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Abstract: This study aims to assess the localization and size distribution of landslides 
using automatic remote sensing techniques in (semi-) arid, non-vegetated, mountainous 
environments. The study area is located in the Kurdistan region (NE Iraq), within the 
Zagros orogenic belt, which is characterized by the High Folded Zone (HFZ), the 
Imbricated Zone and the Zagros Suture Zone (ZSZ). The available reference inventory 
includes 3,190 landslides mapped from sixty QuickBird scenes using manual delineation. 
The landslide types involve rock falls, translational slides and slumps, which occurred in 
different lithological units. Two hundred and ninety of these landslides lie within the ZSZ, 
representing a cumulated surface of 32 km2. The HFZ implicates 2,900 landslides with an 
overall coverage of about 26 km2. We first analyzed cumulative landslide number-size 
distributions using the inventory map. We then proposed a very simple and robust 
algorithm for automatic landslide extraction using specific band ratios selected upon the 
spectral signatures of bare surfaces as well as posteriori slope and the normalized 
difference vegetation index (NDVI) thresholds. The index is based on the contrast between 
landslides and their background, whereas the landslides have high reflections in the green 
and red bands. We applied the slope threshold map to remove low slope areas, which have 
high reflectance in red and green bands. The algorithm was able to detect ~96% of the 
recent landslides known from the reference inventory on a test site. The cumulative 
landslide number-size distribution of automatically extracted landslide is very similar to 
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the one based on visual mapping. The automatic extraction is therefore adapted for the 
quantitative analysis of landslides and thus can contribute to the assessment of hazards in 
similar regions. 

Keywords: brightness Indicator; landslide; automatic extraction; landslide index; remote 
sensing; GIS; number-size distribution; Zagros 

 

1. Introduction 

Landslides are geological phenomena, which include a wide range of ground movements, such as 
rock falls, deep slope failures and shallow debris flows. These mass movements can happen in 
offshore, coastal and onshore environments. Although the action of gravity is the primary driving force 
for a landslide to occur, there are other contributing factors affecting the original slope stability [1]. 

Guzzetti et al. [2] considered that any mass movement is part of a landslide inventory map. In 
general, these maps show the spatial distribution of deposition and erosion areas produced by  
gravity-induced mass wasting which may vary in type, age and activity. In addition, landslide 
inventory maps involve landslide detection, recognition and classification. Size is one of the most 
important aspects in the recognition of landslides [3]. The estimation of the size and probability of 
landslide occurrence is thus part of any landslide hazard assessment [4]. Until recently, visual 
interpretation over aerial photographs and orbital high spatial resolution images remained the major 
source for landslide inventory map preparation. So far, visual interpretation of landslides with field 
checking is more accurate than automatic extraction in many cases. Nonetheless, the accuracy of 
automatic procedures has increased steadily and thus they are more and more adequate to be used to 
generate landslide inventory maps.  

Borghuis et al. [5] detected landslides in southern Taiwan by using the Normalized Difference 
Vegetation Index (NDVI), supervised and unsupervised classifications as well as manual delineation. 
The authors indicated that unsupervised classification could detect 63.1% of the landslides, which were 
mapped manually. Nichol et al. [6] used multi-temporal images and showed that change detection is a 
successful technique to detect up to 70% of the landslides from SPOT multispectral data with spatial 
resolution of 20 m. The higher resolution images like pan-sharpened IKONOS imagery could be 
utilized for more detailed landslide inventory maps and the most affected areas. Martha et al. [7] used 
object-oriented methods (OOA) for semi-automatic landslide detection. In their investigation, they 
used high spatial resolution data and a Digital Elevation Model (DEM) to generate several parameters 
such as NDVI, slope, flow direction, hillshade, terrain, curvature, and stream network. They achieved a 
cognition accuracy of 76.4%. They then used the cumulative area- frequency distribution to compare 
manual delineation with automatic extraction of landslides. 

A cumulative log landslide number distribution is a graphic plot that shows the relation between log 
size and log number of landslides. The x-axis represents log size and the y-axis represents log of 
cumulative number. The cumulative distribution allows quantification of the results of the inventory 
map by determining the statistics of landslide sizes. The cumulative distribution of landslides is given 
by (Equation (1)): 
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 ௖ܰ௟ ൌ ߚ ൈ ܵି௔ (1) 

where: ௖ܰ௟ = cumulative number of landslides, α = the cumulative exponent, and ߚ = constant.  
Fujii [8] was probably the first researcher who investigated these types of structures. He studied 800 

landslides in Japan caused by heavy rainfall [9–11]. The cumulative number is calculated by using the 
area or a combination of area and volume of landslide triggers [12–20]. Other studies have been made 
using only the volume of landslides [9,21,22]. 

