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Abstract: Airborne remote sensing has an important role to play in mapping and 
monitoring biodiversity over large spatial scales. Techniques for applying this technology 
to biodiversity mapping have focused on remote species identification of individual 
crowns; however, this requires collection of a large number of crowns to train a classifier, 
which may limit the usefulness of this approach in many study regions. Based on the 
premise that the spectral variation among sites is related to their ecological dissimilarity, 
we asked whether it is possible to estimate the beta diversity, or turnover in species 
composition, among sites without the use of training data. We evaluated alternative 
methods using simulated communities constructed from the spectra of field-identified tree 
and shrub crowns from an African savanna. A method based on the k-means clustering of 
crown spectra produced beta diversity estimates (measured as Bray-Curtis dissimilarity) 
among sites with an average pairwise correlation of ~0.5 with the true beta  
diversity, compared to an average correlation of ~0.8 obtained by a supervised species 
classification approach. When applied to savanna landscapes, the unsupervised clustering  
method produced beta diversity estimates similar to those obtained from supervised 
classification. The unsupervised method proposed here can be used to estimate the spatial 
structure of species turnover in a landscape when training data (e.g., tree crowns) are 
unavailable, providing top-down information for science, conservation and ecosystem 
management applications.  
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1. Introduction  

Remote characterization and mapping of biodiversity is an important objective at the intersection of 
remote sensing and ecology. For most areas, ecological field data are too sparse to provide information 
on biodiversity patterns over the landscape and regional scales relevant to conservation assessment and 
land management planning. Remote sensing can provide spatially continuous information on variation 
in landscape morphology, vegetation structure, and other biodiversity covariates over large areas, 
allowing for the extrapolation of local biodiversity information to these scales [1–3]. 

Approaches for mapping biodiversity may focus on quantifying the distributions of individual 
species or on mapping emergent properties of ecological communities, such as alpha diversity 
(generally expressed as the local species richness, or number of species found within a site), or beta 
diversity (the difference in species composition among sites). The majority of studies have focused on 
mapping species distributions [4] and alpha diversity (e.g., [5–8]), while the estimation of beta 
diversity has received less attention (but see [9–11]). Beta diversity is a particularly useful metric that 
relates the species composition of a local area to the diversity of a region [12], and provides 
information on the spatial variation in species composition. This information supports many scientific 
and applied goals; for example, it can provide valuable information on the ecological processes 
governing species distributions, or it can inform the placement of field surveys or conservation sites 
for the greatest biodiversity coverage [13].  

Airborne remote sensing can provide the spatial and spectral resolution to support remote species 
identification of individual tree crowns (e.g., [14–16]). This technology, along with sophisticated 
classification methods, has been successfully used in mapping individual tree crowns among 16 
African savanna species classes with nearly 80% accuracy [17]. From the identified vegetation within 
a landscape, it is possible to construct and analyze the beta diversity among sites [18]. This approach 
has the advantage of delivering data on the distributions of individual species, resulting in easily 
interpreted community composition maps. However, creating a classification model to identify species 
requires the collection of a large number of field-identified crowns to train the model. This 
requirement precludes the use of classification models in many real-world situations in which 
extensive field-based training data are not available. 

Because much of the useful information contained in plant community data consists of the 
compositional differences among sites, we asked whether it is possible to estimate these differences 
directly while circumventing the species identification step. This may be possible by examining the 
spectral variation of the vegetation. The spectral variation hypothesis proposed by Palmer et al. [19,20] 
relates the spectral variation of a site to its ecosystem heterogeneity. This principle has been used to 
estimate local species richness (e.g., [7]) and the beta diversity among sites [9–11] in forest 
ecosystems. However, these studies were conducted using multispectral satellite data with a spatial 
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resolution larger than the objects (tree crowns) primarily responsible for the spectral variation among 
sites. It is unclear how to use spectral variation to effectively estimate species turnover among sites for 
high spatial and spectral resolution imagery.  

Our objective was to develop a method for estimating the beta diversity among sites from high 
spatial resolution airborne data. Using hyperspectral data gathered by the Carnegie Airborne 
Observatory over an African savanna and more than 800 field-identified crowns, we tested alternative 
methods for using the spectral variation among sites to estimate species turnover. We then used the 
best unsupervised model to estimate the beta diversity and to produce maps of community 
compositional variation within three savanna landscapes. We compared these results to those obtained 
using a supervised species classification approach. If information on community compositional 
variation can be obtained without the use of training data, this would greatly extend the applications of 
airborne remote sensing for mapping biodiversity. This would also have implications for the use of 
high spatial and spectral resolution satellite imagery that may be developed and deployed in the future. 

