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Abstract: As an important component of urban vegetation, street trees play an important 

role in maintenance of environmental quality, aesthetic beauty of urban landscape, and 

social service for inhabitants. Acquiring accurate and up-to-date inventory information for 

street trees is required for urban horticultural planning, and municipal urban forest 

management. This paper presents a new Voxel-based Marked Neighborhood Searching 

(VMNS) method for efficiently identifying street trees and deriving their morphological 

parameters from Mobile Laser Scanning (MLS) point cloud data. The VMNS method 

consists of six technical components: voxelization, calculating values of voxels, searching 

and marking neighborhoods, extracting potential trees, deriving morphological parameters, 

and eliminating pole-like objects other than trees. The method is validated and evaluated 

through two case studies. The evaluation results show that the completeness and 

correctness of our method for street tree detection are over 98%. The derived 

morphological parameters, including tree height, crown diameter, diameter at breast height 

(DBH), and crown base height (CBH), are in a good agreement with the field 
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measurements. Our method provides an effective tool for extracting various morphological 

parameters for individual street trees from MLS point cloud data. 

Keywords: Mobile Laser Scanning (MLS); Vehicle-borne Laser Scanning (VLS); point 

cloud data; street trees; voxel; morphological parameters; competing growing; 

neighborhood search 

 

1. Introduction 

Urban vegetation is an important component of urban ecosystem and landscape. In particular, street 

trees play an important role in enhancing environmental quality, maintaining aesthetic beauty of urban 

landscape, and providing social service for inhabitants. Street trees provide shade for pedestrians, 

benefit storm-water management [1], reduce air pollutants [2–4] and street noise [5], moderate heat 

accumulation in urban street canyons [6–8], and decrease building energy consumption and CO2 

emissions [9]. However, the growth conditions of street trees are often negatively influenced by some 

natural and abiotic factors [10]. Some studies show that about half of newly transplanted street trees 

cannot survive beyond the first two years in some cities [11,12]. Therefore, acquiring and monitoring 

the conditions of street trees is important for urban tree planting, maintenance, and management. 

A comprehensive inventory and classification of street trees need multiple characteristic parameters: 

tree species, growth conditions, presence or absence of insects or diseases, transplantation requirements, 

date of planting, etc. [10]. The growth condition and biological function of an individual tree can be 

inferred from its morphological parameters, such as tree height, diameter at breast height (DBH), 

crown width, and crown base height (CBH). Traditionally, these parameters of street trees are obtained 

by field measurements, which are very time-consuming and labor is expensive. Since the size and 

shape of street trees are changing from year to year, even from season to season, it would be extremely 

costly to acquire the up-to-date street tree information with the field measurement method. A more 

efficient method is needed for deriving information about urban street trees. 

The advent of the laser scanning or LiDAR (Light Detection and Ranging) system represents a 

technological breakthrough in acquiring three-dimensional (3D) data about surface objects in a rapid, 

and cost-effective manner. In terms of the carrying platform, laser scanning systems can be classified 

into four categories: Satellite-based Laser Scanning (SLS), Airborne Laser Scanning (ALS, namely, 

airborne LiDAR), Mobile Laser Scanning (MLS, in full, Vehicle-borne Laser Scanning, VLS), and 

Terrestrial Laser Scanning (TLS). The SLS data have sparse sampling points and are not adequate for 

street tree identification [13]. TLS data have the highest accuracy and sampling density and can be 

used for structure reconstruction of individual trees [14–16]. However, the poor mobility of TLS 

restricts repeated surveys for a large urban area. ALS has the extraordinary capability in gathering 

highly accurate and dense elevation measurements. Numerous studies demonstrate that ALS data can 

be employed to investigate urban 3D morphology [17], to extract building rooftops, footprints, and 

density information [18–21], to estimate urban green volume [22,23], and to detect individual 

trees [24–26]. Nevertheless, due to the top-down sensing geometry, it is difficult for ALS to capture 



Remote Sens. 2013, 5 586 

 

the side-view geometry of a tree or to detect the structures under tree crowns. Some tree morphological 

parameters, such as DBH and CBH, are very difficult to be derived from ALS data. 

As a new mobile mapping system, MLS allows for quick and cost-effective acquisition of close-range 

3D measurements of street objects [27–30]. MLS has been used for modeling road surfaces [31], 

extracting building facades [29,32–34], and detecting trees, streetlights, and other pole-like 

objects [28,35–37]. Previous studies have demonstrated the great potential of MLS for street objects 

identification. 

Although many data processing and objects classification methods have been developed for ALS 

data, not much research work has been reported on methods and software tools for processing MLS 

data. ALS records the geometric information about rooftop structure of objects from the top, whereas 

MLS views the objects from the side and can record the geometric information about the building 

facades under the rooftop as well as the trunk of a tree under the crown. Due to differences in viewing 

geometry and information content, the algorithms and methods designed for ALS data cannot be 

directly translated for MLS data. In addition, many methods proposed to extract individual trees from 

ALS data are based on either the original point clouds data directly (e.g., [38–40]) or the interpolated 

Digital Surface Model (or Canopy Height Model) in raster format (e.g., [18,23,24,41]). In contrast, 

methods for processing MLS data have to directly deal with laser scanning point cloud in order to 

preserve and extract the façade structures under the rooftop or tree canopy. 

In recent years, some research efforts have been directed to the development of the methods and 

techniques for processing 3D point cloud collected by MLS to extract objects such as street trees. 

