predict and map forest across an 
area comprising millions of hectares of complex and highly diverse forest ecosystems over varying 
topography, dominated by open canopy sclerophyll forests and woodland. Sample aerial 
photography land cover maps were used to derive training and test (validation) data. The overall 
accuracy and Kappa statistics for forest/non-forest classification were 96% and 0.91, respectively. 
Forest classification achieved a producer’s accuracy of 96% and a user’s accuracy of 94%. 
Estimated predictor variable importance measures derived from the Gini Index and out-of-bag 
(OOB) training data, showed Landsat TM bands 5 and 2 to have the strongest influence in 
forest/non-forest class-separability. 

6. Conclusions 

Results show how the RF algorithm can be effectively used to learn the conditional, complex and 
non-linear relationships between forest vegetation and biophysical factors, to build an accurate forest 
classifier across highly diverse and dynamic ecosystems. In a land management agency context, the 
study demonstrates how the RF can be used to address the challenges and operational constraints of 
land cover classification, including the use of non-parametric and noisy data, its implementation using 
open-source software, and the integration of multi-source regional scale ancillary spatial data. 

While these results are encouraging for the application of RF in an applied natural resource 
management context, there are several important areas of further research that warrant further 
investigation. Based on the “Strong Law of Large Numbers”, Breiman [1] showed that RF does not 
over-fit training data as more trees are grown. While results from OOB accuracy and test data support 
this, the performance of the RF model is based on the important assumption that training data is 
representative of forest and non-forest classes from across the study area. As proposed by 
Armston et al. [65], in a study investigating the use of RF regression analysis to predict overstory 
foliage projective cover (FPC) from Landsat TM and ETM imagery, an important next step would be 
to undertake an independent assessment of the implemented classification model (forest extent map, 
Figure 4) from sites located away from training data. This would improve understanding of the extent 
to which spatial autocorrelation between training data samples (i.e., contiguous or closely located 
pixels) lead to bias, as well as reduced variance and representativeness [66]. In short, how do spatially 
auto-correlated model training and validation data over-estimate the accuracy and performance of the 
RF classifier across large heterogeneous landscapes? Other important directions for further research 
include: (1) the characteristics of RF training data, to better understand how the classifier manages noise 
and outliers; (2) understanding how different sampling techniques affect classifier performance; and 
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(3) the implementation of the classifier model on other acquired and calibrated remote sensing image 
dates and its utility for producing accurate multi-temporal forest extent maps in a monitoring context. 
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