In this paper, we explore the potential of very high spatial resolution data and a semi-deterministic 
spectral characterization of scars in order to increase the efficiency of automatic extraction. First, we 
present the study area, the available remotely sensed data and the data processing. Second, we discuss the 
advantages and limitations of the proposed method for the recognition and mapping of landslides. Finally, 
we present and then discuss the results of frequency-size analysis for two zones of the Zagros orogenic belt. 

This study involves four main steps of data processing. Firstly, we prepared a landslide inventory 
map of delineated landslides manually from QuickBird images. Secondly, we generated cumulative 
frequency-size distribution formulas of two tectonic zones of the Zagros orogenic belt. Then, we 
improved the automatic detection of landslides in the region. Finally, we made a statistical comparison 
between the automated extraction and the manual delineation for parts of the study area. 

2. Study Area 

The study area lies within the Kurdistan region in the northeastern part of Iraq (36°30′N–35°30′N, 
44°26′E–46°21′E). It comprises the Iraq Zagros Mountains, in which mass movements threaten many 
towns and big villages. The study area covers about 6,554 km² (Figure 1). 

Figure 1. Location map of the study area in the High Folded Zone (HFZ), Imbricated Zone 
(IZ) and Zagros Suture Zone (ZSZ) (after [23]). 
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2.1. Geological Setting 

The NW-SE trending Zagros orogenic belt is approximately 2,000 km long, extending from 
southeastern Turkey through Iraq to southern Iran and part of the Alpine-Himalayan mountain  
chain [24,25]. The Iraqi territory is divided into four main tectonic zones of different characteristics 
(rock types, age, thickness and structural evolution). These four zones are (1) the Inner Platform 
(stable shelf); (2) the Outer Platform (unstable shelf), which includes the Imbricated Zone (IZ), the 
High Folded Zone (HFZ), the Foothill Zone and the Mesopotamia Foredeep; (3) the Shalair Zone, and 
(4) the Zagros Suture Zone (ZSZ) (Figure 1) [23,26–31]. The Suture Zone is characterized by 
ophiolites [26]. The study area consists of ten units formed during the Late Cretaceous and  
Mio-Pliocene periods due to the obduction and collision of the Arabian with the Iranian plate. Three 
NW tectonic zones formed in the ZSZ: The Qulqula-Khwarkurk Zone, which consists of radiolarian 
cherts, mudstone, and limestone, conglomerates and basic volcanic rocks of increasing occurrence to 
the NE of the study area; the Penjween-Walash Zone, which consists of metamorphosed rocks, 
carbonate beds with volcanic and pyroclastic rocks; and the Shalair Zone, which consists of  
meta-pelitic and meta-carbonates, volcanic, and metamorphosed rocks. These structures are overlain 
by different types of Quaternary sediments (river terraces, alluvial fans, slope sediments, valley fills, 
flood plains, polygenetic sediments) [32,33]. The HFZ and the IZ include sedimentary rocks, mainly 
limestone, but also dolomite, sandstone, claystone, shale, conglomerate, marl, siltstone and bitumen, 
which range from Triassic to Quaternary [34]. 

The main thrust fault forms the NE to NW tectonic contact between the IZ and HFZ [26]. Due to 
the similarities of the IZ (a ~25-km-wide narrow belt) with the HFZ [34], we considered it as a part of 
the HFZ. On the northwestern side, the HFZ includes more than 42 mainly NW–SE oriented, 
asymmetrical, anticlines and synclines. Most folds are box shaped with steep SW or W flanks. They 
were influenced by transversal fault and reverse-slip fault systems. On the other side, within the 
Shaliar Zone in the southeastern part of the study area, the ZSZ includes few E–W or NE–SW oriented 
anticlines and synclines. 

The study area is characterized by rugged topography in most parts. The elevations range from  
376 m to 3,415 m with slopes ranging between flat and 81°. This landscape is the result of the 
combined effects of tectonic uplift, erosion, and different rock strengths. The actual geomorphological 
units developed under severe erosion and moderate weathering [32,33]. Most of the rocks outcropping 
in the region are characterized by a high brightness after they have been freshly exposed. 

