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Abstract: In the face of increasing climate-related impacts on coral reefs, the integration of 
ecosystem resilience into marine conservation planning has become a priority. One strategy, 
including resilient areas in marine protected area (MPA) networks, relies on information on 
the spatial distribution of resilience. We assess the ability to model and map six indicators of 
coral reef resilience—stress-tolerant coral taxa, coral generic diversity, fish herbivore 
biomass, fish herbivore functional group richness, density of juvenile corals and the cover of 
live coral and crustose coralline algae. We use high spatial resolution satellite data to derive 
environmental predictors and use these in random forest models, with field observations, to 
predict resilience indicator values at unsampled locations. Predictions are compared with 
those obtained from universal kriging and from a baseline model. Prediction errors are 
estimated using cross-validation, and the ability to map each resilience indicator is quantified 
as the percentage reduction in prediction error compared to the baseline model. Results are 
most promising (percentage reduction = 18.3%) for mapping the cover of live coral and 
crustose coralline algae and least promising (percentage reduction = 0%) for coral diversity. 
Our study has demonstrated one approach to map indicators of coral reef resilience. In the 
context of MPA network planning, the potential to consider reef resilience in addition to 
habitat and feature representation in decision-support software now exists, allowing planners 
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to integrate aspects of reef resilience in MPA network development. 

Keywords: coral reefs; resilience; spatial prediction; mapping; random forest; universal 
kriging; Fiji 

 

1. Introduction 

Throughout the past few decades, severe climate-driven threats to coral reefs have been identified, 
including increased frequency and severity of acute disturbances, such as storms, floods and mass 
coral bleaching from elevated water temperatures [1,2], as well as chronic environmental changes, 
such as ocean acidification [3,4]. The effects of climate change combine with more direct human 
impacts, like overfishing and land-based runoff, to critically threaten coral reefs globally. Strategies for 
management of reef ecosystems often rely on the creation of marine protected areas (MPAs) that limit 
the direct human impacts, while strategies to also take climate-related threats into account have only 
recently been introduced [5–7]. In coral reef management, the “resilience” of reef ecosystems has 
emerged as a key concept. The term “resilience” is often considered by reef scientists and managers to 
be a composite of “resistance”, the ability to maintain structure and function while under stress, and 
“recovery”, the ability to restore structure and function following a temporary disturbance [8,9], a 
definition we adopt in this study. This simplistic definition is useful for application of the resilience 
concept, though we recognize that it ignores complex and interactive ecosystem dynamics. Given the 
expected increase in climate-related effects on coral reefs, there is an urgent need to measure and map 
both components of resilience, as well as the level of coral reef exposure to climate-driven stresses [10]. 
When mapped, data on reef exposure and resilience can be used in MPA network planning, for 
example, by including reef areas with low exposure and high resilience as targets for protection. 

Based on global data sets, Maina et al. [10,11] developed a spatially explicit global coral reef 
exposure model that identifies regional hotspots where coral reefs are vulnerable to climate-related 
stressors and quantifies local stress-reinforcing and stress-reducing factors. The data can be used to 
assess cumulative impact, as well as change and variability of exposure, all of which may affect  
corals’ abilities to cope with climate change. However, the coarse spatial scale of the model (gridded 
cells of approximately 21 km2) presents real limitations, because its cell size is larger than the majority 
of reef features [12], so each model cell may contain several reef features, even several reefs, for 
which exposure values would be averaged. The large cell size also impacts this model’s utility in 
designing MPA networks, particularly in areas like the Western Pacific, where many MPAs are small 
(median sizes ranging between 0.1 km2 in Samoa to 11.8 km2 in Tuvalu) [13,14], and the planning 
region or tenure boundary may only cover a handful of grid cells in the global model.  

Other authors have sought to improve the spatial scale of reef exposure and resilience maps. 
Working in the Saudi Red Sea, Rowlands et al. [15] used a suite of remote sensing data to map 
indicators of both reef stress (fishing, industrial development and temperature stress) and resilience 
(coral abundance, framework abundance and water depth variability) and combined these into a single 
index of reef resilience. At a grid cell size of 1 km2 and covering a large area, these maps supply 
important information on reef exposure and resilience for MPA network planning. However, further 
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investigation is needed into the choice and relevance of the indicators themselves, the effects of the 
weightings used to combine individual indicators in the resilience index and the errors with which they 
can be mapped, to shed light on the sensitivity of the final product to those issues. 

“Resilience”, being a property of the reef ecosystem as a whole, is determined by different states 
and processes acting in concert [16,17]. Various frameworks, e.g., [7], have emerged to assess what 
confers resistance or recovery potential for coral reefs, and a recent review suggests 11 key indicators, 
listed in Table 1, for which there is both expert consensus and considerable empirical evidence [18]. 
Although some of these indicators can be mapped with current methods, several others have so far 
only been measurable in the field and at very small spatial extents. For example, coral recruitment and 
survival is typically measured using <1 m2 quadrats [19]. This makes them difficult to incorporate into 
the spatially explicit conservation planning software used to design MPAs and MPA networks,  
e.g., Marxan [20], which relies on spatially complete data layers.  