Manandhar and Shibasaki [32] classified the MLS point cloud data to extract features like vertical 

faces, horizontal faces, and natural objects, and then fitted mathematical models to represent these 3D 

objects. Shen et al. [42] adopted the minimum spanning tree method for extracting objects (including 

trees) from scattered MLS points. Li et al. [33] calculated the Density of Projected Points (DoPP) from 

original laser scanning data and extracted buildings and independent objects (e.g., street trees) based 

on DoPP. Similarly, Hu et al. [36] extracted streetlights by using the DoPP method and a selected 

distance threshold value. Yang et al. [29] generated a geo-referenced feature image from MLS laser 

scanning points and segmented the image into different street objects. Lehtomäki et al. [28] proposed a 

scan line segmentation and cluster method to detect vertical pole-like objects in a road environment 

from MLS data. Based on MLS data, Jaakkola et al. [35] separated trees by clustering the extracted 

vertical line segments and examining the spatial distribution of clusters. Rutzinger et al. [43] 

developed a method for tree recognition, in which the MLS point cloud is first segmented into planar 

regions using a 3D Hough transform and surface growing algorithm, and then the segments forming an 

individual tree are identified. Pu et al. [44] adopted a percentile based pole recognition algorithm for 

segmenting tree trunks and crowns from MLS data. 

Despite the aforementioned progresses for MLS data processing, few dedicated algorithms and 

methods exist in literature for extracting street trees from MLS point clouds. Most methods proposed 

in previous studies are designed to detect pole-like objects (e.g., [28]), and trees have to be 

discriminated manually from other pole-like objects through visual inspection (e.g., [42]). In addition, 

no method has been proposed to remove the objects (such as lamp posts) attached to street trees or to 

separate the interlocked tree crowns from each other. Furthermore, little research has been reported on 

the development of algorithms and methods for deriving detailed morphological parameters for street 
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trees. In recognition of the research gaps, this paper aims to present a novel Voxel-based Marked 

Neighborhood Searching (VMNS) method for identifying individual street trees and estimating their 

morphological parameters based on MLS point cloud data. Our method is designed based on the 

observation that the cross-section shape of a tree at different heights varies. The characteristics of the 

cross-section shape at varying heights are utilized in our method to identify individual trees, and define 

their morphological parameters. Since point cloud data from MLS are acquired from side-looking 

geometry, objects façade structures are well depicted, and the shape of street trees at varying heights 

above the ground can be derived and quantified. To make the best use of shape information at different 

heights, we designed our numerical algorithm based on 3D voxel data structure. The geographical 

space is systematically decomposed into a set of cuboid volumetric elements (voxels), and a value is 

assigned to each voxel to represent objects in 3D space. Although voxel-based data structure has been 

used in processing airborne LiDAR data [45,46], and terrestrial LiDAR data [39], our research 

represents the first attempt to build voxel data structure based numerical algorithms for tree 

identification and quantification from MLS data. 

In this study, our algorithm and method are designed with a focus on the street trees along roads and 

highway that can be easily captured by MLS systems. Our VMNS method is capable of detecting and 

extracting individual street trees as 3D objects from the laser scanning point cloud and then quantify 

their morphological parameters, including tree height, crown diameter, DBH, and CBH. In the 

following sections, we will first introduce the MLS system and the data used in our research. Next, we 

will present our algorithm and method in detail. Then, we will assess the accuracy of detected street 

trees and associated morphological parameters, followed by a discussion of the practical applications 

of our method. In the last section, we will summarize our analysis results and draw some conclusions. 

2. Mobile Laser Scanning (MLS) System: ECNU-MLS 

The Mobile Laser Scanning data used in this study were collected by the MLS System of East 

China Normal University (ECNU-MLS) (Figure 1(a)). It consists of a carrying platform (a van), two 

laser scanners, three GPS receivers, a Beidou Navigation Satellite System (the global satellite 

navigation system of China) receiver, two CCD cameras, and other instruments. 

In ECNU-MLS, laser scanners, GPS receivers, Beidou receiver, and CCD cameras are fixed on the 

top of the van (Figure 1(b)). Number one and two GPS receivers are used to calculate the moving 

direction, while the number three GPS receiver is used for timing and determining geographical 

location (Figure 1(b)). The Beidou receiver is used for location determination and communication. In 

addition, the CCD Cameras are utilized to get time series stereo pair images. 

As shown in Figure 1(c), the first laser scanner is looking upward up to 45° above the horizon and 

the second scanner is looking downward 45° below the horizon. Both scanners have a valid scanning 

range of 80 m and a 180° field of view. A scanning line is comprised of 181 sampling points. The 

scanning accuracy is ±15 mm. 

The navigation and location of ECNU-MLS mainly rely on the GPS receivers. When the signal from 

Virtual Reference Station (VRS) is available for the GPS receivers, the location is determined by the 

Real Time Kinematic (RTK) technology with an absolute accuracy of 20 centimeters. When VRS 

signal is not available, the system provides the location with an accuracy of two meters. The Inertial 
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Measurement Unit (IMU) installed in ECNU-MLS records the attitude data of the vehicle. The attitude 

data are used to correct the location information when VRS or GPS signals are not available. 

Figure 1. The Mobile Laser Scanning (MLS) System of East China Normal University 

(ECNU-MLS). (a) The MLS van, (b) top view of the ECNU-MLS configuration, and 

(c) side view of ECNU-MLS configuration. 

 

The data collected by ECNU-MLS include 3D coordinates of scanning points, 3D coordinates of 

vehicle trajectory with a time interval of five seconds, and digital stereo image pairs. The 3D points, 

namely, laser scanning point cloud, contain geometric information about various urban street-scene 

objects, such as trees, buildings, street furniture, and other natural or man-made objects along roads. 

The MLS point cloud data collected by two laser scanners on the van and vehicle trajectory points are 

used in our study.  