2. Methods 

2.1. Imaging Spectrometer Data 

The Carnegie Airborne Observatory (CAO) Alpha system [21] was operated over several 
landscapes within Kruger National Park, South Africa, in April-May 2008. This system combined 
three instrument subsystems into a single airborne package: (i) a High-fidelity Imaging Spectrometer 
(HiFIS), (ii) a Light Detection and Ranging (LiDAR) scanner, and (iii) a Global Positioning  
System-Inertial Measurement Unit (GPS-IMU). The CAO HiFIS subsystem provided spectroscopic 
images consisting of 72 bands in the visible-near infrared spectral region between 384.8 and  
1,054.3 nm. The GPS-IMU subsystem provided three-dimensional positioning and altitude data for the  
CAO-Alpha system for accurate projection of HiFIS data onto the land surface. The HiFIS was a 
pushbroom imaging array with 1,500 cross-track pixels, flown at an altitude of 2 km providing 1.12 m 
pixel resolution. Although the 3-D structural information provided by the LiDAR subsystem was not 
directly used in this analysis, the vegetation height information was used for the accurate 
orthorectification of the spectral data. 

Radiance data from the imaging spectrometer were converted to surface reflectance using the 
atmospheric correction software ACORN 5BatchLi (Imspec LLC, Palmdale, CA, USA) with a 
MODTRAN look-up table to compensate for Rayleigh scattering and aerosol opticals. To correct for 
differences in cross-track reflectance due to differences in view angle—or bidirectional reflectance 
distribution function (BRDF) effects—the reflectance data were adjusted with a semi-empirical  
kernel-based BRDF model [17]. 

Over 1,000 individual tree and shrub crowns were identified to species within the overflight area in 
2008 and 2009. Identified crowns were georeferenced in the field with a hand-held GPS unit (GS50 
Leica Geosystems Inc., (Norcross, GA, USA). These crowns were located within the images and their 
corresponding pixels were extracted to construct a library of species spectral characteristics. Prior to 
analysis, the crown spectral data were filtered to include only well-lit leafy vegetation pixels with 
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NDVI ≥ 0.5 and mean near infrared (850–1,050 nm) reflectance ≥ 20%. This resulted in a total of 879 
crowns representing 43 species, with a mean of 19.1 pixels per crown. 

2.2. Simulated Communities 

Simulated ecological communities were created from the field-identified crown spectra to evaluate 
different models for estimating the beta diversity among samples. To produce a variety of pairwise 
beta diversity values between samples, the species composing these communities were organized 
along an imaginary environmental gradient. For each simulation, 20 species were randomly selected 
from the species list, then 300 individual crowns were selected from among the pool of crowns 
belonging to those 20 species. Each species was randomly assigned a niche optimum value along the 
imaginary gradient. The individuals of each species were distributed along the gradient according to a 
normal density function with the mean equal to the species optimum value and a standard deviation 
equal to one-fifth the length of the gradient. Once all 300 crowns were assigned a position along the 
gradient, 10 samples, each containing 30 individuals, were created by cutting the gradient at every 10th 
percentile. Over all 300 individuals, the simulated communities had a mean of 19 species (not all of 
the 20 initially selected species had crowns selected for the sample) and species abundances were 
approximately log-normally distributed. 

We used the Bray-Curtis dissimilarity index [22] to measure beta diversity among samples. The 
Bray-Curtis dissimilarity index is calculated by the formula ܥܤ௜௝ ൌ ∑ หݔ௜௦ െ ∑௝௦ห௡௦ୀଵݔ ൫ݔ௜௦ ൅ ௝௦൯௡௦ୀଵݔ  (1)

where BCij is the Bray-Curtis distance between samples i and j, and xis and xjs are the abundances of 
species s in samples i and j, respectively. Bray-Curtis distance ranges between zero and one, where a 
value of zero means that two sites have identical species composition and a value of one means that 
two sites share no species in common. The simulation procedure produced pairwise Bray-Curtis 
distances among samples which were relatively evenly distributed between ~0.2 and 1.  

To compare the performance of alternate models, a simulated community was created and the true 
Bray-Curtis distances among samples were calculated based on the species identities of the crowns. A 
given model or model variant was applied to the simulated community, creating the model-generated 
distances among samples. As a measure of model performance, the Pearson correlation coefficient, or 
r-value, was calculated between the true Bray-Curtis distances and the model-generated distances. This 
was repeated 100 times to obtain a distribution of r-values for each model or model variant.  