Table 1. Key coral reef resilience indicators identified through expert review [18]. The 
spatial resolution at which each can be mapped is indicated as “fine” (<5 m pixel size,  
e.g., IKONOS, QuickBird, WorldView-2), “medium” (5–100 m pixel size, e.g., Landsat) 
or “coarse” (>100 m pixel size, e.g., AVHRR, MERIS, MODIS, AATSR or SeaWiFS). 

Resilience 
Indicator 

Resilience 
Component 

Mapping Potential 
Spatial 

Resolution 
Stress-tolerant 

coral taxa 
Resistance 

Limited ability to map coral taxa directly [21], but identification 
of some species possible locally [22]. 

Fine 

Coral diversity Resistance 
Beta dissimilarity or diversity can be derived from habitat maps 
[23,24], and a texture measure [25] can describe habitat 
composition. 

Fine 

Historical 
temperature 
variability 

Resistance 
Existing sea surface temperature (SST) data products can be used 
to evaluate historical SST variability [11,26]. 

Coarse 

Nutrients 
(pollution) 

Resistance and 
recovery 

The concentrations of chlorophyll a (Chl-a) and coloured 
dissolved organic matter (CDOM) can be used to evaluate 
historical nutrient levels [27], but accuracy is relatively poor in the 
shallow case-2 waters typical of coral reefs areas [28]. 

Coarse 

Sedimentation 
Resistance and 

recovery 
Progress has been made toward defining an appropriate algorithm 
for coral reef areas [29]. 

Coarse 

Herbivore 
biomass 

Recovery 
The biomass of herbivorous fish can be mapped from LIDaR or 
multispectral data combined with field data [30,31]. 

Fine 

Physical impacts Recovery 

Physical disturbances that substantially alter the reef structure, 
such as ship groundings [32], tsunamis [33], hurricanes [34,35] 
and exposure to waves [24], can be mapped with high resolution 
satellite data. 

Fine/medium 

Coral Disease 
Resistance and 

Recovery 

Direct mapping of coral disease is not currently possible. Disease 
outbreak risk, however, has been predicted spatially on the basis 
of SST [36]. 

Coarse 
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Table 1. Cont. 

Resilience 
Indicator 

Resilience 
Component 

Mapping Potential Spatial Resolution 

Macroalgae Recovery 
The location of dominant macroalgae cover can be mapped, albeit 
with moderate accuracy, using standard classification techniques 
[37,38]. 

Fine/Medium 

Coral 
Recruitment 

Recovery 

Although coral recruitment cannot be directly mapped, 
environmental correlates with the potential for mapping include 
storms [39], suspended sediment [40], distance from river mouths 
coupled with current speed [41], herbivores [42] and the 
availability of suitable substrate for settlement, such as dead coral 
and crustose coralline algae [43–45]. Dead coral is mappable 
under ideal conditions [46]. Crustose coralline algae have not been 
mapped directly with remote sensing. 

Fine/Medium/Coarse 

Fishing 
Pressure 

Recovery 

Fishing pressure cannot be mapped directly, but may be quantified 
with proxy variables, such as distance from settlements and 
markets [15]. Could potentially also be inferred from residuals of 
models predicting biomass of fished species [47]. 

Fine/Medium 

Our study investigates the ability to model and map four of these resilience indicators using high 
resolution satellite data and field observations. Specifically, we use field data to test the ability to map 
the following indicators: stress-tolerant coral taxa, coral diversity, herbivore biomass and coral 
recruitment (Table 1). We also include two other resilience indicators that complement those listed in 
Table 1, for which field data were available: (a) herbivore functional group richness, used in a recent 
study by Cheal et al. [48], as resilience may depend on having the full complement of ecological 
processes derived from different forms of herbivory [49–51], and (b) the cover of live coral and 
crustose coralline algae, promoted as an indicator within the Coral Health Index [52], both as an 
indicator of present-state algal-coral dynamics when coupled with macroalgal cover [53,54] and a 
proxy for the amount of substrate available for coral settlement following a mass bleaching event and, 
hence, related to coral recruitment potential [43–55]. We do not investigate those indicators for which 
data products are already available (historical temperature variability and nutrients), those that can be 
mapped with existing methods (sedimentation, physical impacts and macroalgae) or those for which 
we do not have spatially distributed field data (coral disease and fishing pressure). We adopt and 
expand upon methodology that we previously employed to map aspects of reef fish communities in  
Fiji [47], in which we used high-spatial resolution satellite imagery to create spatial data layers of 
environmental variables that inform models predicting response variables. The fine spatial resolution 
of the satellite data (≤4 m pixels covering more than 260 km2) enables mapping of the resilience 
indicators with a level of spatial detail meaningful for customary management systems in the Western 
Pacific and comparable to other maps of the area [47]. 

2. Study Area 

The study area (Figure 1) comprises the traditional fisheries management area of Kubulau, Vanua 
Levu, Fiji, that covers a complex reef system with fringing and barrier reefs, lagoons and very deep 



Remote Sens. 2013, 5 1315 
 

 

water (>500 m depth) off the outer reef edge. The villages in Kubulau District are among the poorest 
in Fiji and heavily reliant on marine resources for both subsistence and cash income [56]. Since 2005, 
a network of MPAs, including three large no-take reserves and 17 smaller periodically harvested 
fishing closures (tabu areas), has provided moderate protection for fish stocks in the area [57]. To date, 
the marine ecosystem remains relatively intact, and outer reef areas, in particular, support high fish 
biomass and catch rates [57,58].  