The original data are given in Geographical Coordinate System (longitude and latitude) with 

reference to the WGS 84 datum. In order to calculate length and area of objects, the longitude and 

latitude coordinates of original scanning points are projected to a planar x-y coordinate system of UTM 

(Zone 51N). The height (z) of the scanning points is referenced to the WGS 84 datum.  
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3. Methodology 

Our VMNS method contains 6 steps (Figure 2): (1) voxelization, (2) calculating values of voxels, 

(3) competing neighborhood searching and marking, (4) extracting potential trees, (5) deriving 

morphological parameters, and (6) elimination of pole-like objects other than trees.  

Figure 2. Flow chart of the VMNS method. 

 

3.1. Voxelization 

With the voxel data structure, the geographical space is conceptualized and represented as a set of 

volumetric elements (voxels) (Figure 3(b)). A voxel is a building block in the shape of a cuboid, and 

its geometry is defined by length (l), width (w), and height (h) (Figure 3(a)). The location of a voxel in 

3D voxel grid system is indexed by column (i), row (j), and layer (k) (Figure 3(a,b)). Let          
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denote a voxel, and          denote the voxels in layer   (Lk). If the whole voxel grid system V  

has t voxel layers (Figure 3(b)), the voxel grid system can be defined as the union of all the layers 

(Equation (1)): 

     
   

   
 (1)  

Figure 3. Coordinate system of voxel grid. (a) a voxel, (b) voxel grid used in this study. 

 

The first step of our VMNS method is voxelization (i.e., generating the voxel grid system) based on 

the dimensions of MLS point cloud. In order to illustrate the processing procedure of our method, we 

will first use the laser scanning point cloud and vehicle trajectory points collected in a relatively 

straight street segment with a flat surface and discuss the application of our method in more 

complicated situation afterwards. The coordinate system of the voxel grid system is set by the 

following rules: 

(1) The origin (O) of the voxel grid system is set to the point in which x-y coordinates (x0, y0) equal 

to the minimum x and y coordinate values of all laser scanning points, and its vertical coordinate 

equals to the height (zv) of the first point of vehicle trajectory. 

(2) The XY horizontal plane: X-axis is oriented in west-east direction, while Y-axis is oriented in 

south-north direction. 

(3) Z-axis is perpendicular to XY plane. 

The length (l = ∆x) and width (w = ∆y) of all voxels in the voxel grid system are uniform, which can 

be specified by users. However, the height of the voxels may vary from the layer to layer. The voxel 

height for each layer is defined in Equation (2) (also see Figure 3(b)). The purpose of varying voxel 

height in different layers is to make sure the 6th voxel layer (L5) in the voxel grid corresponds to 

relative height of 1.2–1.4 m above the ground, which is usually used to measure the DBH of a tree in 
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horticulture. The bounding extent of all laser scanning points is calculated. The range of the voxel grid 

system is set to be big enough to contain all laser scanning points. 

   

                 

              

        
   (2)  

3.2. Calculating Values of Voxels 

After the voxelization, each laser scanning point will be associated with a voxel. If a laser scanning 

point has coordinate values (x, y, z), the column (i), row (j), and layer (k) of its corresponding voxel in 

the voxel grid is calculated in Equation (3). 

                
                

   

                            
                   

    
        

  
               

 
 (3)  

where (x0, y0) is minimum x and y coordinate values of all laser scanning points, zv is the z coordinate 

of the first vehicle trajectory point, and        is a function to get the integer part of a number. 

It should be noted that the laser scanning data is collected on a relatively flat road, and the first 

trajectory point is regarded as the referenced ground level. The laser points below the ground are not 

considered in the neighborhood searching and marking. 

After all laser scanning points have been associated with the corresponding voxels, a value is 

assigned to each voxel to indicate the number of laser scanning points falling into that voxel. 

3.3. Searching and Marking Neighborhoods 

3.3.1. Neighborhood of a Voxel 

Neighborhood searching is an effective approach to dealing with the region growing problem in 

digital image processing. Our method extends traditional neighborhood searching from a 2D image 

plane to a 3D voxel grid system. In a voxel grid system, each voxel has three types of neighbors 

(Figure 4): face neighbors, edge neighbors, and vertex neighbors. In a vertical direction, a voxel v (i, j, 

k) has two types of face neighbor: top face neighbor (TFN) v (i, j, k+1) (Figure 5(a)) and bottom face 

neighbor (BFN) v (i, j, k-1) (Figure 5(b)). In the same layer, a voxel v (i, j, k) has 8-neighbors: 4 face 

neighbors (v (i+1, j, k), v (i-1, j, k), v (i, j+1, k), and v (i, j-1, k)) and 4 edge neighbors (v (i+1, j+1, k), 

v (i+1, j-1, k), v (i-1, j+1, k), and v (i-1, j-1, k)) (Figure 5(c)). As shown in Figure 5(d), if the voxel 

height is neglected, the voxels in the same layer can be treated as a regular pixel grid. 

In our study, TFN, BFN, and 8-neighbors in the same layer of a voxel are used to define a 3D 

neighborhood in the voxel grid system for searching and marking. TFN and BFN represent the vertical 

connections of voxels. They can be used to detect the vertical stretches of a tree, namely the tree trunk. 

8-neighbors in the same layer represents the connection of voxels in the XY-plane, which is used for 

detecting the horizontal cross-sections of three crowns. 
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Figure 4. Three basic types of neighbors of a voxel in a voxel grid: (a) face neighbor, 

(b) edge neighbor, and (c) vertex neighbor. 

 

Figure 5. Three types of voxel neighborhoods used in our method: (a) top face neighbor 

(TFN), (b) bottom face neighbor (BFN), (c) 8-neighbors in the same layer, and (d) 8-neighbors 

in the same layer neglected of voxel height. 

