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Abstract: Accurate assessments of spatio-temporal variations in gross primary productivity 
(GPP), evapotranspiration (ET), and water use efficiency (WUE) play a crucial role in the 
evaluation of carbon and water balance as well as have considerable effects on climate 
change. In this study, Moderate Resolution Imaging Spectroradiometer (MODIS) products 
were used to quantify the mean annual GPP and ET at Korean regional flux network site. 
We found that the seasonal mean values of WUE were 2.86 to 2.92 g·C·g·H2O−1 in the 
dormant season and 1.81 to 1.88 g·C·g·H2O−1 in the growing season during 2007 and 2008. 
The WUE was relatively stable during the growing season and tended to vary in the 
dormant season. Remote sensing data obtained by the MODIS satellite were appeared to be 
effective to improve our understanding of the spatio-temporal variation of ecohydrological 
parameters which have not yet been investigated in a number of previous articles. Based on 
the results of this study, we summarize the interactions between carbon and water 
circulation in terrestrial ecosystems and how their ecological procedures generated by the 
photosynthesis of vegetation influence in climatological perspectives. 

Keywords: gross primary productivity (GPP); evapotranspiration (ET); moderate resolution 
imaging spectroradiometer (MODIS); water use efficiency (WUE); ecohydrological impacts 
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1. Introduction 

Vegetation growth is regarded as crucial portion of global carbon and water cycling, and its role has 
been receiving more attention due to global climate change including increases in the atmospheric 
carbon dioxide concentration [1–4]. The continued increase in atmospheric concentrations of carbon 
dioxide due to anthropogenic emissions is predicted to lead significant changes in climate [5]. Explicit 
changes in other factors such as land use, land cover types and atmospheric which influence the water 
budget, plant water use strategy, and the global carbon cycle are expected due to the result of global 
climate change [6,7]. The monitoring of the carbon cycle has been emphasized in many ecological 
studies [1,8,9], particularly focused on the relationship between the carbon cycle and vegetation 
production in the ecosystem, and parameters for detecting vegetation production. 

The gross primary productivity (GPP) and net primary productivity (NPP) have been widely  
used [10–14] in traditional methods to study the carbon cycle. The GPP is calculated using 
observations of vegetation at the beginning of the carbon cycle and is the primary indicator of 
vegetation carbon fluxes. The GPP is essential in order to control parameter estimations of global 
carbon variation. Running et al. [10] developed the theoretical basis for the global-scaled NPP 
algorithm. Tum and Gunther [13] noted that the NPP was based on the dynamic vegetation model of 
the Biosphere Energy Transfer Hydrology (BETHY/DLR) study in Germany and Austria during 2000 
and 2001. Matsushita and Tamura [6] developed a method for estimation of the NPP in East Asia by 
implementing the Boreal Ecosystem Productivity Simulator (BEPS) model, which combines several 
sets of data for global applications of the algorithm. Cao et al. [15] and Singh et al. [16] used the 
Global Production Efficiency Model (GLO-PEM) to calculate the spatio-temporal variation of the NPP 
between 1981 and 2000 at global scale. Xiao et al. [17] developed satellite-based Vegetation 
Photosynthesis Model (VPM) to analyze the seasonal variation of GPP in evergreen needleleaf forests. 
Yuan et al. [11] conducted various spatial and temporal resolutions to quantify the global carbon cycle 
using EC-LUE (Eddy covariance Light Use Efficiency) model, generated by only four parameters: 
normalized difference vegetation index (NDVI), photosynthetically active radiation (PAR), air 
temperature, and the energy flux terms. 