Figure 1. Kubulau District and fisheries management area, Vanua Levu, Fiji. The coverage 
of high-resolution satellite data inside the red boundary forms the study area, with central 
coordinates 16°51′S, 179°0′E. Red circles indicate field data collection sites. 

 
3. Methods 

3.1. Data  

The data for this study consist of georeferenced fish and substrate survey data from the Wildlife 
Conservation Society (WCS)’s reef monitoring program, as well as IKONOS and QuickBird satellite 
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images for Kubulau District. The field data were processed to derive resilience indicators for each field 
site (Sections 3.1.1 and 3.1.2), while a series of environmental data layers were derived from the 
satellite images (Section 3.1.3). These data sets were then used in random forest and universal kriging 
predictive models to produce maps of each resilience indicator for the study area and associated error 
estimates (Section 3.2). An overview of the data processing chain is shown in Figure 2. 

Figure 2. Flow chart of the data processing chain used to create the environmental data 
layers, the predictive models, error estimates and the maps of each resilience indicator. 

 

3.1.1. Fish Data for Resilience Indicators 

Field data were available from a total of 73 sites; after removal of sites that had missing data or 
were not covered by satellite data, 66 sites remained with fish data and 72 with substrate data. At each 
site, between three and five 5 m × 50 m belt transects were used to collect data on the fish community. 
For each belt transect, WCS staff recorded the number and total length (TL) of observed fish in each 
species, using 5 cm length classes for fish less than 40 cm and exact length for each fish over 40 cm, as 
per Jupiter and Egli [57]. Fish species were classified into herbivores and others, and herbivores were 
then subdivided into four functional groups: large excavators, browsers, grazers/detritivores and 
scrapers/small excavators, as per Green and Bellwood [59]. For each site, “herbivore functional group 
richness” was calculated as the number of functional groups present. To calculate the biomass for each 
fish, we applied the mean length of the fish size class or the exact length if available, in the length-weight 
(L-W) expression W = a × Lb, with a and b parameter values for each species preferentially selected 
from sites closest to Fiji in Fishbase [60]. For L-W conversions requiring fork length (FL), a TL-FL 
conversion factor, also obtained from Fishbase [60], was applied before the weight calculation. For 
each site, “herbivore biomass” was then calculated as the total estimated weight of all herbivorous 
fishes, divided by the area covered by the transects. No invertebrates were considered in the 
calculations of “herbivore biomass” and “herbivore functional group richness”. A positive outlier was 
found for “herbivore biomass”, caused by roaming schools of large-bodied herbivores (Scarus 
prasiognathos, Acanthurus xanthopterus) observed in one of the three transects at that site, and 
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subsequent modelling was done both with and without this data point. Outliers were not present for the 
other indicators. 

3.1.2. Substrate Data for Resilience Indicators 

The transects used for fish data collection were also used to collect point intercept data (0.5 m point 
spacing) on the substrate composition, as per [57]. For the purposes of this study, point observations 
from these transects were classified as “coral”, “crustose coralline algae” or “other”, the latter category 
including all substrate not identified as coral or crustose coralline algae. The percentage cover of “live 
coral and crustose coralline algae” was then calculated as the combined cover of those two classes. The 
number of “Juvenile corals”, defined as all visible corals with a diameter less than 5 cm, was counted 
using six 1 × 1 m quadrats placed every 5 m along separate 1 × 25 m belt transects [61]. Coral genera 
dominance data were collected from measures of colony size structure along the opposing sides of the 
same 25 m belt transects that were used for “Juvenile corals”, followed by timed 10 minute swims to 
search for rarer taxa in the general reef area [61]. Dominance was ranked qualitatively as:  
4—dominant, 3—abundant, 2—common, 1—uncommon and 0—absent. “Coral diversity” was 
calculated as the Shannon Diversity for each site, using generic dominance as abundance. Dominance 
was then multiplied by a thermal resistance index for each genus (0–2 scale, 0 being the least resistant 
to thermally-induced coral bleaching) with relative values obtained through literature searches on taxa 
tolerances to bleaching stress [5,62–64]. A “Stress-tolerant coral taxa” indicator was calculated as the 
mean (dominance × thermal resistance) score for each site, producing a low value for sites dominated 
by coral types vulnerable to temperature-induced bleaching and a high value for sites dominated by 
more resistant coral types. To calculate the density of “Juvenile corals”, the number of juvenile corals 
was summed across the six 1 m2 plots per transect and scaled to 100 m2. All calculated resilience 
indicators and their quantification are shown in Table 2. 

Table 2. Resilience indicators derived from field data and their quantification. “Herbivore 
biomass” was modelled both with and without the outlier. 