 

3.3.2. Select Seed Voxels 

A set of hypothetical voxel layers are given in Figures 6(a), 7(a), 8(a), and 9(a) to illustrate the 

neighborhood searching and marking procedure. The voxels in grey represent those with a value larger 

than 0 (i.e., at least one laser scanning point is contained in the voxel). Such voxels, referred to as 

foreground voxels in this paper, represent a part of an object. The voxels in white represents the voxels 

with a value of 0. These white voxels are empty and no scanning laser points are detected and, hence, are 

treated as background voxels. 

The searching for tree objects starts with the seed voxels. In order to eliminate the influence of the 

non-tree objects near the ground, we initiate searching at the voxel layer (L5) in the voxel grid system 

(Figure 6(a)). As explained in Section 3.1, L5 is located at a relative height of 1.2–1.4 m above the 

ground, which is usually used to measure the DBH of a tree in horticulture. We assume that a laser 

scanning point reflected by the tree trunk will be detected in layer L5 if a street tree is presence at that 

location.  

(a) (b) (c)

k

i-1 i i+1
j-1

j
j+1

(c)

(a) (b)

48

2 31

6 57

j

j+1

j-1

i i+1i-1

v (i, j, k)

v (i, j, k+1) v (i, j, k)

v (i, j, k-1)

(d)



Remote Sens. 2013, 5 593 

 

Figure 6. Seed voxel selection from layer L5 above the ground in the voxel grid. 

(a) Hypothetic L5 (the 6th layer in the voxel grid). (b) Foreground voxel identification, 

grouping, and marking. (c) Removing the voxel grid based on number and compactness 

index of voxels. (d) Seed voxel groups and the location of potential tree trunks. 

 

All the voxels at the layer L5 are scanned in a row-wise manner. The first foreground voxel detected 

in the scanning is used as a seed voxel for region growing and marking. The seed voxel is expanded to 

include all foreground voxels that are located in the 8-neighbors of the seed voxel in the same layer. 

The expansion is continuing recursively until all connected voxels are included and grouped 

(Figure 6(b)). The voxels in a same group are indexed and marked incrementally with a unique integer 

number (g) (Figure 6(b)).  

If a marked voxel group at layer L5 contains the laser scanning points reflected by the tree trunk, the 

detected voxel group should have two geometric properties: (1) the area of voxels projected to the 

horizontal plane should be relatively small, in comparison with buildings and other non-tree objects 

and (2) the shape of voxel group projected to the horizontal plane should be compact and 

approximately have a circular shape. To discriminate tree objects from other urban street objects, two 

morphological attributes for each voxel group are calculated, after all the foreground voxels in layer L5 

are grouped. One is the number (n) of voxels in the group, which represents the area of voxels 

projected to the horizontal plane. The other is the compactness index (CI, defined in Equation (4)) of 

voxel group in the horizontal plane. If the shape of voxel group is in a perfect circle, its CI is 1.0. On 

the contrary, the shape is away from the circle, CI will have a smaller value than 1.0. In order to get 

reliable seed voxels of street trees, if n is larger than a threshold value (N0) or CI is less than a 

threshold value (CI0), the voxel group is not considered to belong to a tree and will be removed from 

further processing (Figure 6(c)). 
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where A (defined in Equation (5)) is the area and P (defined in Equation (6)) is the perimeter of the 

grouped voxels projected to the horizontal plane.  

        (5)  

                 
      (6)  

where m1 is the number of boundary voxels in X-axis orientation, m2 is the number of boundary voxels 

in Y-axis orientation, and m3 is the number of boundary voxels in diagonal step after being projected to 

the horizontal plane. 

After removal of the voxel groups that are assessed as non-tree objects, the remaining voxel groups 

are regarded as potential tree objects for further processing. All the potential trees have the same index 

numbers as the voxel groups (g). The location coordinates of a potential tree g trunk (txg, tyg) 

(Equation (7)) is calculated as the horizontal centroid of all laser scanning points contained by the 

voxel group (Figure 6(d)). 

 
  
 

  
 
       

  

   

   

       

  

   

   

  (7)  

where xp, yp is the coordinate of the pth laser scanning point in voxel group g, mg is the number of laser 

scanning points in voxel group g. 

Then, a top-down radius-constrained searching and marking process is preformed to identify the 

lower part of tree trunk. It is immediately followed by a bottom-up neighborhood competing searching 

and marking process to identify upper part of tree trunk and tree crown. 

3.3.3. Top-Down Radius-Constrained Searching and Marking 

The top-down radius-constrained searching and marking method is used to identify the voxels 

constituting the trunk part in the voxel layers below L5. Figure 7 illustrates the search and marking 

process in voxel layer L4. In the searching and marking process in layer Lk (0 ≤ k < 5), the foreground 

voxels (i.e., value > 0) in the bottom face neighbors of the seed voxels in layer Lk+1 will be marked 

with the same group number as the voxel group in layer Lk+1 first (Figure 7(b)). Those marked voxels 

in layer Lk are the seed voxels of neighborhood searching and marking in this layer. 

In order to reduce the influence of other objects near the ground, the search is constrained to a circle 

with radius R0 (Figure 7(c)) around the location point of each potential tree trunk in the horizontal 

plane (see Figure 6(d)). For the voxel group g, the voxels within the search circle are the candidates for 

its own region growing and marking (Figure 7(c)). The candidate voxels located in the 8-neighbors of 

the seed voxels of group g in layer Lk are marked with the same group number g (Figure 7(d)). 

The top-down searching and marking proceeds recursively until the 1st layer of the voxel grid 

system (L0) has been searched and marked. 
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Figure 7. Top-down radius-constrained searching and marking for the 5th layer above the 

ground in the voxel grid. (a) Hypothetic voxel distribution in layer L4 (the 5th layer in the 

voxel grid). (b) Marking the foreground voxels in the bottom face neighbors of the seed 

voxels in layer L5. (c) Setting searching range and the candidate voxels. (d) Neighborhood 

searching and marking. 