The parameters used in these models were limited because they did not consider water circulation. 
There are many methods for analyzing of the relationships between the water and carbon cycles. The 
WUE, ratio of carbon gain during plant photosynthesis to water loss during evapotranspiration (ET), is 
an imperative concept to study these interactive effects, because it couples the water and carbon cycles 
very effectively [18–21]. The WUE can be defined in various ways, such as in different spatial scales, 
for different study objectives [18,22,23]. Hwang et al. [22] used an eco-hydrological model, the 
Regional Hydro-Ecological Simulation System (RHESSys), as a scaling tool at regional catchment 
scale. The RHESSys represented the spatial variation of the water and carbon cycles in a forest 
ecosystem. Yu et al. [18] analyzed the seasonal variation of the WUE in an ecosystem and 
demonstrated spatial patterns of ecosystem variables such as GPP, ET, and WUE at 1 km spatial 
resolution over three local flux tower sites in China between 2003 and 2005. Despite the completion of 
many studies focused on flux tower measurements, only a limited number of flux tower field 
measurements for WUE have been available in recent decades, and for only a few ecosystems, in 
comparison to the development of eddy covariance systems [24–26]. Due to the limited number of 
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The elevation is 340 m, the slope ranges from 10 to 20°, and the canopy height is approximately  
18 m. The annual mean temperature is 11.5 °C, the annual mean precipitation is 1,365 mm [31,32] and 
the maximum leaf area index (LAI) is approximately 6 (Table 1). The data was collected for the study 
period of 1 January 2007 to 31 December 2008. The MODIS products replaced meteorological 
observations, as the observed input data and the primary product measurements were used to validate 
satellite-based estimates.  

Table 1. Site descriptions. 

Properties KoFlux Gwangneung Supersite (GDK) 
Latitude 37.75°N 

Longitude 127.15°E 
Elevation 340 m 

Slope 10–20° 
Land cover Mixed forests 
Soil texture Sandy loam 

Predominant species Quercus sp., Carpinus sp. (80–200 years old) 
Depth of soil moisture 10, 30, 60 cm 

Canopy height 18 m 
Maximum Leaf Area Index (LAI) 6 

Mean annual temperature 11.5 °C 
Mean annual precipitation 1,365 mm 

2.2. Eddy Covariance System 

In this study, two meteorological variables (i.e., vapor pressure deficit (VPD) and air temperature) 
measured by the eddy covariance system at every half hour interval were used to estimate the ET and 
gross primary productivity. The eddy covariance system is an essential part of the mass conservation equation, 
which provides the framework to estimate the net ecosystem exchange (NEE, in mgC·m–2·d–1) between 
the photosynthetic carbon assimilation and releasing respiration. Negative NEE is expressed as another 
parameter, net ecosystem productivity (NEP, in mgC·m–2·d–1). The GPP is calculated using the 
following equation: 

e eGPP NEP R NEE R= + = − +                                                    (1) 

where Re is the total ecosystem respiration. The ground-measured GPP was validated with the 
MODIS-based GPP in this study.  

The eddy covariance system was applied to the flux observation. This method has been widely used 
for flux tower measurements worldwide, since the energy and water exchange between the surface and 
atmosphere can be directly determined: 

v hNEE Storage flux eddy flux advective flux advective flux= + + +        (2) 

The first component on the right side of the equation is the amount of flux stored below the 
measurement height, second is the flux generated by vertical turbulent motions, third is the amount of 
flux advected by the mean vertical flow in the presence of the vertical gradient of concentrations, and 
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last component is the fluxes generated by the horizontal flow divergence of the mean flows and the 
concentrations below the measurement height. Among these components, the conventional eddy 
covariance system depends on the measurement of the second term, eddy flux. This term is considered 
to be very useful and efficient tool under steady state conditions over flat terrain with an extended 
upwind fetch of the underlying vegetation [33]. Due to the inherent complexity, heterogeneity, and 
variability of the eddy flux in nature, the eddy covariance method has been used over various 
landscapes and extended temporal scales, resulting in many problems and subsequent remedies [33]. 
We selected flux tower data measured by the eddy covariance system in order to validate the MODIS 
ET product. 

2.3. The Properties of the MODIS Satellite 

The MODIS multispectral sensor of the NASA Earth Observing System (EOS) is being provided 
atmosphere, land, and ocean products. The overpass time of the Terra satellite is approximately 
10:30 AM when descending and 10:30 PM when ascending. The Aqua satellite overpass time is 
approximately 1:30 AM when descending and 1:30 PM when ascending. The MODIS 17 GPP and 16 
global ET products from the Terra satellite were employed to estimate the WUE during 2007 and 
2008. The provided datasets in the Hierarchical Data Format (HDF)-EOS with Sinusoidal (SIN) 
projection was reprojected using Transverse Mercator (TM) coordinate system.  