Resilience Indicator Quantification 

Stress-tolerant coral taxa Mean (dominance × thermal resistance) 

Coral diversity Shannon diversity of generic dominance 

Herbivore biomass (with/without outlier) kg/ha 

Juvenile corals Number of corals with <5 cm diameter per 100 m2 

Herbivore functional group richness Number of groups 

Live coral and crustose coralline algae Relative cover 

3.1.3. Satellite Data and Derived Environmental Data Layers 

The processing of the satellite data to produce data layers for a range of environmental variables has 
been described in detail elsewhere [47]; the present description is, therefore, brief. The satellite data 
consist of three QuickBird images and two IKONOS images. Pre-processing of each image included 
calculation of at-surface reflectance with ENVI’s FLAASH® routine, masking of clouds, resampling to 
4 m pixels and creation of mosaics from overlapping IKONOS and QuickBird images. Maps of 



Remote Sens. 2013, 5 1318 
 

 

substrate (33 classes) and geomorphology (9 classes) were produced and validated from 9,646 
georeferenced photos of the substrate with object-based image analysis [65], and bathymetry was 
mapped from 24 depth points with Lyzenga’s [66] empirical approach. 

An index of coral cover was generated by assigning pixels with coral as the dominant substrate 
class a value of 2, pixels with coral as a secondary substrate class a value of 1 and remaining pixels a 
value of 0. Spatially averaged values of the coral index were calculated for circular areas around each 
pixel by treating the index value as a continuous variable. 10 different radii were used for these 
calculations—4, 10, 30, 50, 75, 100, 200, 300, 500 and 1,000 m—resulting in 10 environmental data 
layers. Using the same range of radii, habitat richness was quantified for each pixel as the number of 
different substrate classes present, and structural complexity was quantified as the standard deviation 
of depth estimates, resulting in 10 environmental data layers for habitat richness and 10 for structural 
complexity. The radii used in these calculations were selected to range from the smallest possible 
radius given the pixel size of the satellite data to radii deemed at least large enough to quantify the 
environmental variables at a scale where they may influence the resilience indicators. Although a more 
targeted selection of radii and neighbourhood shape for each resilience indicator is desirable, sufficient 
knowledge of the spatial scales at which the physical and ecological processes that influence the 
resilience indicators operate does not exist, so the exploratory approach used here is necessary and 
commonly used in similar studies [30,31,47,67].  

Three additional layers were calculated containing the distance of each pixel from land (excluding 
Namenalala Island), seagrass and mangroves. Land and seagrass were identified from the geomorphic 
and substrate classifications, while mangroves were visually identified by Fiji Department of Lands for 
all of Vanua Levu using a Landsat 5 TM scene from 2001 [68]. A map layer describing the 
conservation status of each pixel (tabu area, no-take reserve, no protection) as of 2011 was derived 
from existing spatial data. All 38 environmental data layers are listed in Table 3. 

Table 3. Environmental data layers derived from satellite data and their data type. 

Environmental Data Layers Data Type Data Source 

Substrate Factor, 33 classes Satellite imagery 

Geomorphology Factor, 9 classes Satellite imagery 

Conservation status Factor, 3 classes Protected areas map 

Depth Continuous, values 0–14 m * Satellite imagery 

Coral cover Integer, values 0–2 Substrate map 

Average coral cover at each of 10 radii Continuous, values 0–2 Substrate map 

Structural complexity at each of 10 radii Continuous, values 0–11.62 Depth map 

Habitat richness at each of 10 radii Integer, values 1–33 Substrate map 

Distance to land, mangrove and seagrass Continuous Substrate and mangrove map 
* Pixels with depth values > 14 m were masked out based on visual interpretation of the imagery (details in Section 3.2). 
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3.2. Predictive Modelling 

3.2.1. Predictive Model Types 

Two types of predictive model were used to produce maps of each resilience indicator: random 
forest [69] and universal kriging [70] (Figure 2). Random forest is a non-parametric ensemble 
classifier that predicts the value of a single response variable from the values of multiple predictors; 
this model type has previously been shown to outperform other regression model types for modelling 
ecosystem variables in coral reef environments [47,71]. A random forest model is composed of 
multiple regression trees [72], where splits at each node in each tree are based on a random subset of 
the available predictors [69]. For each resilience indicator, a model was trained on a data set consisting 
of the observed values of the indicator at the field sites (the response) and the values of all 
environmental data layers at the field site locations (the predictors). Model development was done 
using R [73], using the “randomForest” package [74]. Default values were used for random forest 
parameters, except for the number of trees in each forest and the number of predictors used to partition 
the data at each node. These two parameters were optimized with internal 5-fold cross-validation for 
each training partition, where the combination producing the lowest error value, quantified as the root 
mean square error (RMSE), within the training set was used. 

Universal kriging is a geostatistical method that does not rely on predictors from the environmental 
data layers, but rather fits a deterministic trend to the large-scale spatial variation in the response 
variable and then uses locally optimized spatial interpolation of the residuals to account for  
small-scale spatial variation [75]; the large-scale trend that can be modelled in universal kriging is 
suitable for our study area, where it may act as a proxy for variations in, e.g., the distance from land, 
proximity to deep water, fishing intensity, etc. Universal kriging models were developed for each 
resilience indicator, all using a linear trend model. Spherical, exponential, Gaussian and Matern 
models were automatically fitted to the empirical variograms, and the model type with the lowest 
residual sum of squares was used for kriging. Model development was done in R, using the “automap” 
and “gstat” packages [76,77]. 

