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Abstract: The scale invariant feature transform (SIFT) is a widely used interest operator 
for supporting tasks such as 3D matching, 3D scene reconstruction, panorama stitching, 
image registration and motion tracking. Although SIFT is reported to be robust to disparate 
radiometric and geometric conditions in visible light imagery, using the default input 
parameters does not yield satisfactory results when matching imagery acquired at  
non-overlapping wavelengths. In this paper, optimization of the SIFT parameters for 
matching multi-wavelength image sets is documented. In order to integrate hyperspectral 
panoramic images with reference imagery and 3D data, corresponding points were required 
between visible light and short wave infrared images, each acquired from a slightly 
different position and with different resolutions and geometric projections. The default 
SIFT parameters resulted in too few points being found, requiring the influence of five key 
parameters on the number of matched points to be explored using statistical techniques. 
Results are discussed for two geological datasets. Using the SIFT operator with optimized 
parameters and an additional outlier elimination method, allowed between four and 22 
times more homologous points to be found with improved image point distributions, than 
using the default parameter values recommended in the literature.  
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1. Introduction 

The broad area of automatic feature extraction methods in photogrammetry and remote sensing is 
constantly expanding in line with developments of new sensors and data acquisition techniques, and 
has driven research into fast, robust and reliable interest operators for aiding tasks such as image 
orientation, generation of digital surface models, 3D reconstruction and motion tracking. Although the 
principle of feature extraction is similar for all interest operators—i.e., extraction and description of 
salient image features in such a way that homologous points identified in several images can be 
matched—robustness of interest operators to different radiometric and geometric image transformation 
varies. The success of automatic feature extraction relies on choosing an interest operator for a specific 
task and the characteristics of the input data [1]. For example, traditional corner detectors such as the 
Harris operator [2] do not handle different image scales well [3], FAST [4] and BRIEF [5] features are 
not rotationally invariant [6], and the Maximally Stable Extremal Regions (MSER) algorithm [7] 
performs better in high contrast image regions [8]. 

Although several newer matching approaches have been recently developed, e.g., ORB [6] or 
FREAK [9], the scale invariant feature transform (SIFT) [10] is one of the most established interest 
operators in current use. The robustness of SIFT to difficult geometric and radiometric conditions [11–13] 
makes it one of the most frequently employed interest operators, and therefore forms the focus of this 
paper. In photogrammetry it has been mostly used for image registration [3,13–16] and in computer 
vision for such tasks as 3D matching [17], 3D scene reconstruction [18], panorama stitching [19] and 
motion tracking [20].  

The algorithm is frequently applied with the input parameters suggested by Lowe [21], without 
specifically tuning them for the task and data characteristics. Although in many cases using these 
default parameters brings satisfactory matching results, there are situations where it does not 
necessarily provide enough candidate points. In fact, for matching datasets acquired in different ranges 
of the electromagnetic spectrum, extensions to SIFT have been proposed such as scale restriction 
criteria [22] or descriptor modification [23] to increase the number of matched points, though the 
authors do not report attempts to evaluate or optimize the SIFT parameters. Modification of the SIFT 
parameter values has allowed for successful extraction and matching of homologous points in  
multi-wavelength datasets, such as intensity images from a near infrared (NIR) terrestrial laser scanner 
and the visible-light images (VIS) [3], or hyperspectral short wave infrared (SWIR) and VIS images [15]. 
With an expanding range of imaging sensors available, and an increasing focus on sensor integration 
and data fusion [24], the need for registration and integration with other 2D and 3D datasets provides 
new opportunities for many interdisciplinary studies, making the applicability of SIFT to  
multi-wavelength data especially relevant. 

Hyperspectral imaging is an established technique that allows for mapping and quantification of 
materials indistinguishable to the naked eye [25], and is now being applied using terrestrial or close 
range sensors with encouraging results [14,26,27]. The high spectral resolution of hyperspectral 
imagery allows for detection of subtle geochemical differences [28] and quantitative analysis of pixel 
composition [29], especially attractive in geoscience, particularly geological applications. Although 
results of hyperspectral classifications are valuable as a standalone product, when integrated with high 
spatial resolution 3D surface models and image data, in the form of photorealistic models, they can 



Remote Sens. 2013, 5 2039 
 

 

provide additional information for analyzing and interpreting mineral distribution [27]. Photorealistic 
3D models are triangle meshes texture mapped with (normally VIS) digital images of the measured 
object. Registration of a hyperspectral image into the 3D model coordinate system enables the 
possibility to texture the terrain model with the hyperspectral products, assuming that the hyperspectral 
camera model is known. The integration between the hyperspectral imagery and the dataset used to 
create the photorealistic model can be solved using manual control point measurement [30], or  
semi-automated methods, as in [10,11]. The latter paper forms the motivation for extension in the 
current work. The authors presented an integration method relying on using SIFT to find 
corresponding points between the hyperspectral SWIR data and VIS images pre-registered in the 3D 
model coordinate system. Because the success of the registration depends on a suitable number and 
distribution of homologous points between the two image types, the influence of SIFT parameters was 
found to be important [11].  