 

3.3.4. Bottom-Up Neighborhood Competing Searching and Marking 

The bottom-up neighborhood competing searching and marking algorithm is used to identify the 

voxels constituting the upper trunk and crowns of street trees in the voxel layers above layer L5. 

Figures 8 and 9 illustrate the processes in voxel layers L6 and L7.  

Figure 8. Bottom-up neighborhood competing searching and marking in the 7th layer 

above the ground in the voxel grid system. (a) Hypothetic foreground voxel distribution in 

layer L6 (the 7th layer in the voxel grid). (b) Marking the foreground voxels and removing 

the background voxels in the top face neighbors of the seed voxels in L5. (c) Grouping 

neighboring voxels. 
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The bottom-up search starts in layer L6 (the 7th layer in the voxel grid, Figure 8(a)), and proceeds 

recursively to a higher layer (L7 (Figure 9(a)), L8, …, Lt-1). In the searching and marking process in 

layer Lk (k >5), if the top face neighbors of the seed voxels in layer Lk-1 are foreground voxels, they 

will be marked with the same group number as the voxel group in layer Lk-1 (Figures 8(b) and 9(b)). If 

not, they will be removed from the seed voxels and no longer be considered in subsequent processing 

(Figure 8(b)). Those marked voxels in Lk are the seed voxels of neighborhood searching and marking 

in this layer. 

Figure 9. Bottom-up neighborhood competing searching and marking for the 8th layer 

above the ground in the voxel grid. (a) Hypothetic foreground voxel distribution in layer L7 

(the 8th layer in the voxel grid). (b) Marking the foreground voxels in the top face 

neighbors of the seed voxels in L6 and detect their surrounding 8-neighbors voxels. (c) An 

example of competing neighbors searching and marking. (d) Grouped foreground voxels 

located in the 8-neighbors of seeds. 

 

Ideally, if there is a gap between crowns of two street trees, (e.g., Figure 8(b)), the neighborhood 

expansion of foreground voxels from the seed voxels would result in two separate tree objects 

(Figure 8(c)). However, in reality, the crowns of two adjacent flourishing street trees often touch or 

overlap each other (e.g., Figure 9(a)). In this case, the conventional sequential neighborhood 

expanding and marking algorithm would mark all adjacent foreground voxels of two adjacent street 

trees into a single voxel group and consequently two tree objects cannot be correctly separated. To 

solve this difficult problem, we adapted a competing region growing algorithm [47] to separate the 

touching or interlocking tree crowns. In the traditional sequential region growing, all neighboring 

foreground voxels around seed voxels would be identified to form a marked voxel group, before 

starting the search and marking of next voxel group. In our competing region growing algorithm, the 

foreground voxel groups are incrementally expanded and grown, and which foreground voxel group is 

being grown in the next round expansion is governed by the competition rule. 
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As illustrated in Figure 9(b), for the seed voxels in layer Lk, their surrounding 8-neighbors voxels 

can be easily identified. For each voxel group, the distance from each surrounding 8-neighbors voxel 

to the center of corresponding tree trunk is calculated and sorted. The minimum distance (dg, g is the 

group number) for each foreground group is recorded. Among all of voxel groups, we select the voxel 

group whose minimum distance is the lowest to grow. The newly marked voxel (the voxel marked 

with a red box in Figure 9(c)) will be added to that group, and its 8-neighbors voxels will be checked. 

Next, the new dg value will be calculated and updated for this voxel group. Then, we enter into the 

next round of growing process by selecting the voxel group with the lowest dg value to grow. The 

above competing neighborhood searching and marking process is repeated, round by round, until all 

foreground voxels located in the 8-neighbors of seeds have been grouped and numbered (Figure 9(d)). 

The same bottom-up neighborhood competing searching and marking process will be sequentially 

applied to higher layers until the top layer of the voxel grid system is processed or the height of the 

layer is larger than a threshold value Hmax. 

3.4. Extracting Potential Trees 

After the neighborhood searching and marking processes, the voxels in voxel grid system have been 

divided into two categories: marked voxel and non-marked voxel. The marked voxels with same group 

number are considered to contain the laser scanning points that constitute a potential individual street 

tree. For example, Figure 10(a) shows the original MLS point cloud in 3D view, and the height is 

coded in varying colors. After voxelization, a voxel grid is established (Figure 10(b)). Two groups 

have been marked in Figure 10(c) through the neighborhood searching and marking methods 

mentioned in section 3.3. Finally, the laser scanning points of two potential trees are identified and 

extracted (Figure 10(d)). 

Figure 10. The processes of potential tree extraction. (a) Original MLS point cloud in 3D 

view. (b) Established voxel grid system. (c) Marked two voxel groups. (d) Two potential 

street trees. 

 

(a) (b)

(c) (d)g=1 g=2

Potential Tree 1 Potential Tree 2
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3.5. Estimating Morphological Parameters 

Through the aforementioned process, each individual street tree is detected and represented by 

foreground voxels and associated laser scanning points. Four morphological parameters, including 

height, crown diameter, DBH, and CBH, are estimated for each tree based on the detected foreground 

voxels and associated laser scanning points inside these voxels. 

3.5.1. Tree Height  

A simple and straightforward algorithm to derive tree height (H) is to calculate the distance between 

the highest laser scanning point and the lowest one within the foreground voxel group constituting 

each tree object (Equation (8)): 

             (8)  

where zmax and zmin are the height values of the highest and lowest laser scanning points. 