As a baseline against which to compare the performance of the random forest and universal kriging 
models, an “average model” was also developed. As for the random forest model, the “average model” 
was also trained on a data set consisting of the observed values of the indicator at the field sites, but 
without any predictors included, because the “average model” always predicts the average value of the 
training set at all locations. 

3.2.2. Evaluation of Model Performance 

For each resilience indicator, the performance of the predictive models was quantified using the 
root mean square error (RMSE) of predictions for the field sites, estimated with 5-fold  
cross-validation. In cross-validation, the full data set, containing both observed and model-predicted 
values for all field sites, is split randomly into a number of groups (here 5) of equal size. A training set 
is then formed by combining all except one of these groups, with the last group forming the test set to 
derive performance measures [78,79]. This was repeated 100 times with training and validation sets 
randomly sampled from the full data set without replacement [71]. To provide an additional measure 



Remote Sens. 2013, 5 1320 
 

 

of how well each resilience indicator could be mapped, the median RMSE from the 100  
cross-validation repetitions was also compared for all three model types. The ability to map each 
indicator was then quantified as the percentage reduction in RMSE of the best performing models, 
compared to the average model (henceforth: percentage reduction). 

3.2.3. Resilience Indicator Maps 

The best performing model types, i.e., those with lowest RMSE values, were then used to produce 
maps of each resilience indicator. For the map production, the full data set was used to develop each 
predictive model. In recognition of the decreasing accuracy of all environmental data layers with 
increasing water depth, a maximum depth threshold was used to remove predictions from pixels in 
deep water. The threshold value was determined at 14 m based on visual interpretation of each satellite 
image, where no discernible bottom reflectance could be identified beyond this depth. Although it 
could be expected that differences in turbidity would result in different thresholds for different areas, 
this was not the case in our data.  

4. Results 

Table 4 lists, for each indicator, the RMSE values for all model types, the percentage reduction and 
the range of values found in the field data. The random forest models had lowest RMSE values for the 
indicators “stress-tolerant coral taxa”, “herbivore biomass” and “herbivore functional group richness”, 
while universal kriging had the lowest values for “live coral and crustose coralline algae” and “juvenile 
corals”, and neither improved on RMSE values from the average model for “Coral diversity”. RMSE 
and percentage reduction for “Herbivore biomass” both change substantially when the outlier is 
excluded from the analysis.  

Table 4. For each resilience indicator, the table shows (a) the median cross-validated root 
mean square error (RMSE) values for each model (units in Table 2), (b) percentage 
reduction and (c) the range of values found in the field data. The best performing model for 
each indicator is outlined in bold. 

Resilience Indicator 
Predictive Model RMSE 

Percentage Reduction 
in RMSE 

Range of Values in 
Field Data 

Average 
Model 

Universal 
Kriging 

Random 
Forest 

Stress-tolerant coral taxa 0.688 0.666 0.603 12.4 2.50–5.92 
Coral diversity 0.155 0.177 0.167 0.00 0.217–1.52 

Herbivore biomass 825 863 809 1.94 20.0–6.33 × 103 
Herbivore biomass, 

outlier excluded 
379 380 348 8.18 20.0–2.31 × 103 

Juvenile corals 471 448 455 4.88 0–1.87 × 103 
Herbivore functional 

group richness 
0.783 0.712 0.674 13.9 2–4 

Live coral and crustose 
coralline algae 

0.197 0.161 0.192 18.3 0.010–0.770 
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Apart from different error values, the map products resulting from each model type are very 
different. Maps based on the random forest and universal kriging models are illustrated in Figures 3–5, 
showing mapped predictions, using both models, for those indicators with percentage reduction >10%. 
Maps of the remaining resilience indicators are provided as supplementary material. Results from the 
average model, being spatially uniform, are not shown. In Figure 3, showing “herbivore functional 
group richness”, the map produced from the universal kriging model shows only minor local variation, 
but captures a gradual spatial trend with lower values in the north and higher values in the south. This 
trend is in accordance with the field data. Other trends in the field data, such as higher values near reef 
slopes and lower values on reef flats, in lagoons and on reefs fringing Vanua Levu, are only captured 
by the random forest model. In Figure 4, showing “live coral and crustose coralline algae”, the 
universal kriging model successfully captures two trends seen in the field data: a general increase in 
values from north to south and a local hotspot in the central western part of the study area. The random 
forest model captures the north-south trend and partly captures the local hotspot, while also predicting 
high values near the reef crests. In Figure 5, the universal kriging model captures local variation well 
for the “stress tolerant coral taxa” indicator, in addition to a weak north-south trend, while the random 
forest model, as for the other indicators, predicts higher values near reef slopes and lower values on 
reef flats and in lagoons. 

Figure 3. Observed and predicted values of “herbivore functional group richness” for the 
study area. (a) Predictions based on the Universal Kriging model. (b) Predictions based on 
the Random Forest model. 
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Figure 4. Observed and predicted values of “live coral and crustose coralline algae” for the 
study area. (a) Predictions based on the Universal Kriging model. (b) Predictions based on 
the Random Forest model. 