The main contribution of this paper is documentation of SIFT parameter optimization to maximize 
the number of correct matches between multi-wavelength imagery, i.e., SWIR data acquired with a 
hyperspectral HySpex SWIR-320m camera (Norsk Elektro Optikk AS, Oslo, Norway) and 
conventional digital imagery (VIS) collected using a Nikon D200 camera. The two image types were 
acquired not only in different spectral ranges, but also with different spatial resolutions, geometric 
projections (cylindrical panoramic vs. central perspective) and locations of image capture. In contrast 
to [15] where one SIFT parameter was tuned and a single hyperspectral band was used in matching, in 
this paper five operator parameters are adjusted and multiple spectral bands are used in order to 
increase the number of matched points. The influence of the analyzed parameters on the matching 
results is presented and discussed in detail on imagery collected for geological purposes in two 
different locations. Although inspired by a practical need, the tuning reflects a lack in the literature and 
is also relevant to other applications. 

The paper is organized as follows: Section 2 presents the background on how SIFT interest points 
are extracted, described and matched, with focus on the specific parameters controlling the algorithm. 
An overview of different SIFT parameter adjustment approaches is given in Section 3, followed by the 
characteristics of the study datasets in Section 4. Section 5 defines the range of values for parameters 
to be considered, and the analysis approach. Final results, including the set of SIFT parameters 
optimized for the study datasets, are described and discussed in Section 6. Section 7 summarizes with 
conclusions and suggestions for future work. 

2. Background 

The SIFT interest point creation procedure is divided into four stages: extrema detection, keypoint 
localization, orientation assignment and keypoint descriptor extraction [21]. In the first step, a 
Difference of Gaussians (DoG) (Figure 1) is created and used to identify the potential interest points 
(keypoints). The input image is repeatedly Gaussian blurred to produce a set of images, termed an 
octave. The neighboring images in the set are used to compute the Difference of Gaussians (Figure 1, 
left). To create the next octave (Figure 1, right) each Gaussian blurred image is downsampled by a 
factor of two and the process is repeated [21]. The extrema in the DoG images are detected by 
comparing a pixel value to its 26 neighbors in 3 × 3 regions at the current and adjacent scales (purple 
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in Figure 1). Three main parameters control this stage: the number of octaves, the initial Gaussian 
smoothing for the first level of each octave, defined by the sigma parameter, and the number of scales 
sampled in each octave (nScales). 

Figure 1. Creation of octaves and Difference of Gaussians (adapted from [21]). 

 

Next, the candidate interest points are located with sub-pixel accurately by fitting a Taylor 
Expansion function to the local pixel values. At this stage potentially unstable points in low contrast 
areas are eliminated if the function value at the extreme values is lower than a defined minimum 
contrast difference, expressed by the value of contrast threshold (CT) parameter. Similarly, unstable 
keypoints located along edges are eliminated by defining an edge threshold. 

In the third stage, a principal orientation is assigned to each keypoint location based on local image 
gradient directions. Transformation of the image data relative to the assigned orientation, scale, and 
location for each feature provides invariance to these geometric influences in all future operations. 

Finally, for every keypoint, a set of eight-bin histograms are created for a 4 × 4 pixel neighborhood. 
The resulting feature descriptor is a vector of 128 elements that is normalized to unit length to handle 
illumination differences. Details about the further nine parameters controlling the last two steps can be 
found in [10,31].  

After the SIFT interest points are extracted from and described in two overlapping images, the 
keypoint descriptors need to be matched. The best candidate match for each keypoint on the first image 
is found by identifying its nearest neighbor in the database of keypoints on the second image based on 
Euclidean distance between the keypoint descriptors. In order to decrease the risk of incorrect keypoint 
matching, highly similar candidate matches are eliminated. This is realized by rejecting all matches 
where the ratio between the distances of the closest neighbor to that of the second-closest neighbor is 
larger than the value of the nnRatio parameter.  