2.3. Unsupervised Methods for the Estimation of Beta Diversity 

For the first unsupervised model we tested whether the beta diversity among samples could be 
estimated from the Euclidian distances between spectra from the different samples. This was 
calculated as the mean of all the pairwise Euclidian distances among the pixels of two different sample 
units. This model is referred to here as the Euclidian distance model. 

The second unsupervised model involved clustering pixels into homogenous groups. Rather than 
clustering the pixels within the simulated community directly, a more general clustering was performed 
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in which a random sample of 1,000 pixels (with NDVI ≥ 0.5 and mean NIR reflectance ≥ 20%) was 
drawn from the entire CAO-mapped area. These pixels were clustered into groups using k-means 
clustering (k = 40) and all pixels within the simulated community were assigned to the group with the 
nearest centroid. The Bray-Curtis distances among samples in the community were then calculated 
using pixel cluster assignments in place of their species identity. Because the configuration of the 
cluster centroids will vary due to the random selection of pixels from the landscape and the k-means 
solution, this process was repeated 200 times and the average Bray-Curtis distance over all 200 
iterations was used as the model-generated distance metric. This model is referred to as the multiple 
clustering model.  

We investigated the factors influencing the performance of beta diversity estimates produced by the 
multiple clustering model. The influence of the value of k, which is often chosen arbitrarily when 
conducting k-means clustering, was investigated by assessing the performance of the method over 
three additional values of k (10, 20, and 60). Significant differences in performance were assessed by 
taking the differences among the r-values obtained by each k for each iteration. The change in 
performance between two values of k was considered to be significant if the inner 95% of these 
differences did not overlap with zero.    

We also investigated the relative contributions of the two main sources of variation in the 
performance of the multiple clustering model: variation from the clustering of the pixels chosen to 
represent the landscape and variation from the simulated community. More specifically, the former is 
the variation introduced by the random selection of pixels from the landscape along with the 
configurations of the 200 sets of cluster centroids, and the latter is the variation introduced by the 
particular species and crowns chosen to produce the simulated community and their placement along 
the imaginary gradient. A trial (100 iterations, k = 40) was performed in which the random selection of 
pixels from the landscape and the configuration of the 200 cluster sets were held constant while 
producing a new simulated community for each iteration. Another trial was performed in which the 
simulated community was held constant while taking a new random draw of pixels from the landscape 
and re-creating the 200 sets of cluster centroids for each iteration. We compared the variation in the  
r-values from these trials to evaluate the contributions of these factors to the model accuracy. 

2.4. Supervised Species Classification for the Estimation of Beta Diversity 

Supervised classification of crowns to species using support vector machines (SVM) has proven 
very successful for this data set [17,18]; therefore, we compared the unsupervised methods for 
estimating beta diversity with estimates produced from SVM-predicted species identities. SVM is a 
classification technique known for its good performance classifying new data based on relatively small 
amounts of training data [15,23–25]. To create the SVM classification, the crown spectra were 
grouped into 15 species classes, each having more than 100 pixels and at least 15 crowns (Table 1). 
The spectra that did not belong to one of these 15 species classes were grouped into an “other” class so 
that new data to be classified were not forced into one of the 15 named species groups. For the SVM, 
we used a radial basis function kernel and the model was optimized by an exhaustive grid search for 
the cost and gamma parameters resulting in the best cross-validated classification accuracy. The 
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accuracy of the SVM in assigning a pixel to the correct species class was estimated to be 67.5% based 
on five-fold crown-level cross-validation (see below).  

Table 1. The number of training crowns and pixels of each species class that were used to 
construct the support vector machines (SVM) species classification model. 