 

Figure 5. Observed and predicted values of “stress-tolerant coral taxa” for the study area. 
(a) Predictions based on the Universal Kriging model. (b) Predictions based on the 
Random Forest model. 
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5. Discussion 

The produced maps do not quantify coral reef resilience per se, as we do not have time series data 
spanning reef ecosystem response to acute or chronic disturbance (e.g., [80]) from which to calibrate 
and validate the models. Instead, the maps quantify selected aspects of the local reef community that 
are likely to confer resilience. It would be desirable to combine these indicators (and others, such as 
hurricane/cyclone damage, which may strongly impact reef recovery [34,35]) to produce composite 
indices of resistance or recovery, as done for exposure [10], or to produce a single resilience index, as 
in [15]. However, the knowledge to quantitatively determine how these indicators combine or interact 
does not currently exist, and the limited predictability of the individual indicators would combine to 
give little confidence in the usefulness of a combined resilience map. The characteristics of the 
resilience indicator maps, along with the potential to improve their accuracy, are discussed below, 
along with issues around their application for coral reef management. 

5.1. Model Performance by Indicator 

The random forest and universal kriging models produced map products of varying quality for the 
six indicators, with percentage reduction values ranging from 0% (coral diversity) to 18.3% (live coral 
and crustose coralline algae). The best performing model type varied between indicators. Random 
forest, an inherently aspatial model that relies solely on the environmental data for predictions, 
performed best for “stress-tolerant coral taxa” and “herbivore functional group richness”, suggesting 
that the spatial distributions of these indicators are significantly influenced by their environment, as 
quantified in the data layers or by correlates. 

For the random forest model of “stress-tolerant coral taxa”, the most important satellite-derived 
predictor variables were the coral cover index at 200 m and 500 m radii and structural complexity at a 
30 m radius. Structural complexity at this scale appears to capture the large amount of macro-structure 
noted at field sites with the highest values of “Stress-tolerant coral taxa”, dominated by massive 
Porites, Pavona, favids and other more thermally-tolerant coral taxa. At each of these sites, field 
observers noted considerable reef macro-structure in both forereef and backreef habitats (WCS, 
unpublished data), often with abundant crevices providing habitat for species with shade preferences, 
which often fall within robust genera, such as Mycedium, Echinophyllia and Psammocora [81]. 

The highest values of “herbivore functional group richness” were mostly seen on steep, shallow 
forereef slopes far away from villages, where observers would have had greater probabilities of 
encountering large excavators, such as large individuals of Chlorurus microrhinos and Cetoscarus 
bicolor, that are highly vulnerable to fishing pressure [50,52]. We note, however, that the absolute 
amount of herbivory performed by each functional group will be influenced by the numbers and 
biomass of fish within each group, as well as their community composition. For example, after 
removal of large-scale herbivore-exclusion cages on the Great Barrier Reef (GBR), herbivory of the 
dominant macroalgae (Sargassum) was primarily carried out by a single species, Platax pinnatus [51]; 
had it been missing from the assemblage, phase-shift reversal and reef recovery may not have been 
possible. Similarly, in an experimental herbivory assay study on the Coral Coast of Fiji, only four 
species (Naso lituratus, N. unicornis, Chlorurus sordidus and Siganus argenteus) accounted for 97% 
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of macroalgal consumption. These fish exhibited strong feeding complementarity between functional 
groups, meaning that all feeding groups need to be present to effectively remove the full suite of 
macroalgae from reefs [82]. Furthermore, although maximal herbivore functional richness has been 
documented from sites along the GBR that successfully resisted phase shifts, other sites with low 
functional richness did not succumb to phase shifts, suggesting that measures of herbivore functional 
richness and diversity should be evaluated in concert with other environmental measures that may 
impact resilience thresholds [48]. 

Universal kriging, an inherently spatial model that does not incorporate information from the 
environmental data layers, performed best for “live coral and crustose coralline algae”. This suggests 
that the spatial distribution of this indicator is significantly influenced by a physical/biological variable 
or process that is poorly described by the environmental data layers, such as the availability of coral 
larvae for settlement [83,84], factors related to post-settlement survival of corals [44], the impact of 
previous disturbances and competition with other life forms for substrate space. The low percentage 
reduction of this indicator with the random forest model (2.5%) is surprising, because of the ability of 
remote sensing to produce reasonable estimates of live coral cover [46,85,86] and since live coral 
accounts for ~88% of the combined areal coverage of live coral and crustose coralline algae in our 
field data.  

The ability to map aspects of a reef fish community from high spatial resolution optical remote 
sensing [30,67] suggests that we should be able to model and map “Herbivore biomass”. However, 
even after exclusion of the outlier, “herbivore biomass” only had a percentage reduction of 8.2%. This 
result may be partially explained by the fact that field observations of this indicator are highly 
influenced by large individuals and roving schools of medium-sized fish and, therefore, sensitive to 
instantaneous variation in the fish community [87]. The identified outlier is a dramatic example of this. 
In addition, local fishing practices that target high-biomass individuals have the potential to greatly 
distort the statistical relationships that may exist between herbivore biomass and the environmental 
variables in a natural setting. At least one intensive, prolonged harvesting event occurred in the area 
inside and adjacent to the Namena MPA around Namenalala Island between 2009 and 2010 [56]. 
Because our data set includes observations before, during and after this event, the sustained fishing 
would have introduced variability in the field data themselves. In future studies, incorporation of 
information on both historic and current fishing activities has the potential to greatly reduce prediction 
errors and shed light on the relative importance of climate and direct human impacts on reef resilience.  