3. Related Work 

Previous work to improve SIFT performance by parameter adjustment is limited. Numerous authors 
report changing the values of one or two parameters without reporting the means of reaching the used 
value [3,11,32,33]. In computer vision, several SIFT parameter optimizations have been reported, with 
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the work by May et al. [31,34] being the most extensive and covering the largest number of algorithm 
parameters. The efficiency of the SIFT algorithm was tested with different values of eight (out of the 
total of 17) parameters on several pairs of images, with results analyzed using information 
visualization techniques such as brushing, parallel coordinates, scatter plots and histograms. It was 
concluded that the number of resulting matches depends largely on the image content as well as on 
values of the initial Gaussian blur (sigma) and the contrast threshold while the other parameters are 
more robust to variations. Maestas et al. [35] proposed using a design of experiments to find the 
optimal values of six SIFT parameters. The authors focused on presentation of the method principle 
rather than discussion of results, with one image pair only and few parameters values assessed. In the 
biometrics field, several values of the contrast threshold were explored in the performance of SIFT for 
iris recognition purposes [36]. In photogrammetry, Lingua et al. [13] used SIFT for orientating images 
acquired with a low-cost unmanned aerial vehicle (UAV). Those authors proposed an auto-adaptive 
method to adjust the CT parameter in order to get more matches between images with homogenous 
texture (low-textured). In addition, the nearest neighbor ratio parameters were modified and better 
results were obtained than with the default SIFT values.  

4. Image Dataset Characteristics 

The data used in this study were acquired with two systems, a tripod-mounted hyperspectral 
HySpex SWIR-320m camera, and a Nikon D200 camera mounted on the top of a terrestrial laser 
scanner acquiring the 3D terrain geometry. In order to reduce differences caused by the viewing angle 
of the two sensors, the two instruments were located next to each other in the field. Datasets were 
acquired in two locations: in the Pozalagua quarry (Cantabria, Spain) and at the TT Niche, a tunnel 
face in the Mont Terri underground laboratory, Jura Mountains, Switzerland. Both were collected for 
geological purposes, to map the distribution of different sedimentary materials (Spain) and to 
characterize variability in clay-rich rock (Switzerland).  

4.1. SWIR Hyperspectral Imagery 

The hyperspectral HySpex SWIR-320m camera is a portable terrestrial line scanner, with a 14° field 
of view across track (320 pixels). The spectral range from 1.3 µm to 2.5 µm is covered by 241 bands 
with a sampling interval of 5 nm. The system is mounted on a tripod and uses a rotation stage to 
construct the image in the along-track direction. The resulting cylindrical imaging geometry can be 
successfully represented by a geometric model for panoramic cameras [37], allowing precise 
registration of the hyperspectral and conventional image data, as described in [30]. Detailed 
geometrical and spectral characteristics of the HySpex SWIR-320m are presented in [30]. 

From each study area, three hyperspectral images were used and are characterized in Table 1.  
The spectral data recorded by the sensor were converted into at-sensor radiances, according to the 
spectral calibration report provided by the sensor manufacturer. Bands containing only random  
noise (wavelengths completely absorbed by the atmosphere in the outdoor Pozalagua dataset)  
were eliminated. 
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Table 1. Characteristics of SWIR and VIS images used for experimentation. 

Location 

HySpex SWIR-320m Nikon D200 

Image 
Number 

of 
Columns 

Object 
Sampling 

Resolution (m) 

Number of 
Bands Used 

Covering 
Photos 

Object 
Sampling 

Resolution (m) 

Pozalagua quarry, 
Cantabria, Spain 

P-B1 1,200 0.075 205 5 0.007 
P-B2 1,500 0.068 211 6 0.007 
P-C3 700 0.049 204 3 0.005 

TT Niche tunnel, 
Mont Terri,  
Switzerland 

N-A1 510 0.010 241 2 0.002 
N-A2 510 0.010 241 2 0.002 
N-H1 1,600 0.004 241 1 0.002 

The selected hyperspectral imagery represented different objects, conditions and difficulties for 
matching. In the dataset from Spain, images P-B1 and P-B2 covered mostly (60%–80%) weathered 
rock surface areas, partially with vegetation (Figure 2(a,b)), while the remaining area represented  
low-textured fresh-cut rock surfaces. This proportion was different in image P-C3, where fresh-cut 
rock surfaces, very challenging for the SIFT interest operator, comprised around 90% of the image 
area (Figure 2(c,d)). The different spectral appearance of hyperspectral bands can be observed in 
Figure 2(c,d). 