Species Crowns Pixels 
Acacia nigrescens/Acacia burkei 56 1,401 

Acacia tortilis 47 591 
Colophospermum mopane 54 559 

Combretum apiculatum 80 627 
Combretum collinum 37 190 

Combretum hereoense 40 369 
Combretum imberbe 68 3,638 
Croton megalobotrys 15 120 

Diospyros mespiliformis 31 1,481 
Euclea divinorum 68 512 

Philenoptera violacea 45 1,406 
Salvadora australis 35 197 

Sclerocarya birrea/Lannea schweinfurthii 76 2,718 
Spirostachys africana 26 613 

Terminalia sericea 54 455 
Other 147 2,160 
Total 879 16,829 

To produce SVM-predicted species identities for each pixel from the crown spectra dataset, one 
fifth of the crowns were removed from the full set of 879 crowns to form the test dataset, and the 
remaining four fifths of the crown spectra formed the training dataset. The splitting of the crowns into 
test and training datasets was stratified by class so that each class had proportional representation in 
the set of training crowns. An SVM was constructed with the training data and used to predict the 
species identity of the test pixels. This was repeated five times such that the species identity was 
predicted for every pixel using four fifths of the data that did not contain any pixels from the same 
crown. Simulated communities were produced from the crowns, and the Bray-Curtis distances among 
sample units were calculated based on the SVM-predicted species identities of the pixels. Prior to 
calculating the Bray-Curtis distances, pixels assigned to the “other” class were discarded as it is 
unknown whether two pixels of this class belong to the same or different species. The overall pixel 
classification accuracy for the entire dataset was recorded for each iteration as well as the correlation 
between the true Bray-Curtis distances and the SVM-estimated Bray-Curtis distances.  

2.5. Landscape Comparison of the Multiple Clustering Model and SVM  

We compared the outcomes of applying the unsupervised multiple clustering model and the 
supervised SVM classification model to estimate the beta diversity within three landscapes of  
Kruger National Park. The landscapes represent three different overflight areas of the CAO, are 
located in different areas of the park, and contain distinct woody plant communities [26]. The three 
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landscapes were the Nwaswitshaka landscape located in the southwestern portion of the park,  
the Sabie landscape located on the Sabie River in the south-central portion of the park, and the 
Shingwedzi landscape located in the northern portion of the park [27]. The sizes of the focal 
landscapes used for this comparison were 52.7 km2, 18.8 km2, and 40.3 km2 for Nwaswitshaka, Sabie, 
and Shingwedzi, respectively.  

The same filter used on the field-identified crowns to extract only well-lit, leafy vegetation pixels 
(NDVI ≥ 0.5 and mean NIR reflectance ≥ 20%) was applied to each landscape, which masks out bare 
ground, grass, and senescent vegetation in this area. Each landscape was divided into 0.25 ha quadrats. 
For the SVM classification, a final SVM was created using the entire set of field-identified crowns. For 
the multiple clustering model, the creation of 200 sets of cluster centroids (k = 40) was performed 
separately for each landscape. One thousand quadrats were randomly selected from each landscape and 
the pairwise Bray-Curtis distances among quadrats were estimated using both methods. We evaluated 
the concordance between the two methods by calculating the r-value between the pairwise estimated  
Bray-Curtis distances from the two methods for these 1,000 quadrats. 

Beta diversity maps were created for each landscape using both SVM and the multiple clustering 
model. These maps were created by ordinating the quadrats in three-dimensional space based on the 
estimated pairwise Bray-Curtis distances. We used non-metric multidimensional scaling (NMDS) as 
the ordination method, which places samples in n-dimensional Euclidian space in a way that preserves 
the rank-order of the original pairwise distances as closely as possible [28,29]. Because the landscapes 
contained a very large number of quadrats, making direct ordination via NMDS computationally 
onerous, NMDS was performed on the subset of 1,000 quadrats and the ordination results were 
extended to all remaining quadrats using k nearest neighbors [13]. For the combination of NMDS and 
knn, the closest five neighbors among the 1,000 NMDS-ordinated quadrats were found for each 
remaining quadrat, and the scores along each of the three ordination axes were assigned to the 
remaining quadrats as the weighted mean of the scores of the five nearest neighbors. The weight w of 
the jth neighbor with respect to quadrat i was given by the formula 

௜௝ݓ  ൌ ଵ஻஼೔ೕమ ∑ ଵ஻஼೔ೕమ௞௝ୀଵൗ  (2) 

where BCij is the Bray-Curtis dissimilarity between quadrats i and j, and k is the number of neighbors 
used (here, k = 5). The position of each quadrat in three-dimensional ordination space was translated 
into an RGB color by assigning the scores along each of the three axes to intensity of red, green, and 
blue. The resulting color maps display the estimated beta diversity among quadrats: two quadrats with 
similar color have low estimated Bray-Curtis distance; however, the absolute color of a given quadrat 
is irrelevant. 

Species classification using SVM, NMDS, and handling of raster data were performed using 
the “e1071” [30], the “vegan” [31], and “raster” [32] packages, respectively, of the R programming 
language [33]. 