2.2. Climate  

The Lesser Zab River collects all the surface water that enters the basin as precipitation (rain and 
snowfall) and flows to the Dukan Lake. The Köppen–Geiger climate classification system [35] 
characterizes the climate as warm temperate with dry and hot summer (Csa). The climate of this 
mountainous basin is defined by large seasonal variations in precipitation, temperature and 
evaporation, represented by dry summers and wet winters. The climatic data is gathered from the 
Agro-Meteorological Department of the General Directorate of Research & Agricultural Extension of 
the Ministry of Agriculture of the Kurdistan Regional Government). Most of the entire annual 
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precipitation (895.3 mm) occurs during October to May. The highest average monthly precipitation 
value of the last 10 years was measured in January with 198.3 mm. Monthly average temperatures vary 
between 0 °C (February) to 38.4 °C (August). Above 1,500 m, heavy snowfall occurs in winter. Heavy 
rainfall, heavy snowfall and rapid snow melting subsequent to sudden change in temperature, lead to the 
incidence of landslides in spring. In this area, the annual evaporation is up to 1,939.7 mm. The highest 
average monthly evaporation of the last 10 years was measured in July with 368.1 mm (Figure 2). 

Figure 2. Monthly precipitation, evaporation, maximum and minimum temperature, in the 
study area based on data from 2000 to 2006 (the Agro-Meteorological Department of the 
General Directorate of Research and Agricultural Extension of the Ministry of Agriculture 
of the Kurdistan Regional Government). 

 

2.3. Landslides 

The study area is susceptible to frequent landslide occurrences due to both natural and human-induced 
reasons. The main natural factor, which causes the landslides in the study area, is the very rugged 
topography across the elongated anticlines. Other natural factors are: the rapid snow melting in spring, 
the focused precipitation, and the relatively heterogeneous geology and geomorphology. Human-induced 
causes of slope failures include the construction of the Dukan Lake dam, civil engineering activities like 
road cuts, overloading of the top or undercutting of the toe of slopes and unsuitable agricultural practices.  

Landslides and other types of mass movement are related to water supersaturation, which increases 
the internal water pore pressure. Among the numerous events that occurred in the region, a massive 
and good example is the landslide that occurred 10 km eastwards of Chowarta town, within the Gora 
Kachaw Mountain south of the study area [36]. It damaged parts of the village Galley and led to the 
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death of 20–25 persons. It was caused by high water saturation of the ground due to ice melting. The 
heavy snow and rain caused mud banks to collapse, and the mudflow buried houses and blocked roads. 
On 24 February 2013 part of a cliff in Sara Mountain collapsed due to the heavy rain and blocked the 
road from Dukan to Bangard towns.  

Along the main road to Gimo Mountain, after Kanaro village, large areas are affected by landslides. A 
few hundred thousand cubic meters of igneous rock of the Mawat massif has collapsed in the last 
decade. Rock falls and toppling has occurred in different lithological units along steep slopes and 
gorges independently or collectively. Recent events caused road blockings and several towns nearby 
are threatened and regularly affected—a large rock fall was witnessed recently in the Chowarta town 
along the road to Gimo village near Dukan Lake (Figures 3 and 4 (S1,S2)). Any reactivation in this cliff 
will certainly destroy the town. Big blocks of heavily fractured limestone fall from a steep cliff near 
Dukan Lake (Figure 4 (S2)). The volume of these blocks of limestone reaches >1,300 m3. 

Figure 3. Landslides inventory map of 3,090 landslides identified through visual 
interpretation of 60 QuickBird scenes (the S1–S9 markings correspond to sites mentioned 
in Section 2.3 and Figures 4 and 5). 

 

Translational slides or rockslides are common in hard rock and occur along planar shear  
surfaces [37]. This type of slide damages more than rock fall. Figure 4 (S3) shows the translational 
sliding which threatens the new Dukan town-Sulimanyah road cutting the northeastern flank of the 
Surdash Anticline near Dukan Lake (in Figure 3 (S1)). The roads from Sulimanyah to Chowarta and 
Mawat are also affected by recurrent landslides of different sizes. 
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Figure 4. Typical examples of landslides within the study area. (a,b) Rock fall in station 
S1 and S2; (c,d) Rock slide in the study area near Dukan Lake at station S3. 

 

Slumps or spoon-like landslides are common in weak layers, especially when they have been 
softened by percolation of rainwater [37]. Figure 5 (S4–S6,S9) shows that slump sliding threaten roads 
in different sites of the study area. Clastic debris flows are also common in the weak layers. Especially, 
in the north-northwest of the study area, the debris is usually fine-grained. Numerous landslides develop 
NE of QalaDiza town. One of the largest one is still active and covers an area of 1.4 km2 (Figure 5 (S5)). 

Figure 5. Red, Green, Blue (RGB) 321 of QuickBird data showing examples of detected 
rotational landslides in the study area. The four images represent the landslides S4, S5, S6 
and S9, which were checked in the fieldwork (see Figure 3). 
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Figure 5. Cont. 