Figure 2. (a) Hyperspectral image P-B2, band 1: 1.336 µm; (b) Image P-B1,  
band 1: 1.336 µm; (c) Band 62: 1.639 µm and (d) band 225: 2.429 µm of image P-C3. 
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The second dataset, acquired in the subsurface TT Niche tunnel, gave different challenges. The 
outcrop wall was smooth and covered with a pattern of surface gouging caused by the tunnel making 
process (Figure 3). The hyperspectral images were acquired at a different time than the digital photos, 
around six months apart, so that the illumination conditions were different (non-optimal artificial 
illumination that caused many specular reflections and shadows), and changes had occurred to the 
tunnel face itself (new identifying marks for geological study were added). Most changes appeared in 
the lower part of image N-A1 (Figure 3) and overlapping area of image N-A2. Hyperspectral image  
N-H1 was acquired from a much closer distance to the tunnel face and covered a smaller area with 
higher spatial resolution (Figure 3(b,c)).  

Figure 3. (a) Hyperspectral image N-A1, band 62: 1.634 µm; (b) Band 62: 1.634 µm of 
image N-H1; (c) Enlarged area marked in (b).  

 

4.2. VIS Imagery 

The Nikon D200 is a 10.2 megapixel single-lens reflex (SLR) camera. Two calibrated lenses were 
used while acquiring data for this study—a Nikkor 85 mm lens (Polazagua), and a Nikkor 50 mm lens 
(TT Niche)—with focal lengths fixed for the duration of the data collection. Due to different sensor 
optics and lens field of views, several VIS images were required to cover the area covered by one 
hyperspectral image (Table 1, Figures 4 and 5). The much higher spatial resolution of the Nikon 
camera resulted in significantly different object sampling resolutions (Table 1). 

Because the SIFT detector is applied to a single image band, rather than using all VIS bands, for 
simplicity reasons, the color (red, green, blue; RGB) digital photos were transformed into a single-band 
grayscale image, as explained in [38]. Additionally, in order to optimize the matching conditions and 
shorten the processing time, the VIS images were downsampled by a scale factor approximately equal 
to the ratio of the differences in pixel dimensions between the two data types (see Table 1). This 
resulted in the hyperspectral and digital images having near-identical ground sampling distances.  

The difference between the two image types is apparent in Figure 6 for the Pozalagua dataset. 



Remote Sens. 2013, 5 2044 
 

 

Figure 4. Nikon D200 images covering part of the Pozalagua quarry, converted to 
grayscale. Arrows indicate extents of SWIR image areas outside of the used VIS images. 
(a) upper and (b) lower image strip. 

 

Figure 5. (a) Nikon D200 images covering the TT Niche tunnel face, converted to 
grayscale; (b) Area corresponding to Figure 3(c). 
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Figure 6. (a) Sample of the greyscale Nikon D200 and the corresponding area in image  
P-B1 (b) band 1: 1.336 µm and (c) band 158: 2.102 µm. 

 

5. Optimization of Selected SIFT Parameters 

5.1. Experiment Description 

The entire SIFT keypoint extraction and matching procedure is controlled by 17 different 
parameters (see details in [31]). Determining the optimum of all these parameters would require 
millions of image matching instances, especially if each hyperspectral image is covered by several 
digital images, and multiple hyperspectral image bands are used. The resulting analysis would be 
extremely complex to conduct. Therefore, five key parameters (Table 2) were chosen to restrict the 
scope of the computations, carefully selected following recommendations from related papers  
(i.e., [31]) and empirical results.  

Table 2. SIFT parameters considered in the optimization.  

Parameter 
Default 

Value [21] 
Range in 

Pre-Analysis 
Interval in 

Pre-Analysis 
Range in 
Analysis 

Interval in 
Analysis 

Scales in octave (nScales) 3 3–6 1 3–6 1 
Initial Gaussian blur (sigma) 1.6 0.7–2.0 0.1 1.0–1.3 0.1 

Contrast threshold (CT) 0.03 0.0–0.05 0.01 0.01–0.03 0.01 
Edge threshold  10 5–15 5 10 - 

Nearest neighbor ratio (nnRatio) 0.8 0.8–0.98 0.05 0.8–0.98 0.05 

Modification of the SIFT parameters resulted in an increased number of matched points as well as a 
high number of false matches. Therefore, as in [15], the Random Sample Consensus method 
(RANSAC) [39] was used to eliminate the remaining outliers. Depending on the number of matches, a 
fundamental matrix or a homography model was fit to the data to check the consistency of the matched 
image points. Although these models are inappropriate for orientation purposes when applied to 
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images in central perspective and panoramic cylindrical projections, they can be employed in 
combination with RANSAC as an effective method for outlier detection.  