3. Results 

The unsupervised multiple clustering model performed better than the Euclidian distance model 
(Figure 1). The mean r-value between the true Bray-Curtis distance and the distance estimated by the 
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multiple clustering model was 0.483 (±0.022 SE), while the mean r-value between the true Bray-Curtis 
distance and the mean Euclidian distance was 0.165 (±0.024 SE). However, the multiple clustering 
model did not perform as well as the supervised species classification approach for this dataset. SVM 
had the best performance and the lowest variability in performance with a mean r-value of 0.789 
(±0.011 SE) between the true Bray-Curtis distance and the distance estimated from SVM-predicted 
species identities.  

Figure 1. The relative performance of the three models at estimating beta diversity in the 
simulated communities: the mean Euclidian distance model, the multiple clustering model, 
and the supervised SVM species classification. The top panel shows the box-and-whisker 
plot of the r-values obtained from each model, and the bottom panel shows the scatter plot 
of the true Bray-Curtis (BC) distances versus the model generated distance metric over all 
100 iterations. 

 

The performance of the multiple clustering model was insensitive to the number of clusters used in 
the k-means algorithm: there were no significant differences in the r-values among models using 
different k values over the range of k values tested (Figure 2). The performance of the k-means 
clustering method (k = 40) in estimating the beta diversity of the simulated communities had 
considerable variation (Figure 1), with a standard deviation of 0.224 among the r-values. When the 
configuration of the 200 sets of cluster centroids was held constant and the composition of the 
simulated community was allowed to vary, the variation in the r-values was very similar (SD = 0.221). 
Conversely, when the simulated community was held constant while recreating the 200 sets of cluster 
centroids each iteration, the variation in the r-values was extremely small (SD = 0.0016).  

For the focal savanna landscapes, the beta diversity estimates produced by the unsupervised 
multiple clustering model were similar to those produced by SVM. The r-values for the pairwise 
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correlation between the Bray-Curtis distances estimated by the two methods were 0.632 for 
Nwaswitshaka, 0.822 for Sabie, and 0.700 for Shingwedzi. Accordingly, the beta diversity maps of the 
savanna landscapes produced by the two methods showed similar spatial patterns in species 
compositional variation (Figure 3). However, for Shingwedzi, the SVM identified a broad difference in 
species composition between the left and right halves of the image that was not apparent in the image 
produced by the multiple clustering model (Figure 3(c)). 

Figure 2. The relative performance of the multiple clustering model at estimating beta 
diversity over different numbers of clusters (k) used in the k-means algorithm, depicted by 
box-and-whisker plots of the r-values. 

 

Figure 3. Beta diversity maps for the three focal landscapes in Kruger National Park. Maps 
on the left were produced from Bray-Curtis distances estimated from SVM-predicted 
species identities and maps on the right were produced from Bray-Curtis distances 
estimated by the multiple clustering model. Quadrats (0.25 ha in size, represented as grid 
cells of the images) were ordinated in three-dimensional space based on the estimated 
Bray-Curtis distances, and scores along the three ordination axes were assigned to intensity 
of red, green, and blue, creating an RGB (Red; Green; Blue) color for each quadrat. 
Quadrats with similar color have low estimated Bray-Curtis distance; however, the 
absolute color of a given quadrat is irrelevant. 
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Figure 3. Cont. 

 

4. Discussion 

The multiple clustering model proposed here allows a rapid assessment of the spatial arrangement 
of the biodiversity of a region. This method vastly outperformed the other unsupervised method based 
on the mean Euclidian distance among pixels, but did not obtain accuracies as high as those obtained 
using a supervised species classification approach. When applied to African savanna landscapes, the 
multiple clustering model provided beta diversity estimates similar to those obtained from a supervised 
species classification approach without the use of training crowns.  

The unsupervised multiple clustering model capitalizes on the spectral variation of vegetation to 
identify differences that correspond more closely to real changes in species composition. This model 
treats the spectral variation of the vegetation in a way that corresponds to a realistic model of how this 
variation is produced: as the outcome of a mixture of different groups (species), which are more 
spectrally similar within a group than among groups [34]. In this conceptual model (illustrated in 
Figure 4), the spectra of different sites may occupy the same general spectral space. A distance 
measure related to differences in the overall distribution of the sites in spectral space (such as the 
Euclidian distance model here) is therefore unlikely to bear much relationship to the species turnover 
among sites. However, clustering the spectra into smaller groups may reveal patterns in the groups 
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found at different sites. This process may be seen as mimicking the grouping of spectra by species, 
from which the compositional dissimilarity may be estimated. 