The density of “Juvenile corals” was not mapped well with our approach, but this was expected, 
given the many factors influencing spatial patterns of coral larval dispersal, recruitment and  
post-settlement survival. Although moderate-scale (~150 m), integrated models of oceanographic and 
tidal currents derived from satellite measurements can be used to identify potential hot spots of larval 
settlement [88], recruitment and post-settlement survival are determined by a number of processes not 
easily mapped and variable in both time and space, including tropical cyclone and bleaching 
recurrence interval [89], presence of settlement-inducing species of crustose coralline algae [44] and 
post-settlement mortality from grazing [90].  

The poor ability to map “coral diversity” was slightly surprising, given known relationships between 
coral species and generic richness with depth, exposure to waves and reef habitat type [91–93], all of 
which we are able to map for our study area. The low predictability could possibly be attributed to the 
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mismatch between large field sampling areas that cover a broad range of structural complexity and 
fine-scale pixel-based measures of structural complexity, which did not contribute substantially to the 
model results. The model outputs are also likely to be sensitive to imperfect georeferencing of field 
data collection sites, as well as the absence of field data covering the full range of habitat features, both 
of which are discussed in more detail below. 

5.2. Sources of Error and Uncertainty 

Unless directly detectable in the remote sensing data, the ability to map a resilience indicator 
depends on it being statistically related to a set of (mappable) environmental variables and/or 
sufficiently spatially autocorrelated such that it can be predicted from the field observations with 
kriging or other spatial interpolation approaches. The statistical relationship with environmental 
variables relies on those variables being both related to the indicator in question and accurately 
mapped at the appropriate spatial scale(s). In addition, the field data must reflect the true mean of the 
resilience indicators at each site [94], and the georeferencing of both field sites and satellite data must 
be as accurate as possible. Temporal changes between acquisitions of different parts of the data set 
may also contribute to errors, as may the mismatch in spatial scale between field and satellite data [95]. 
These multiple factors all contribute to limiting the predictability of the resilience indicators. Apart 
from statistics on the accuracy of the maps of depth, substrate and geomorphology, reported in [47], 
the errors introduced by each factor remain unquantified, but several should be considered carefully in 
future studies. If quantified, the sources of the largest errors can be targeted for cost-effective reduction 
in RMSE values, e.g., through additional data collection, improved georeferencing, purchase of new 
and improved satellite data or modelling refinements. Information on errors can potentially also be 
incorporated into decision-support software for MPA network design to give planners more confidence 
that sites containing features of interest are prioritized for protection [94]. 

5.2.1. Spatial Extent of Field Sites 

For each field site, the data used to calculate the resilience indicators were collected using different 
methods (belt transects, point intercept transects, quadrats) covering different areas. Each site is, thus, 
variable in size, depending on the indicator, and additionally, does not correspond to the native pixel size 
of the satellite data (4 × 4 m for IKONOS, 2.4 × 2.4 m for QuickBird) for any of the indicators. Previous 
studies mapping aspects of the fish community have used a single 4 m × 25 m belt transect [31], a single 
5 m × 25 m belt transect [96] or a 5 m radius point count [30,47] to collect the field data at each site. In 
comparison, our field sites are 6–15-times larger in their areal coverage, depending on the indicator. 
This may mean that our field data are more representative of the true mean of these indicators for the 
general area around each site, but also that each site incorporates local variation in both resilience 
indicators and environmental variables. It should be noted that the results of this study were obtained 
with data that were not specifically collected for the purpose of spatial predictive modelling and, 
therefore, not optimized for factors, such as the number, distribution, georeferencing and spatial extent 
of field sites. The optimal spatial extent of the field sites requires further investigation, for example, 
through the use of nested field sites of different sizes, to evaluate the influence of site size both on 
prediction errors and in terms of the subsequent utility of the maps for MPA network planning.  
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5.2.2. Georeferencing of Field and Satellite Data 

Georeferencing for each field site ideally refers exactly to the geographic centre of the site, i.e., the 
middle of the central 50 m transect, but errors are introduced for each site from imperfect placement of 
the GPS receiver over this point. In addition, the handheld GPS receivers used for georeferencing in 
our study has positional errors of ~5 m, and the positional accuracy of the satellite data is ~15 m for 
IKONOS [97] and ~23 m for QuickBird [98]. These errors occasionally combined to visibly displace 
field sites significantly from their actual location, e.g., a field site known to be located near the reef 
crest was shown in deep water tens of meters off the reef when superimposed on the satellite data. In 
such cases, the coordinates of the field site were manually adjusted to the nearest suitable pixel based on 
site environment notes taken during data collection. This was necessary to avoid gross errors in derivation 
of environmental variables with our data, but cannot fully compensate for errors introduced by imperfect 
georeferencing. Improved absolute positional accuracy from newer satellites (e.g. GeoEye-1 [97] and 
Worldview-2 [98]) and/or improved georeferencing of field sites (e.g. with differential GPS receivers or 
use of site-specific knowledge [95]) should reduce this problem in the future. 