In order to analyze the difference in number of points matched between the digital images and 
different bands of the hyperspectral image (recorded in different wavelengths) a subset of nine bands 
equally distributed along the spectral range of the HySpex camera was selected, starting at band 1. 
This subset was identical for all the images (Table 3) in both study sites, with bands strongly affected 
by atmospheric absorption excluded.  

Table 3. HySpex SWIR-320m band subset used in analysis. 

Band number 1 31 62 93 124 155 186 210 235 
Wavelength (µm) 1.336 1.482 1.643 1.785 1.936 2.087 2.239 2.356 2.478 

Before conducting the full analysis, the allowable range of all parameters values and increments 
was first defined. During this pre–analysis, three selected hyperspectral bands (bands 1, 124 and 235) 
were matched with all the covering digital images, using a combination of all possible parameter 
values listed in Table 2. In result the range of values for the Gaussian blur, contrast threshold and the 
edge threshold were restricted as shown in Table 2 and discussed in Section 6. In the detailed analysis, 
all nine bands of the six hyperspectral images were matched with the covering VIS photos using all 
possible (240) parameter value combinations, resulting in over 71,000 image matching instances 
(individual VIS photo matched with a single hyperspectral band using a single SIFT parameter 
configuration). For the sake of simplicity, in both image types the keypoints were extracted with 
identical parameter configurations. The total number of points matched between each hyperspectral 
band and all the covering photos was recorded for each parameter configuration (matching results per 
single hyperspectral band). Due to the fact that one unique point was often matched on several 
hyperspectral bands, additionally the total number of unique points matched on all nine considered 
hyperspectral bands was recorded (matching results per hyperspectral image).  

5.2. Uncertainty 

It is worth stressing that full evaluation of the matching performance (e.g., matching accuracy or 
recall) is outside the scope of this paper. The main goal of the research was to analyze general 
dependencies between the SIFT parameters and the number of matched points in order to find an 
optimized set of parameters providing the highest number of conjugate points, allowing the number of 
matches to be maximized. Consequently, the number of correct matches rejected as false (false 
negatives) has not been assessed. To evaluate the risk that the set of homologous points estimated as 
correct using RANSAC contained an unacceptable number of incorrect matches (false positives), a 
visual check of 25% of the image matching instances was carried out. Results showed single false 
matches among the RANSAC inliers in 0.45% of the cases (80 false matches per 17,750 matching 
instances). The result of this analysis was assessed as sufficient for the scope of this paper. 
Furthermore, any potentially remaining false matches are eliminated automatically during later stage of 
processing, using bundle block adjustment, which is employed as the final stage of hyperspectral 
image registration (see [15] for more details).  
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5.3. Analysis of Results 

Analysis of Variance (ANOVA) [40] with a linear least squares model was used to assess the 
influence of the individual SIFT parameters on the matching results. ANOVA is a statistical technique 
used for revealing the influence (level of significance) of factors (or interactions) on a particular 
response (here: number of matched points). This method separates the total variability of the response 
into contributions of every factor and the error term (unexplained variance). Influence (significance) of 
the parameters is assessed on the basis of the F-ratio, a ratio of variance due to the effect of a factor 
and variance due to the error term. Significance of a factor indicates if the factor has an impact on the 
result, but does not indicate how important that impact is. In high power experiments with a large 
number of observations it is possible to measure significant but minor factor effects. The effect size 
can be assessed as a proportion of total variation accounted for by a factor [41]. 

The JMP Statistical Discovery (version 10.0, September 2012) software was used to perform the 
ANOVA and to analyze the trends and interactions in the dataset using variability graphs. The 
significance level was set to α = 0.05 level, indicating that 5% of the time, a significant difference is 
incorrectly declared.  