  

3. Data, Data Preparation and Workflow 

The availability of new satellite sensors with better spatial and spectral resolutions made the use of 
satellite data more attractive than aerial-photographs to detect and investigate landslides. For this 
study, 60 cloud-free QuickBird scenes were used. They were obtained via the Ministry of Planning 
(Iraq) and were acquired from 18 August 2002 to 29 August 2006. The final product is a 3-bands,  
8-bit, 0.6 m resolution mosaic covering more than 6,554 km2. It has three visible spectral bands in the 
blue (450 to 520 nm), green (520 to 600 nm) and red (630 to 690 nm) and one panchromatic band (450 
to 900 nm). The mosaic did not include the near infrared band (760 to 900 nm). The three visible 
spectral bands data were pan-sharpened using the UNB algorithm [38]. The mosaic was 
radiometrically corrected, ortho-rectified and projected using theWGS84 data and the UTM 38N 
projection. In addition, we used eight ortho-rectified and radiometrically corrected Advanced 
Spaceborne Thermal Emission and Reflection (ASTER) and their extracted stereogrammetric digital 
elevation models (DEMs) ASTER using Nadir (N) and backward looking (3B) red bands. The ASTER 
level 1A scenes were acquired between 24 August 2003 and 15 September 2006 with a resolution of 
15 m. The ASTER data was necessary because of the unavailability of the NIR band at higher 
spatial resolution. 

Twenty previous geological maps from published reports of [39–42] were used in this study  
(Figure 6). These maps have varying scales and cover different parts of the study area. Bolton [39] 
provided a geological map of 1:100,000-scale that covers the northeast part of the study area. In this 
report, 15 major landslides were detected from 1:20,000- and 1:40,000-scale aerial photographs and 
additional fieldwork. Paver et al. [40] produced 15 geological maps at a scale of 1:20,000 covering the 
east and northeast of the study area. The report lists 25 major landslides based on fieldwork 
observations. Buday [41] delivered four geological and geomorphological maps at a scale of 
1:100,000, which cover the east part of the study area. The report lists 39 major landslides based on 
fieldwork observations. Abdulaziz [42] published six engineering geological and geomorphological maps 
at a scale of 1:100,000, enclosing the entire study area. They delineated 117 major landslides based on 
1:40,000- and 1:50,000-scale aerial photographs, and fieldwork for part of the study area, and a 
hardcopy of MSS Landsat imagery (1:250,000) for the rest.  
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Figure 6. The inventory map of the 196 major landslides digitized from previous 
geological projects [39–42]. 

 

Environment for Visualizing Images (ENVI) software was used to perform the data operations 
(mosaic, subset, threshold, and automatic landslide extraction). All GIS operations (base map 
preparation, raster vector conversion and area calculation) were done using ArcGIS10 and all 
statistical operations were done using R software. 

4. Methodology 

The manual delineation of landslides using two sources provided the inventory map (Figure 7). 
Firstly, previous geological maps [39–42] were scanned with 300 dpi and georeferenced to the UTM 
coordinate system in Zone 38 north. Then, the landslides were digitized in a GIS. Secondly, visual 
interpretations and digitizing of QuickBird scenes (partly verified by field survey in different parts of 
the study area) were carried out. The landslide boundaries were identified based on attributes such as 
tone, texture, headwall scarps, and associations like the pathway of the material movement and 
fragments of transferred materials from the satellite images. The two databases of digitized landslides 
were matched to create the final inventory map. 
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Figure 7. General methodology. 

 

4.1. Automatic Landslide Detection 

We developed a robust methodology to analyze and evaluate the landslides in the study area 
(Equation (2)). This methodology is neither meant to replace standards methods nor to be universal. 
On the other hand, the algorithm is easily adaptable to other (semi-) arid areas (like our study area;  
Section 2.2). The idea of the brightness indicator is based on the relatively high reflectance contrast 
between landslides and their background. Particularly, the high reflectances of landslides in green and 
red bands allow their detection [6]. The rock types are composed of carbonate rocks (limestone and 
dolomite), marl, claystone, shale, sandstone, conglomerate and chert in this area. Almost all of these 
rocks reveal a higher reflectance in red and green bands after they have been recently exposed.  Brightness indicator ൌ ݊݁݁ݎܩ ൈ ܴ݁݀255  (2) 

Green and red bands are stored as the second and third band in QuickBird data. The brightness 
indicator as described in Equation (2) can be described as a brightness of both red and green bands. 
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The spectral range of the digital number (DN) of brightness indicator is between 0 and 255. The final 
products QuickBird data has only 8-bit. Therefore, the constant number (255) in the brightness 
indicator equation represents the radiometric resolution of QuickBird data (8 bit). 