3.5.2. Tree Crown Diameter 

Conventionally, the crown diameter of a tree can be measured along two perpendicular directions 

from the location of the treetop [48]. In our study, we project all of the laser scanning points of the 

detected tree object to the horizontal plane. The range of the projected laser scanning points for each 

tree object in x and y directions are calculated. Namely, the differences between the maximum and 

minimum x and y coordinates of the projected points, denoted by CDx and CDy respectively, are 

calculated to indicate the tree crown diameter. We take the average value (    ) of CDx and CDy to 

approximate the tree crown diameter. 

3.5.3. Diameter at Breast Height (DBH) 

In the voxelization process, by adjusting height of different layers in the voxel grid system, we made 

the 6
th

 voxel layer (L5) corresponds to the relative height of 1.2–1.4 m above the ground, which is 

usually used to measure the DBH of a tree in horticulture. After the laser scanning points of a tree are 

identified (Figure 11(a)) in the 6th voxel layer (L5), they are then projected to the horizontal plane 

(Figure 11(b)). Next, a circle is fitted to represent the horizontal cross-section shape of the trunk at 

breast height by using the least-squares best fitting technique (Figure 11(c)). The diameter of the fitted 

circle is taken as DBH. 

3.5.4. Tree Crown Base Height (CBH) 

The crown base height is defined as the distance along the trunk from ground to the attachment point 

of the first living branch [49]. The critical issue in the crown base height estimation is to find the 

location of the attachment point of the first living branch. In the vertical profile of a tree, the living 

branch causes the sudden shape expansion in horizontal dimension. Since the detected tree object is 

represented as layers of voxels, a bottom-up layer by layer examination is able to locate the sudden 

shape expanding point.  
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Figure 11. Estimating the Diameter at Breast Height (DBH) of an individual street tree. (a) 

Laser scanning points of an individual street tree. (b) Projecting the laser scanning points 

contained by layer L5 to the horizontal plane. (c) Estimating DBH by using the diameter of 

fitting circle. 

 

Figure 12. Estimating the crown base height of an individual street tree. (a) Laser scanning 

points of an individual street tree. (b) The attachment point of the first living branch is 

contained by Lk. 

  

The search for the sudden shape expansion point starts at the k
th

 (k>5) voxel layer (Lk) in the 

grouped voxels of a tree (Figure 12(a)). The number of voxels (nvk) in Lk is calculated and recorded. 

The number of voxels in layer L5 is adopted as a reference number. During the bottom-up layer by 

layer examination, if the voxel number (nvk) at k
th

 layer is larger than the threshold value (2∙nv5) and 

the voxel number of its immediately higher layer (nvk+1) is also larger than the threshold value (2∙nv5), 

then the k
th

 layer is considered to contain the attachment point of the first living branch (Figure 12(b)). 
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The CBH is calculated by differencing the average z value of the laser scanning points in layer Lk and 

the height of the lowest laser scanning point of that tree (Figure 12(b)). 

3.6. Eliminating Pole-like Objects Other Than Trees 

The selection of seed voxels may include pole-like objects other than trees, such as streetlights, 

electricity poles, concrete columns, etc. Therefore, the extracted grouped voxels may include some 

spurious non-tree pole like objects. We utilize a threshold value (CD0) of crown diameter and a 

threshold value (H0) of tree height to eliminate non-tree, pole-like objects. The extracted objects will 

be removed if                 OR        .The threshold values H0 and CD0 are adjustable 

according to the dominant species of street trees. 

3.7. Software Tool Implementation 

The VMNS method proposed in this paper has been implemented as a software tool to support the 

automated street tree extraction and parameters estimation by using ArcGIS Engine 10.0 and C# 

programming language in Microsoft Visual Studio 2010 environment. The required input data include 

the laser scanning points and vehicle trajectory points collected by ECNU-MLS. The software tool 

provides the graphical user interface for the users to specify and adjust the algorithm parameters and 

threshold values. The output results of the software tool include the extracted voxels constituting an 

individual street tree in Multipath format, the grouped laser scanning points for street trees, and a table 

of the estimated tree parameters.  

4. Experimental Studies 

Our VMNS algorithm and method was tested and evaluated through two case studies. The laser 

scanning point clouds for two case study areas were collected by using ECNU-MLS. To make the 

accuracy assessment of the derived tree parameters, we conducted the field survey of the street trees 

and the height and CBH of each street tree were measured by using a portable laser distance meter 

during field survey. The DBH of each tree was gauged by using metric fabric diameter tape. The 

crown diameters of each tree were measured with a tape in east-west and south-north directions (in the 

same directions as in the numerical algorithm). 

4.1. Case Study 1 

4.1.1. Data Collection and Voxelization 

The first case study area (Figure 13(a)) is the East branch of Tongpu Road in the Putuo District of 

Shanghai. The mobile laser scanning point data were acquired on 14 March, 2012. The laser scanning 

point cloud consists of 866,222 sampling points covering a 332 m × 118 m street scene (Figure 13(a)) 

and the average point density is about 95 points/m
2
. The maximum height difference of the laser 

scanning points is 25.112 m. Street trees and other street objects, such as buildings, lights, and dustbins, 

are distributed along both sides of the road. The field measurements were taken on 15 March, 2012. 

Seventy-two street trees were visually identified about 6.5 m from the vehicle trajectory. The species 
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of these trees are all Platanus acerifolia (Ait.) Willd. The average density of the laser scanning points 

of the street trees is about 212 points/m
2
. In this case study, ∆x, ∆y, and ∆z of the voxel grid are 0.25 m, 

0.25 m, and 0.25 m, respectively. A voxel grid system with 1,330 columns, 474 rows, and 101 layers is 

established. Among 63,672,420 voxels, 179,708 are identified as foreground voxels. The following 

threshold values are used for this case study: R0 = 0.5 m, N0 = 4, CI0 = 0.5, Hmax = 15 m, CD0 = 1 m, 

and H0 = 2 m. 