6. Results and Discussion 

6.1. Pre-Analysis  

In order to assess the results of the pre-analysis, the variance in the number of points matched per 
single hyperspectral band was estimated for all the parameters. The trends revealed that even if all the 
evaluated factors were statistically significant, the edge threshold parameter had a very small impact 
on the average number of points matched per hyperspectral band (Figure 7). With increasing edge 
threshold, the average number of points matched per single hyperspectral band also increased, though 
the change was minimal. Consequently, the edge threshold was fixed at 10 in the detailed analysis, as 
suggested by Lowe [21].  

Another outcome of the pre-analysis was to limit the range of values for the parameter controlling 
initial image smoothing (sigma), as shown in Table 2. Fewer points were found when high sigma 
values were used, where the contribution of the neighborhood to the pixel value in the smoothed image 
is larger. This can be observed in Figure 7, by comparing the number of matched points for different 
sigma values. On average, for sigma values larger than the default of 1.6, twice fewer points were 
found than for sigma equal to 1.0. On the other hand, the number of points matched was highest when 
the least initial image smoothing was applied. However, very low initial image smoothing increases 
the frequency of sampling in the image domain so that many keypoints located very close to each other 
are detected, while a uniform point distribution within an image is preferred for data registration 
purposes. Additionally, using the smallest values of sigma significantly increased the number of false 
matches and the processing time. For these reasons, it was decided to use initial image smoothing 
values in the range [1.0:1.3] in the detailed analysis.  

Although yielding the highest number of points, the minimum contrast threshold value (0.0) was 
also discarded from later analysis. This parameter influences the keypoint localization accuracy in the 
SIFT feature extraction process, and fitting a 3D quadratic function to the local pixel values in areas 
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with no contrast change (CT = 0.0) is likely to provide inaccurate keypoint localization and should be 
avoided, if possible. Because image matching with contrast threshold values larger than 0.03 resulted 
in significantly fewer points matched, higher values were excluded from detailed analysis (as indicated 
in Table 2). 

Figure 7. Average number of points matched per single hyperspectral band for different 
initial image smoothing (sigma) levels, plotted against the nearest-neighbor ratio (nnRatio) 
for different contrast thresholds and edge thresholds. Graph created for number of scales in 
each octave (nScales) equal to 3. Black cross indicates results obtained using default 
SIFT parameters. 

 

6.2. Parameter Optimization Analysis  

As expected, the number of points matched differed between the hyperspectral images and between 
the study areas (Figure 8). The fewest points were matched in image P-C3, with a maximum of 24 
points (for 3 scales in an octave) and an average of 2.5 points per single band. Very few points were 
found in the fresh cut surfaces, characterized by low image texture, and representing almost 90% of the 
image area. However, increasing the number of scales in an octave (nScales) to 6 increased the number 
of matched points to 70 (average of 5.5 per band; Figure 8). It requires a clarification here, that the 
average number of points per single hyperspectral band was computed as an average of all the points 
matched with all the tested parameter configurations, including all the unsuccessful matching 
approaches when no points were matched. Because all images were processed with identical SIFT 
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parameter configurations the average can be treated as a good indicator of differences between the 
obtained results. Many more points were found in the other Pozalagua quarry images, on average 44 
and 27 per band for images P-B1 and P-B2 respectively (Figure 8).  

Figure 8. Average (from all the tested parameter configurations) number of points matched 
per single hyperspectral band depending on the band wavelength. 

 

In the TT Niche dataset, as expected, more points were found in image N-A2 covering the upper 
tunnel face, where fewer changes were apparent between acquisition times of the SWIR and VIS 
images (see Section 4.1). Although the fewest points were matched in image N-H1 (12 per band on 
average), this result is very satisfying considering the limited image extents compared to the D200 
image (Figure 5(a)).  

As also reported in [15,23], with a general increase in hyperspectral wavelength, fewer points were 
matched between the image band and the VIS images. In the Pozalagua quarry images, the highest 
number of points was matched in bands 62 (1.634 µm) and 93 (1.785 µm) (Figure 8, dashed lines), 
with relatively few points found at the start of the HySpex camera spectral range. In the TT Niche 
dataset the highest number of matches was found in the bands representing the shorter wavelengths of 
the camera spectral range (Figure 8, solid lines). This difference is most likely caused by a much 
shorter distance between the hyperspectral scanner and the tunnel face and therefore weaker disturbing 
influence of atmosphere and lower general data noise level. Except for the excluded bands containing 
only random noise (Section 4.1), in the Pozalagua dataset more bands, especially between 1.35 µm and 
1.42 µm (bands 4–18), were affected by the atmospheric absorption (water vapor) than in the second 
dataset acquired in a ventilated tunnel. In both datasets the fewest points were found in band 124 
(1.936 µm), covering another peak of the atmospheric absorption curve.  