Additional portable Analytical Spectral Devices (ASD; [43]) FieldSpec measurements were also 
performed in order to support the discussion of the results obtained from the remotely sensed images. 
The samples were collected from different landslides in the study area. The samples encompass seven 
selected rock samples (i.e., four limestones, two conglomerates and one of chert). The measurements 
were conducted in the Iraq geological survey laboratory.  

Figure 8 shows the high reflection of carbonate minerals (calcite and dolomite), clay mineral 
(muscovite, montmorillonite, and kaolinite) and quartz with a wavelength of 0.45–0.7 µm. The outcrops of 
rocks due to erosion reduced the reflectance in red and green bands because of the oxidation. In 
addition, the moisture content further reduced the reflectance because of the absorption of water in 
green and red bands [44].  

Figure 8. Spectral bands recorded by US Geological Survey. Spectral reflectance curves 
are given for calcite, dolomite, muscovite, montmorillonite, kaolinite and quartz [45]. 

 

We used a test area on which we have a complete inventory. The satellite data of the selected area 
was acquired free of any snow, cloud, salt and sand dune coverage. The brightness indicator was 
developed to automatically extract and generate the inventory map for recent landslide areas. The 
brightness indicator is a raster map with values ranging from zero to 255 (Equation (2)). Low 
brightness indicator values indicate areas without landslides (e.g., vegetation, rivers, and paved roads). 
On the other hand, high brightness indicator values indicate recent landslides, but also roofs of 
buildings made of clay and lime or just clay, cemented roads covered by clay and lime and unpaved 
roads, covered by clay, yellow plants and grasses. 

Houses, unpaved roads, and salty areas are usually characterized by low and flat slope. Therefore, 
we apply a slope threshold. The selection of the threshold values for both brightness indicator and 
slope data was determined experimentally by using a contingency table [46]. Additionally a further 
mask was applied in order to remove the vegetated area (i.e., yellow plants, and grasses) using the 
normalized difference vegetation index (NDVI). The NDVI is expressed as the difference between the 
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near infrared (NIR) and red bands normalized by the sum of those bands (Equation (3), [47]). NDVI is 
a common tool to detect the landslides in distinct environments [5,7]. ܰܫܸܦ ൌ ܴܫܰ െ ܴܫܴܰ݀݁ ൅ ܴ݁݀ (3)

We calculated NDVI using both red and NIR spectral bands from ASTER. This procedure was 
necessary because the NIR band was precluded from the QuickBird dataset. The final thresholded 
brightness indicator raster was then used to generate the areas representing potential landslide surfaces. 

4.2. Statistics 

After calculating the landslide size, histogram distributions were plotted to show the frequency of 
occurrences throughout the study area. Categorization was made based on tectonic zones in the HFZ 
and the ZSZ. The cumulative distribution number of landslides was calculated using 30 bins. The 
relation between log size and log number as well as the density of the log of landslide size were 
plotted. The kernel density was adopted to estimate the probability density of log size. The cumulative 
distribution number of landslides >100 m2 often follows a power law between the cumulative number 
of landslides (NCl) and the landslide area (A) [8]. The visual delineation was used as a reference to 
validate the automatic extraction model. We used a contingency table and the Equations (4) and (5) 
([46]) to determine the accuracy of the automatic extraction. In addition, the contingency table was 
employed to select the best values of the slope angle and the brightness indicator values, located in 
non-vegetated area. Both types of landslides extracted (manually and automatically) are delineated to 
one element of the set of positives (there is a landslide) and negatives (there is no landslide) (Figure 9). 

Figure 9. Contingency table 2 × 2 (modified from [46]). 
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From the input vector layers (manual and automatic extracted landslides polygons), there are four 
possible results. If the landslide manually extracted is positive and the landslide automatically extracted 
is positive, it is considered a true positive; if the landslide manually extracted is positive and it the 
landslide automatically extracted is negative, it is considered a false negative [46]. If the landslide 
manually extracted is negative and the landslide automatically extracted is negative, it is considered a 
true negative; if the landslide manually extracted is negative and the landslide automatically extracted is 
positive, it is considered a false positive [46] (Figure 12(e,f)). The contingency table was performed 
using ‘Boolean operations’ between the polygons detected manually and automatically. 
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݁ݐܽݎ ݁ݒ݅ݐ݅ݏ݋݌ ݁ݑݎܶ  ൌ Positives correctly classifiedTotal positives  (4)

݁ݐܽݎ ݁ݒ݅ݐ݅ݏ݋݌ ݁ݏ݈ܽܨ ൌ ݏ݁ݒ݅ݐܽ݃݁ܰ ݕ݈ݐܿ݁ݎݎ݋ܿ݊݅ ݈ܽݐ݋݂ܶ݀݁݅݅ݏݏ݈ܽܿ ݏ݁ݒ݅ݐܽ݃݁݊  (5)

The positive correctly classified is true positive; the negative incorrectly classified is false negative. 
The total positives are the sum of true positives and false negatives. The total negatives are the sum of 
the false positives and the true negatives [46]. An error table is a good way to detect the error in both 
types: commission (error of inclusion) and omission (error of exclusion) [48]. 