5.2.3. Number and Distribution of Field Sites 

The number of field sites and their distribution determine the data on which the predictive models 
are trained and, hence, their ability to make predictions for unsampled locations. Without sufficient 
training data, the models are unable to accurately quantify the sometimes complex relationships 
between the numerous environmental variables and each resilience indicator, thus increasing 
prediction error. In addition to the amount of data, the distribution of values for each environmental 
variable should cover the full range of values found in the study area and, ideally, their 
combinations, to avoid extrapolations when predicting for unsampled locations. Although such 
considerations were used to guide some of the data collection for this study, the distribution of values 
for some environmental variables could have been improved with additional field sampling. One 
example is structural complexity at spatial scales of 4 and 10 m, where values are positively skewed 
(Figure 6(a)). Any influence of high structural complexity (at these spatial scales) on the resilience 
indicators is, therefore, poorly documented in the training data and, hence, in the models and their 
predictions. Another example is distance to land, where no values exist between 7 and 12 km, nor 
between 17 and 20 km (Figure 6(b)). These plots can be used, along with the spatial data layers, to 
selectively locate sites for future data collection that will improve the coverage of each variable.  

5.2.4. Derivation of Environmental Predictors 

The environmental data layers used as predictors were derived from a previous study [47] and 
broadly match those used in studies predicting aspects of the fish community from environmental 
variables. However, the use of somewhat generic predictors easy to derive from high spatial resolution 
satellite data ignores known relationships, such as the influence of past disturbance history on live 
coral cover, coral diversity and recruitment rate [92,99–101], the influence of ocean and tidal currents 
and source populations on coral recruitment and, hence, juvenile coral density [41,88] and the 
influence of exposure to waves on coral diversity, morphology and thermal stress tolerance [91,102]. 
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The incorporation of such targeted predictors in future studies and the appropriate data sets, and 
temporal and spatial scales used to quantify them, will require significant effort, but is also likely to 
reduce prediction errors and strengthen confidence in the ability of the models to make predictions for 
unsampled locations. 

Figure 6. Histograms showing the distribution of values for (a) “structural complexity, 10 m 
radius”, and (b) “distance to land” at the field sites. 

 

6. Conclusion 

We assessed two possible modelling approaches (Random Forest and Kriging models) for mapping 
six indicators of coral reef resilience—stress-tolerant coral taxa, coral generic diversity, fish herbivore 
biomass, fish herbivore functional group richness, density of juvenile corals and the cover of live coral 
and crustose coralline algae—using field observations and high spatial resolution satellite imagery. All 
the maps, except the one showing coral diversity, constitute a better-than-random description of the 
spatial distribution of the resilience indicators and, as such, constitute a resource that enables 
incorporation of reef resilience into MPA network planning in the region. 

There was a marked difference between both prediction errors and maps produced with the random 
forest and universal kriging models (Figures 3–5). The relative strengths of the two approaches depend 
on factors, including the density of field observations and the accuracy of the environmental data 
layers used in the random forest model, and the relative performance of the two model types should 
not be considered of general validity. However, their differences do suggest a potential for further error 
reduction with hybrid models, such as regression kriging [103]. 

The two model types are also different in terms of the cost of their implementation. In our study, the 
random forest models rely on IKONOS and QuickBird satellite imagery for spatial data, as well as on 
Definiens Developer 7.0 and ArcGIS 10.0 for data analysis, together representing a substantial cost. 
The universal kriging models, on the other hand, did not require remote sensing data and were 
implemented entirely in freeware (R and contributed packages), putting this model type within reach of 
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any organization with field data and computer access. The utility of free satellite data (e.g., Landsat 
TM/ETM + data) or pre-classified maps from the Millennium Coral Reef Landsat Archive [104], in 
combination with freeware for spatial data analysis, for mapping resilience indicators has yet to be 
explored, but could potentially eliminate the current additional costs for random forest or other 
regression-type models relying on remote sensing data. The different data and software requirements 
should be taken into account when selecting a model for mapping of resilience indicators, in addition 
to the predictions errors each model produces. The extent to which the number, distribution and 
georeferencing of field sites, as well as the development of more targeted environmental predictors 
influence how well a resilience indicator can be mapped should also be investigated, and additional 
modelling approaches, including hybrid combinations of aspatial and spatial models should be 
explored. Given the budgetary constraint of both government and non-government organizations that 
may wish to produce maps of coral reef resilience, such analyses will provide important information 
on the cost-effectiveness and trade-off between additional field data collection, satellite image 
acquisition and increasing sophistication of analysis, both in terms of cost and the expected 
improvement in the accuracy of the resulting maps [105]. 

In the context of MPA planning, planners now have the potential to consider reef resilience in 
addition to habitat and feature representation in decision-support software, allowing them to capture 
properties that maximize the overall resilience of an MPA network. This would represent a 
considerable improvement over the current practice of designing or adapting MPAs based on resilience 
scores compiled from field data collected from relatively few sites across the planning region [18,106]. 
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