In both datasets the number of scales in an octave (nScales) had the strongest influence on the 
matching results. This trend can be observed in Figure 9 by comparing graphs in different columns, 
where matching results for different numbers of scales in an octave (nScales) are presented. For initial 
image smoothing with lower sigma values (sigma < 1.2), a one-step increase in the number of scales in 
an octave (for nScales ≥ 4), almost doubles the number of matched points. In contrast, an increase in 
number of scales in each octave had little impact for images initially blurred with high sigma. This 
interaction between the two parameters results from the fact that the more scales are sampled in each 
octave the more times the initially smoothed image is blurred. With high initial sigma, the frequency of 
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sampling in the image domain is reduced and very close keypoints are not detected or are merged. In 
this case, a further increase of image blur by increasing nScales does not produce more interest points. 

Figure 9. Average number of points matched for a single hyperspectral band, showing 
influence of all the tested parameters for N-A2 (TT Niche top three rows) and P-C3 
(Pozalagua quarry, bottom three rows). Note different scales on left vertical axis. 

 

The influence of the contrast threshold varied in each of the datasets (compare rows related to each 
image in Figure 9), from very strong in the TT Niche dataset to very weak in the data from the 
Pozalagua quarry. This behavior is related to the differences in texture and appearance of the images 
for each study site. As previously mentioned (Section 2), the contrast threshold controls extraction of 
keypoints in low contrast areas. When using low CT values (<0.03) in low contrast areas, representing 
most of the TT Niche dataset, a small increase in CT in the SIFT algorithm can eliminate many points. 
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In the Pozalagua dataset most of the points are found in areas covering weathered outcrop surfaces, 
which have high contrast and image texture. In these areas, an increase in CT values has less influence. 

According to Lowe [21], when matching keypoints using values of the nearest neighbor ratio 
(nnRatio) larger than 0.85 the probability of incorrect matching will be severely increased. His 
empirical tests show that using a ratio of 0.95 eliminates only 25% of incorrect matches (compared to 
85% when nnRatio equaled 0.85). In the current analysis, using RANSAC to eliminate incorrect 
matches allowed for application of higher nnRatio values. Increasing the nearest neighbor ratio value 
to 0.95 increased the number of points matched in cases where a high number of homologous points 
was found. Generally if fewer keypoints are found, also fewer keypoints have their second-nearest 
neighbor very similar to the nearest neighbor, and the influence of nnRatio is very weak. This can be 
observed in Figure 10 by comparing inclination of plots for images with high and low numbers of 
points matched. 

Figure 10. Total number of points matched in nine bands of the hyperspectral images from 
the Pozalagua quarry (a) and the TT Niche tunnel (b), depending on chosen SIFT 
parameters: the initial smoothing for the first level of each octave (sigma), contrast 
threshold and nearest neighbor ratio (nnRatio) values. Number of scales in each octave 
(nScales) equal to 3.  

 

As previously mentioned, in order to maximize the number of matched points for integration of the 
images with the 3D data, not only the SIFT parameters were tuned but also multiple spectral bands 
used. All points matched in more than one hyperspectral band were classified as a single (unique) point 
if the point position varied by less than 0.1 pixels between bands and matched to a single point in the 
Nikon image. The total number of unique points matched in nine bands of the hyperspectral images is 
shown in Figure 10. Because the optimal parameters values are very similar for each image within one 
dataset, one set of parameters per site can be used. The range of optimal SIFT parameter values 
resulting from this analysis is summarized in Table 4.  
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Table 4 also reports the maximal total number of unique points matched for the nine bands of each 
hyperspectral image with the optimized and default SIFT parameters. Not only the quantity but also 
the spatial distribution of extracted points is crucial for the image registration accuracy. Using SIFT 
with optimized parameter values resulted in a high number of well-distributed points (Figure 11(a)) in 
all images except P-C3, where for nScales equal to 3 most of the 24 extracted points were clustered in 
the left part of the image. Increasing the number of scales in each octave to six resulted in 70 
homologous points matched, with improved, but still non-optimal point distribution (Figure 11(b)). 
Decreasing the prior image smoothing (sigma) value did not result in more matches in the low-textured 
areas. Including more bands of the hyperspectral image slightly improves the point distribution, though 
at the cost of increased processing time. 