In addition to a contingency table, two tests were used to determine the accuracy of the automatic 
extraction. The first is expressed in percentage and represents accuracy between the number of overlapped 
landslides and of manual delineation (Equation (6)). The calculation was made from Equation (6), 
where the overlapped landslide number represents the intersection of landslides from the manual and the 
automated method.  accuracy assessment ൌ overlapped landslide numbermanual delineation landslide number  ൈ  100ሻ (6) 

Secondly, we plotted the relation between log size and log number for the automatic and the manual 
landslide delineation. An exponent of both was calculated using R software to show the accuracy of 
automatic landslide extraction.  

5. Results  

5.1. Manual Delineation 

Since the estimate of landslide size is part of landslide hazard assessment [4], we digitized 196 large 
landslides from twenty previous geological maps [39–42] (Figure 6). From the QuickBird images 
3,190 landslides were derived using visual interpretation (Figure 3); 290 of them were in the ZSZ and 
2,900 landslides were in the HFZ. The total landslides coverage accounted for an area of 58.5 km2. The 
detected landslide size varied from 100 m2 to 3.33 km2. The density of landslides per km2 for the entire 
area was 0.47 (Table 1). The majority of the landslides occur in the northern part (Figure 3). 

Table 1. Statistical characteristics of the landslides (rotational landslide, flow, rock fall  
and rockslide). 

Name  
Area 
(km2) 

Total 
Landslide  

Area (km2) 

Landslides 
Rate% 

No. of 
Landslides 

Min.  
Size (m2) 

Max.  
Size (m2) 

Mean Area of 
Landslides 

(m2) 

St. Dev. of 
Landslides 

ZSZ 2,607.25 32.4 1.24 290 108.6 3,333,987 110,433 404,666.6 
HFZ 3,947.7 26.1 0.66 2,900 100 947,936.4 9,002.9 49,041.6 

NE-Iraq 6,554.9 58.5 0.89 3,190 100 3,333,987 17,384.4 128,695.8 

The probability density distribution of 290 landslides within the ZSZ and 2,900 landslides within 
the HFZ are plotted in Figure 10(b). The bandwidth estimation of kernel density for the HFZ is 0.14, 
and reflects large variance in landslide sizes. For the ZSZ the kernel density is 0.28 and indicates that 
landslide size variance is smaller compared to the HFZ. Figure 10b shows that there are a limited 
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number of very large landslides in the HFZ. On the other hand, there are a limited number of very 
small and very large landslides in the ZSZ. The maximum distribution of landslides within the ZSZ 
ranged from 0.001 to 0.1 km2, whereas the landslides within the HFZ reached from 100 to 10,000 m2.  

The largest 10 landslides (>1 km2) are located in ZSZ, within Naopurdan-Walash Group 
(Paleocene-Oligocene). Naopurdan-Walash Group is a composite of gray shale with thin beds of green 
greywacke, and lenticular volcanic rocks. These 10 landslides (largest red patches in Figure 3) are the 
largest landslides in the study area covering a total area of 20.13 km2, located in the northeast- east of 
the study area. 

Figure 10. Statistic plots, (a) Histograms showing the number (count) and size of 
landslides in logarithmic coordinates; (b) Probability density distribution showing 290 
landslides within the Zagros Suture Zone (ZSZ), and 2,900 landslides within the High 
Folded Zone (HFZ). 

 

The fit of a power law to the cumulative distribution of event sizes is commonly used to analyze 
landslide [12–20]. Here, we calculated the cumulative number-area of the landslides within the HFZ 
and the ZSZ. The cumulative distributions of 290 landslides within ZSZ and 2,900 landslides within 
HFZ show statistical correlations >0.94 (Figure 11). The power exponents were α = −0.3 for the ZSZ, 
and α = −0.9 for the HFZ, for landslide sizes <1,000 m2. However, the exponent of landslides (>1,000 m2) 
were α = −0.68 for the ZSZ, and α = −1.1 for the HFZ. 
  