4.1.2. Results 

By using our VMNS method, 121 pole-like objects are detected as potential street trees, and 49 non-tree 

pole-like objects are eliminated based on the threshold values. As shown in Figure 13(b), all 72 street 

trees are identified correctly. Thus, the detection completeness and correctness are both 100% for this 

area. The location and 3D morphology of each tree are well represented by the laser scanning points. 

Figure 13. Case study 1. (a) The original laser scanning point cloud and (b) identified 

street trees.  

 

After street trees are identified, the laser scanning points and voxels that constitute an individual 

tree are used to calculate its morphological parameters, including height, DBH, crown diameter, and 

CBH. We compare the derived height, DBH, CBH, and crown diameter to the field measured values 

and calculate the average error (AVE_E) and root mean square error (RMSE) (Figure 14). Linear 

regression is also used to investigate the coefficient of determination relationships between the MLS-

derived and field measured values of those parameters (Figure 14).  

The results show that the estimated height and DBH based on our VMNS method have a relatively 

high accuracy. The R
2 

values of height and DBH are 0.90 and 0.87, respectively (see Figure 14(a,b)). 

(a)

(b)
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The RMSE values for tree height and DBH are 0.18 m and 0.03 m. The R
2
 value for CBH is 0.81 

(Figure 14(c)).  

Figure 14. The comparison of MLS-derived tree morphological parameters with field 

measurements in the Case Study 1. (a) Height, (b) DBH, (c) CBH, (d) crown diameter in x 

direction, (e) crown diameter in y direction, and (f) average crown diameter in x and y 

direction. 

 

The crown diameter values of most street trees (71 trees) are between 1 m to 5 m. Only one tree has 

an extremely large crown diameter value of 10.70 m (average crown diameter in x and y direction). In 

order to avoid the extremely large value affect the correlation analysis, this tree is not included in 

correlation analysis in Figure 14(d–f). A good agreement between the numerically derived tree 

parameter values and the field-measured values are indicated by very high correlation coefficients and 

low RMSEs. The R
2 

of CDx, CDy, and      are 0.93, 0.92, and 0.95 (Figure 14(d–f)), and 

corresponding RMSEs are 0.25 m, 0.22 m, and 0.19 m, respectively.  

4.2. Case Study 2 

4.2.1. Data Collection and Parameters Setting 

The second case study area (Figure 15(a)) is the West branch of Zixing Road in the Minhang 

District of Shanghai, and scanning point cloud data were collected on 7 December, 2012. The road 

section to be investigated is approximately transmeridional and has a length of 240 m. The laser 

scanning point cloud consists of 691,181 sampling points covering a 211 m × 117 m street segment, 
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and the average point density is about 113 points/m
2
. The maximum height difference of the laser 

scanning points is 11.638 m. The field measurements of the trees were conducted on 18 December, 

2012. Sixty-eight street trees were visually detected, which are about 5 m away from the vehicle 

trajectory. The species of all these trees is Cinnamomum camphora (L.) Presl. The average density of 

the laser scanning points over the street trees is about 224 points/m
2
. In this case study, ∆x, ∆y, and ∆z 

of the voxel grid are set to 0.25 m, 0.25 m, and 0.25 m, respectively. A voxel grid system with 844 

columns, 468 rows, and 47 layers is established. One hundred eighty-two thousand five hundred 

eighty-four voxels are identified as foreground voxels. The threshold values used in this case study are: 

R0 = 0.5 m, N0 = 4, CI0 = 0.5, Hmax = 10 m, CD0 = 1 m, and H0 = 2 m. 

Figure 15. Case study 2. (a) The original laser scanning point cloud data (the area in red 

rectangle is illustrated in Figure 17) and (b) 67 street trees identified, and one tree missed.  

 

4.2.2. Results 

By using our VMNS method, 76 pole-like objects are detected as potential street trees. Nine of them 

were filtered out as non-tree objects based on the threshold values. As shown in Figure 15(b), 67 street 

trees are identified correctly, and only one tree was missed with our method. Thus, the detection 

completeness rate is 98.52% and correctness rate is 100% for this area. 

The reason why one tree was not detected is that the wooden support structure with a height of 

1.6 m was attached to the trunk of that tree (Figure 16(a)). Since we selected the seed voxels in the 6th 

layer located at relative height of 1.2–1.4 m above the ground, the seeds voxels’ number for the 

missing tree was larger than the threshold and therefore was excluded for further processing. In order 

to solve this problem, we adjusted the height of the 6th layer to 1.8–2.0 m for all the street trees in case 

study 2, for the season that their CBHs are larger than two meters. After the fine-tuning of this 

algorithm parameter, the missing tree was identified and delineated with our method (Figure 16(b,c)). 

The location and 3D morphology of all 68 trees are shown in (Figure 16(c)). 

  

(a)

(b)

The missing tree
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Figure 16. Dealing with the missing tree problem. (a) The original laser scanning point 

cloud and camera photo of the missing tree, (b) the identified tree by using 1.8–2.0 m for 

selecting seed voxels, and (c) identified 68 street trees.  

 

As indicated in Figure 15(a), the poles of some streetlights are attached to the neighboring trees. For 

example, a streetlight, marked by the red box in Figure 15(a), touched the adjacent tree crown (see 

Figure 17(a)). From the processing result shown in Figure 17(b), our method is robust enough to 

handle this complicated situation, and the trees were correctly extracted and streetlight poles 

successfully filtered out. The intelligence and capability of our method in handling this complex 

situation is due to the competing neighborhood searching algorithm and the use of the shape 

information of horizontal cross-sections of the tree at different height. 