Table 4. Optimized SIFT parameters with corresponding number of points matched in nine 
bands of the hyperspectral images.  

Site Image nScales Sigma 
Contrast 

Threshold 
Edge  

Threshold 
nnRatio 

Maximal Total Number 
of Matched Points 

Optimized 
Parameters 

Default 
Parameters 

Pozalagua 
P-B1 3 1.0–1.1 0.01–0.03 10 0.9–0.95 214 31 
P-B2 3 1.0–1.1 0.01–0.03 10 0.9–0.95 132 30 
P-C3 6 1.1 0.03 10 0.9–0.95 70 5 

TT Niche 
N-A1 3 1.0 0.01 10 0.95–0.98 258 12 
N-A2 3 1.0 0.01 10 0.95–0.98 383 17 
N-H1 3 1.0 0.01 10 0.95–0.98 101 14 

Figure 11. Points matched using SIFT with default and optimized parameter values shown 
in Table 3. (a) Image N-A2. (b) Image P-C3, 6 scales per octave sampled. 
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Optimization approaches such as the one presented here or in [31] are time consuming and might 
take up to several days of mostly CPU time. On the other hand in most cases one optimization analysis 
per entire dataset is sufficient and the automatically matched points allow for significant time gain in 
the process of data registration. For example registration of ten hyperspectral images from the 
Pozalagua quarry, described in [30], required approximately two days of work using a manual 
approach, whereas a similar results was obtained in less than three hours of CPU time when using 
automatic image matching.  

7. Conclusions 

In this paper the role of five scale invariant feature transform (SIFT) parameters was explored, and 
optimization of their values for matching multi-wavelength imagery was documented. The SIFT 
interest operator was employed to find corresponding points between images acquired in significantly 
different spectral ranges—visible light (Nikon D200 photos) and short wave infrared (HySpex  
SWIR-320m imagery)—acquired with different resolutions, geometric projections, and from different 
viewing positions.  

In the two examined geological datasets, using the SIFT operator with optimized parameters and 
additional outlier elimination allowed between 4 and 22 times more homologous points to be found 
than when using the default parameter values. This increase has positive implications for registration 
of multi-wavelength imagery, which is becoming more relevant as new sensors are developed.  

Among the five analyzed SIFT parameters, the initial image smoothing (sigma), the number of 
scales sampled in each octave (nScales) and the contrast threshold (CT) had the strongest influence on 
the number of points matched. In the studied datasets, using less initial image smoothing (sigma ~1.0) 
than suggested in [21] brought a higher number of matched points. Decreasing this value even further 
can yield a higher number of points matched, though more clustered, and at the cost of longer processing 
time. Similarly, increasing the number of scales sampled in each octave helped to find more homologous 
points, also at the cost of increased processing time. For one image, where very few points were matched 
using the default nScales (equal to 3), increasing this value to 6 resulted in nearly 2.9 times more 
homologous points matched. Adjustment of the contrast threshold value, from the default 0.03 to 0.01, 
was especially important for images with very homogenous texture and little contrast. In both datasets 
the edge threshold parameter had the least impact on the matching results and the value (10) suggested  
in [21] was maintained. Because an increased number of points matched between the SWIR and VIS 
images resulted in a large number of false matches, the remaining incorrect matches were eliminated 
using RANSAC. This in turn allowed higher nearest neighbor ratio (nnRatio) values to be used (0.9–0.98 
as opposed to the default of 0.8), resulting in a higher number of points matched. 

Despite diverse image characteristics within the two datasets, the optimized values are valid for all 
images within a single dataset. The significant increase in number of homologous points found 
between images acquired in non-overlapping parts of the electromagnetic spectrum suggest that better 
understanding and adjustment of the SIFT parameters can be beneficial for studies where the default 
values bring an unsatisfactory point quantity and distribution. The latter statement can also be extended 
to other image matching algorithms where tuning is conducted at the algorithm validation stage for a 
specific image content (e.g., covering man-made objects). 
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Although empirical SIFT parameter selection proved to provide satisfactory results for the assessed 
datasets, more work is necessary to evaluate the efficiency of RANSAC in false match detection, as 
well as to estimate the overall matching accuracy. Applicability and effectiveness of the methodology 
suggested in [34] for discriminating between correct and incorrect matches should be explored. To 
facilitate suitability assessment of different interest operators for matching multi-wavelength imagery, 
further work is required to increase the level of automation in the parameter optimization process, e.g., 
by using genetic algorithms [34]. 
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