2.4. MODIS 17 GPP/NPP Algorithm and Estimated Products 

The GPP is one of the parameters representing the material circulation of the terrestrial ecosystem 
and is used for detecting and measuring the change in carbon circulation [10,11,18,22,28]. Primary 
production can be divided into the GPP, which represents the total amount of organic matter produced 
by vegetation through photosynthesis, and the NPP, which excludes the breathing quantity of the 
vegetation from total organic matter [19]. These two indices are expressed as the amount of carbon per 
unit area. In this study, the 8-day GPP output with spatial resolution of 1 km from the MODIS primary 
product provided by the NASA was used. The MODIS 17 GPP algorithm is associated with carbon 
circulation. The GPP is a function of sunlight and active radiation-related parameters. The MODIS 
GPP algorithm is based on the radiation use efficiency of vegetation [10,19] as expressed in the 
following equations: 

GPP FPAR PARε= × ×                                                               (3) 

max min( ) ( )f T f VPDε ε= × ×                                                            (4) 

0.45 sPAR R= ×                                                                      (5) 

where ε is the radiation use efficiency of vegetation, PAR is the photosynthetically available  
radiation (MJ·m–2·d–1), εmax is the maximum radiation use efficiency, Tmin is the daily minimum 
temperature (°C), VPD is the vapor pressure deficit (the difference between the vapor pressure and 
actual pressure) (Pa), Rs is the short wave radiant energy (MJ m–2 d–1), and FPAR is the fraction of the 
PAR absorbed by the plant with a value ranging from 0 to 1. When the PAR absorbed by the plant is 
large or the value of ε is high, then the GPP value increases. Equation (3) shows that the MODIS GPP 
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algorithm assumes that the value of ε is determined according to the vegetation type [34]. The PAR is 
assumed to be 45% of Rs (Equation (3)), which expresses the change in use efficiency determined by 
the opening and closing of the stomata according to Tmin and VPD which have upper and lower limits 
ranging from εmax to 0. The MODIS 15 FPAR product is used due to its similarity with normalized 
difference vegetation index (NDVI) [10]. The meteorological data of the MODIS GPP algorithm used 
the Data Assimilation Office (DAO) provided by the NASA, having a spatial resolution of 1.00° × 1.25° 
as input data. The upper and lower thresholds of εmax, Tmin and VPD determined the opening and 
closing of the stomata use constant, which were determined according to the vegetation type [34]. 

2.5. MODIS 16 Global ET Products 

The MODIS 16 global ET product was developed centered on Cleugh et al.’s [29] Penman-Monteith 
based ET (RS-PM) method [30]. The RS-PM method is based on the Penman-Monteith (P-M) 
equation [35]: 

( ) /
(1 / )
p sat a

s a

sA C e e r
E

s r r
ρ

λ
γ

+ −
=

+ +
                                                                (6) 

where λE is the latent heat flux (W·m–2), esat is the saturated water vapor pressure (Pa), s is the slope of 
the curve relating the saturated water vapor pressure to the temperature (kPa·K–1), A is the available 
energy (W·m–2), ρ is the air density (kg·m–3), Cp is the specific heat capacity of the air (J·kg–1·K–1), e is 
the actual water vapor pressure (Pa), ra and rs are the aerodynamic and surface resistances (s·m–1), 
respectively, and γ is the psychrometric constant (Pa·K–1). The RS-PM algorithm uses the Global 
Modeling and Assimilation Office (GMAO) meteorological data at a 1.00° × 1.25° resolution (Global 
Modeling and Assimilation Office, 2004). The algorithm also needs the Collection 4 MODIS land 
cover (MOD12Q1; [36]), MOD13A2 NDVI/EVI [37,38], MOD15A2 LAI [39], and the 0.05° albedo 
from the MOD43C1 [40–43] data as remote sensing inputs. In this study, the MODIS 16 global ET 
product was used to estimate the WUE. 