(a) (b) 
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Figure 11. Distribution plot of 290 landslides within the Zagros Suture Zone (ZSZ) and 
2,900 landslides within the High Folded Zone (HFZ). 

 

5.2. Automatic Landslides Detection and Validation 

We created four thresholds of brightness indicator values (84, 86, 110 and 160) and four thresholds 
of slopes (5, 10, 12 and 15) (Table 2).We created 10 vector layers devoid of vegetation and displaying 
a representative variation of the thresholds (Table 2). These 10 maps were filtered from vegetation 
using the ASTER derived NDVI map. The map which has non-vegetated areas, slope >10° and the 
brightness indicator >84 gives the best results for the automatic extraction (Table 2). For this map, the 
area of the true positives (intersect between automatic landslide and manual landslides detected) was 
~1.4 km2, representing ~83% of the visually interpreted ones. The validation of the brightness 
indicator >84 and slope >10° non-vegetated map indicated more errors of commission rather than 
errors of omission. The omission in the true landslide areas for this map was ~17%, and the commission 
was ~31%. The examination of the visual interpretation proved that areas, erroneously commissioned 
by the automated methods, were found to be bare soil, weathered bedrock or quarries.  

Table 2. Contingency table parameters and rates for different slopes and brightness 
indicator non-vegetated maps.  

Map No. 
Brightness  

Indicator 
Slope 

True  

Positive (m2) 

False  

Positive (m2) 

False  

Negative (m2) 

True  

Negative (m2) 

True  

Positive Rate  

False  

Positive Rate 

1 84 10 1,435,248 303,148 651,149 217,900,079 0.83 0.003 

2 84 12 1,345,587 392,809 597,324 217,953,904 0.77 0.0027 

3 84 15 1,191,482 546,914 453,178 218,098,050 0.69 0.002 

4 86 12 1,263,663 474,733 547,205 218,004,023 0.73 0.0025 

5 110 5 1,211,187 527,209 594,559 217,956,669 0.70 0.0027 
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Table 2. Cont. 

Map 

No. 

Brightness  

Indicator 
Slope 

True  

Positive (m2) 

False  

Positive (m2) 

False  

Negative (m2) 

True  

Negative (m2) 

True  

Positive Rate  

False  

Positive Rate 

6 110 10 791,961 946,435 359,948 218,191,280 0.46 0.0016 

7 110 15 558,915 1,179,481 255,378 218,295,850 0.32 0.0012 

8 160 5 451,771 1,286,625 160,569 218,390,659 0.26 0.00073 

9 160 10 305,656 1,432,740 92,764 218,458,464 0.18 0.00042 

10 160 15 209,123 1,529,273 62,420 218,488,808 0.12 0.00028 

Figure 12(a,b) shows examples of extracted landslides. Figure 12(c,d) shows the brightness 
indicator values of these landslides (gray to light gray color), whereas Figure 12(e,f) shows the manual 
delineation and the brightness indicator >84, which has slope >10°. 

Figure 12. Typical examples of automatic landslide extraction: (a,b) landslides in 
QuickBird image represent S8 and S7, respectively (c,d) brightness indicator (e,f) relation 
between shape file, which extracted from the brightness indicator with DN number >84 and 
slope >10° and manual extraction of landslide. 

 

  
Figure 12. Cont. 

a b

c d
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Of recent landslides 1,798 were derived using manual extraction. The brightness indicator was able 
to detect 1,726 of these landslides, which represent an accuracy of 96%. Figure 13 shows the 
distribution plot of automatic extraction and visual interpretation of recent landslides within the 
selected area. The two lines show a statistical correlation superior to 0.92. The exponent in the plot of 
Figure 13 reveals α = −0.63 and α = −0.58 for the automatic extraction and the manual delineation, 
respectively. The distribution matching between the automatic and manual exponent was 92.7%.  

Figure 13. Distribution plot of automatic extraction and visual interpretation of recent 
landslides within the selected area. In the graphs, the x-axis shows the log of size, the  
y-axis shows the log of the number of landslide. 

 
  

e  f  
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6. Discussion 

The cumulative distribution plot (Figure 10) shows that the landslides in the HFZ are less variable 
in size than in the ZSZ. This is due to the difference between rock types and tectonic activities. The 
landslide inventory map shows that larger landslides are older and difficult to map automatically. Old 
landslides allowed the reestablishment of vegetation. 

Visual interpretation of remotely sensed data for landslide detection is more time consuming than 
automatic procedures. In addition, visual interpretation is based on the interpreter’s perception and 
experience to detect landslides. It is difficult to identify small landslides with the manual delineation of 
QuickBird data at a spatial resolution of 0.6 m. The brightness indicator was able to detect smaller 
landslides than the manual delineation. 