The variability in the performance of the multiple clustering model was barely affected when the 
200 sets of cluster centroids was held constant, but decreased enormously when the simulated 
community was held constant. This indicates that the variation in the performance of the multiple 
clustering model results almost entirely from differences in the species composition of the simulated 
communities, and thus the accuracy in estimating the beta diversity of a region is highly dependent on 
the particular species present. This is unsurprising as we expect the spectral differences among species 
to greatly influence our ability to tease them apart using any approach. The very small amount of 
variability in accuracy introduced by the set of reference clusters used in the multiple clustering model 
indicates that 200 sets of clusters, each constructed from 1,000 pixels, was sufficient to represent the 
variability introduced by the individual k-means clustering outcomes. Therefore, it is the particular 
species and their arrangement, rather than the particular clustering outcomes, which accounts for 
nearly all of the variability in the multiple clustering model performance. 

Figure 4. A two-dimensional illustration of the conceptual model of the spectral variation 
among species and sites. Points represent individual spectra, with each species represented 
by a different color and the two sites represented by different symbols (circle or square). 
Here there are two sites, each containing five species, with no shared species. The 
distributions of the two sites in spectral space are very similar even though the sites display 
the highest level of compositional dissimilarity. However, the variation of each site is 
composed of a mixture of different species, and the species turnover between the two sites 
may be more accurately estimated by treating the total variation as a mixture of smaller, 
relatively homogenous groups (species). 

 

A supervised species classification approach that makes use of training crowns increases the 
accuracy of the beta diversity estimates for this dataset. This no doubt occurs because a large training 
dataset makes it possible to construct well-informed groups of spectra corresponding to real species. A 
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drawback of the species classification approach is that it may not be possible to create spectral libraries 
for all species of interest, especially for species-rich ecosystems. This causes much of the spectral 
information contained in the vegetation to be discarded: approximately 50% of the bright, leafy pixels 
in the focal savanna landscapes were classified as belonging to the “other” class, which then could not 
be used to estimate the beta diversity among sites. The accuracy of a species classification model in 
assigning objects to the correct class and the proportion of vegetation that does not fit into one of the 
known species classes are constrained by the quantity and distribution of training data. For this dataset, 
containing many training crowns, the SVM approach produced good beta diversity estimates despite a 
large amount of vegetation pixels that were discarded as “other”. However, decreases in accuracy and 
loss of species classes will, at some point, become severe as training data become scarcer. For these 
reasons, unsupervised methods for characterizing vegetation biodiversity may be an attractive 
alternative to supervised methods when training data are scarce. 

According to the spectral variation hypothesis, the spectral variation of a site is related to its 
environmental heterogeneity, and this may give an indication of its species richness [19,20]. An 
extension of this idea is that the spectral variation among sites may give an indication of their ecological 
dissimilarity, or beta diversity. Previous studies have investigated the relationship between spectral 
distance and beta diversity using satellite data (e.g., [9,11,35]). These studies used the spectral distance 
among sites in Euclidian spectral space (generally for few Landsat bands) to relate to differences in 
species composition among sites. However, taking the Euclidian distance among sites in spectral space is 
not suitable for high spatial and spectral resolution airborne imaging spectrometer data. We found that 
clustering these data into discrete entities makes the most of the sub-canopy-resolution spectral 
signatures for the estimation of beta diversity among sites.   

5. Conclusions 

We present a new method for the estimation of beta diversity among sites using airborne imaging 
spectrometer data. This method is based upon the principle that the spectral variation among sites provides 
information about their ecological dissimilarity, but takes a very different methodological approach than 
previous studies due to the high spatial and spectral resolution of the data. Rather than examining the mean 
distances among spectra from two sites, clustering the spectra into homogenous groups allows for better 
estimation of the species turnover between sites. The unsupervised multiple clustering model provides a 
valuable tool for the remote sensing of biodiversity patterns from airborne imaging spectroscopy when 
training data are scarce or unavailable. Knowledge of the species compositional gradients throughout a 
landscape supports a number of conservation and management goals [13,36]. Additionally, a rapid 
assessment of the spatial structure of the beta diversity of a region provided by the multiple clustering 
model may be used to design more efficient field campaigns for the collection of training or field 
inventory data, ensuring that the biodiversity of the landscape is well-represented.  
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