2.6. Estimating the WUE Based on Remote Sensing Technology 

The previous studies applied the GPP and NPP as parameters of the carbon cycle [10,18,19,22]. 
These parameters have been widely used and applied to many studies as the amount of carbon 
produced from photosynthesis and the respiration generated from the stomata of the vegetation, 
respectively. This study introduced the new carbon cycle index to understand the change in vegetation 
due to climate change as a hydrological factor. The WUE is the amount of carbon included in 1 kg of 
water in the atmosphere and it can be used as an index representing the carbon and water cycles [19]. 
The WUE can be defined in many ways at an ecosystem scale. The three mainly used definitions 
include the GPP based WUE: GPP/ET, the NPP based WUE: NPP/ET, and the net ecosystem carbon 
production (NEP) based WUE: NEP/ET. The ET value can be replaced by the annual rainfall and the 
photochemical reflectance index to calculate the rainfall use efficiency (RUE, [44,45]) and light use 
efficiency (LUE, [12,27]), respectively. In this study, the first definition (GPP-based WUE) was 
primarily used to deal with our objectives, since the GPP can reflect the annual net carbon fixation in 
the plant biomass and also examined how the WUE is distributed nationally. 
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measurement GPP (x) were: y = 1.22x − 7.02 with correlation coefficient (R) = 0.85, Bias = 2.94 gC·m−2 
and root-mean-squared-error (RMSE) = 14.12 gC·m–2 in 2007 and y = 1.28x − 11.66 with R = 0.94, 
Bias = 3.63·gC·m–2 and RMSE = 9.04 gC·m–2 in 2008 (Table 2). In Hwang et al. [22] which compared 
MODIS GPP product with the products of GPP using the RHESSys model at same study site, we 
found that results of validation showed almost similar patterns. 

Figure 6. Spatial distribution of GPP in South Korea. (a) 17–24 January 2007. (b) 21–28 
August 2007. (c) 17–24 January 2008. (d) 21–28 August 2008. 

 
(a)                                                                                (b) 

 
(c)                                                                                (d) 
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Figure 9. Spatial distribution of ET in South Korea. (a) 17–24 January 2007. (b) 21–28 
August 2007. (c) 17–24 January 2008. (d) 21–28 August 2008. 

 
(a)                                                                          (b) 

 
(c)                                                                           (d) 

The distribution of the ET showed similar trends with GPP distributions [11,18,19]. The ET near 
the coastline had higher value, while the ET distribution in the summer was different than the GPP 
distribution. Since the plateau with higher ET value has lower temperature and air pressure values, 
there was lower ET in that area [51]. The global MOD16 terrestrial calculated ET was higher than in 
comparison with the ground measured ET at the GDK flux tower site as shown in Figure 10 [50]. 
Validation of the MODIS 16 global ET product was performed using flux tower measurements 
registered by the AsiaFlux network [50] and the results are presented in Figure 11 and Table 2. The fitted 
lines between the MODIS-based ET (y) and the flux tower measurement ET (x) were: y = 1.07x + 17.15, 
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relationship between the GPP and ET. The slope of the GPP-ET curvature in this figure represents 
WUE which was the ratio of GPP and ET. In dormant season, GPP and ET were correlated most 
significantly at GPP value less than 10 gC·m–2·8-day−1 and at ET around the 0 to 5 g·m–2·8-day−1 
during 2007, whereas GPP and ET values were affected the WUE value in very little extent during 2008, 
with no correlation at higher values of GPP and ET during 2007 and 2008 (Figures 13 (a,c)). In contrast, 
in growing season, GPP and ET showed the positive relationship for all ranges, particularly GPP ranging 
from 10 to 50 gC·m−2·8-day−1 and ET from 10 to 40 g·m−2·8-day−1 (Figures 13(b,d)). Figure 13(b) 
showed the dense effect of GPP and ET values on WUE during 2007, whereas Figure 13(d) showed the 
spatially scattered effect of GPP and ET on WUE in 2008. 

Figure 12. Spatial distribution of WUE in South Korea. (a) 17–24 January 2007. (b) 21–28 
August 2007. (c) 17–24 January 2008. (d) 21–28 August 2008. 

 
(a)                                                                        (b) 

 
(c)                                                                      (d) 
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