The ASD derived reflectance in the 0.45–0.7 µm range showed significant differences between the 
fresh and weathered faces of the three rock types (i.e., limestone, conglomerate and chert). In a similar 
way, fresh faces of the three rock types showed similar reflectance to the recent landslides detected by 
the QuickBird data. Weathered faces showed similar reflectance to the bed rock, which surrounds the 
recent landslides. The conglomerate and the limestone fresh face showed higher reflectance than the 
weathered face. The contrast between recent landslides and surrounding area corroborates with 
previous investigation conducted by Nichol et al. [6]. However, this assumption is only valid for most 
of the recent landslides, which consist of the rocks that have higher reflectance for fresh face than the 
weathered face in green and red bands. On the other hand, the chert fresh face showed lower 
reflectance than the weathered one. Therefore, we cannot always consider that the high reflectance of 
both green and red bands of the recent landslides allow their detection as reported by [6]. 

The threshold values of brightness indicator values and slope can be different from place to place 
but their selection is easy to retrieve experimentally. The algorithm is robust and able to recognize the 
recent landslides. The brightness indicator values used here could be applied to monitor landslides in 
other regions, with similar characteristics (geology, land cover, etc.). We cannot consider this 
technique to be a general solution to detect landslides but the modified (semi-automatic) algorithm 
could help to produce a primary inventory map especially after earthquakes. 

Some errors in the method are due to the (i) the difference in spatial resolution between ASTER and 
QuickBird; (ii) difficulty to extract vegetation from the landslide polygons (false positive area);  
(iii) ambiguity between roads and tilted roof with slopes >10°) landslides; (iv) landslide occurrences in 
dark rock (like chert; true negative). The trace of landslides in shadow areas and wet lands is difficult 
to distinguish because of low brightness indicator values (true negative). Land surface with false high 
values (e.g., high spectral response from houses, salt, snow, cloud coverage and both unpaved and 
cemented roads; false positive) can also be confused with landslides. Masks are a good solution to 
overcome the confusion of the land surface with false high values. Due to re-vegetation of old 
landslides, the brightness indicator values do not allow detection. 

From the total detection of landslides with the automatic extraction ~96% was made by visual 
interpretation. The accuracy assessment between the manual delineation and the automatic extraction 
was 92.7% (Figure 12). The difference between cumulative landslide number-size distributions of the 
automatically and visual landslides extracted was either due to the separation of single landslides, by 
one segment of the manual delineation shapefile or by two or more segments of the automatic 
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extraction shapefile (Figure 12(e)) (ii) merging of two or more landslides, represented by two or more 
segments of the manual delineation shape file, to only one segment of the automatic extraction shape 
file (Figure 12(e)). 

Landslide mapping by field investigations has been shown to be a challenging task in mountainous 
terrain. The remote sensing techniques and the high spatial resolution of the QuickBird and ASTER 
images employed in this study provide a viable tool for landslide detection. 

7. Conclusions 

Over 3,190 landslides including different types of landslides (rock falls, debris flow, translational 
slides and slumps) have been mapped in this study by using QuickBird images. Among these, most of 
the landslides occurred in the northern part of the study area. The Naopurdan-Walash Group within the 
Zagros Suture Zone (ZSZ) involved the largest 10 landslides. The exponent of landslide size 
distribution is <1,000 m2 with α = −0.3 and α = −0.9 for the ZSZ and the HFZ, respectively. However, 
landslides >1,000 m2 have exponents (α = −0.68, α = −1.1) which means that the landslides in the High 
Folded Zone (HFZ) have a lower size than in the ZSZ.  

The brightness indicator was applied in parts of the study area. This map was filtered by slope and 
NDVI maps to remove the low slope and vegetated area. The contingency parameter shows that the 
best map for the automatic extraction has non-vegetated areas, slope >10° and the brightness indicator 
>84. This map was detected ~1.4 km2. The proposed method detected about ~96% of the total number 
of recent landslides crosschecked by visual interpretation. The landslide number-size distribution 
analysis shows that the exponent was α = −0.63 and α = −0.58 for the automatic extraction and manual 
delineation, respectively. The error in the distribution matching was 7.3%. This was due to the 
different spatial resolution between used data and also to the difficulty to exclude vegetation, which 
represent only a few areas within some of the polygons of landslide. In addition, few types of land 
surface with high DN values show false positive landslides. Furthermore, the manual delineation was 
based on the level of expertise of the interpreter and the accuracy of digitizing making it vulnerable to 
human error. Nonetheless, the robustness and the facility to adapt the algorithm to varied regions make 
it a valuable tool for rapid hazard assessment. 
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