Figure 17. Street trees and neighboring streetlight in case study 2. (a) The original laser 

scanning point cloud and (b) identified street trees. 

 

(a)     (b) 

After street trees were detected and separated, the laser scanning points and voxels that form an 

individual tree are used to calculate its morphological parameters. The comparison between the derived 

three heights, DBH, CBH, and crown diameter and the field measurements is shown in Figure 18. The 

R
2 
values of height, DBH, and CBH are 0.91, 0.83, and 0.82 respectively (see Figure 18(a–c)). RMSE 

values for these parameters are 0.15 m, 0.01 m, and 0.08 m, respectively. The crown diameter values 

of all 68 trees range from 2.7 m to 5 m. The R
2 

for CDx, CDy, and      are 0.90, 0.91, and 0.92 

(Figure 18(d–f)), and RMSEs are 0.18 m, 0.17 m, and 0.13 m, respectively.  
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Figure 18. The comparison between MLS-derived morphological parameters of street trees 

from the VMNS method and field measurements in the Case Study 2. (a) Height, (b) DBH, 

(c) CBH, (d) crown diameter in x direction, (e) crown diameter in y direction, and (f) 

average crown diameter in x and y direction. 

 

4.3. Discussions 

4.3.1. Tuning of the Algorithm Parameters 

Two case study areas are located in different districts of Shanghai. Street trees and other street 

objects, such as buildings, lights, traffic signs, and dustbins, are presented along two sides of the roads. 

In Shanghai and other Chinese cities, trees of the same species are frequently planted along a road for 

the sake of easy horticultural management and aesthetic consideration. Because the trees along a 

specific segment of a road were often planted or transplanted in the same period and grew under 

similar conditions, as a result the size and shape of most trees for a certain road segment are quite 

similar. Thus, the case study areas used in our analysis represent the typical street scene in the urban 

area of Shanghai. For urban street trees with more complex structures, some pre-processing steps for 

original laser scanning point cloud, such as partitioning of data along road direction [44], removing the 

points that are far away from the survey trajectory, would simplify and improve the detection and 

quantification of street trees. 

In the voxelization, the vertical origin of voxel grid system is set to the same elevation as the first 

point of vehicle trajectory. In our case studies, we assume that the ground surface of the road segment 

under processing has a constant elevation since the laser scanning data used in our case studies were 

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

F
ie

ld
 M

ea
su

re
d

 C
D

y
(m

)

VLS-derived CDy (m)

R2=0.91

RMSE=0.17 m

5.5

6

6.5

7

7.5

8

8.5

5.5 6 6.5 7 7.5 8 8.5

F
ie

ld
 M

ea
su

re
d

 H
ei

g
h

t 
(m

)

VLS-derived Height (m)

R2=0.91

RMSE=0.15 m

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26

F
ie

ld
 M

ea
su

re
d

 D
B

H
 (

m
)

VLS-derived DBH (m)

R2=0.83

RMSE=0.01 m

2.5

2.7

2.9

3.1

3.3

3.5

2.5 2.7 2.9 3.1 3.3 3.5

F
ie

ld
 M

ea
su

re
d

 C
B

H
 (

m
)

Laser-derived CBH (m)

R2=0.82

RMSE=0.08 m

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

F
ie

ld
 M

ea
su

re
d

 C
D

x
(m

)

VLS-derived CDx (m)

R2=0.90

RMSE=0.18 m

2.5

3.0

3.5

4.0

4.5

5.0

5.5

2.5 3.0 3.5 4.0 4.5 5.0 5.5

F
ie

ld
 M

ea
su

re
d

 C
D

x
y
(m

)

VLS-derived CDxy (m)

R2=0.92

RMSE=0.13 m

(a) (b) (c)

(d) (e) (f)

AVE_E=-0.062 m AVE_E=-0.002 m AVE_E=-0.032 m

AVE_E=-0.005 m AVE_E=0.004 m AVE_E=0.010 m

MMM

MM MLS



Remote Sens. 2013, 5 606 

 

collected over relatively straight streets with quite flat surfaces. Their maximum elevation differences 

are within one meter. For more complicated urban environments with curved streets, or streets with 

varying slopes, some data processing steps should be performed before applying our algorithm and 

method. In these more complicated situations, one data processing strategy is to partition the road into 

several smaller segments. For each small road segment, the street trees would be more homogeneous, 

and a set of appropriate algorithm parameters can be selected for our method to get accurate detection 

results. Sequential processing of the laser scanning point cloud data from segment to segment along 

the road would improve the detection accuracy and reliability. The other preprocessing strategy is to 

model the vehicle trajectory using a polynomial mathematical function, and then normalize the heights 

of laser scanning point cloud data to the values relative to the road surface represented by the 

polynomial function. When some irregular structures, or other objects, are present near street trees (e.g., 

Figure 16(a)), the use of default algorithm parameters may fail the seed voxels searching and cause the 

omission error in tree detection. As demonstrated in the second case study, the algorithm parameters 

and threshold values used in our method are adjustable. By fine-tuning the algorithm parameters and 

threshold values according to the urban street situation, the omission error can be fixed. 

4.3.2. Accuracy Comparison 

The two case studies show that the tree heights derived from our VMNS method have a relatively 

high accuracy. In comparison with field measurements, the R
2 
values for the two study areas are larger 

than 0.9. For DBH, its R
2
 value is slightly lower than for tree height, but the RMSEs for DBH are as 

low as 0.03 m in the first case study area, and 0.01 m in the second case study area, which are 

comparable to other studies (e.g., 0.021 m reported by [35]). The R
2
 values for CBH in the two case 

studies are 0.81 and 0.82, which are better than the results reported by using ALS data (e.g., 0.49 to 

0.80 reported in [46]). The RMSEs for CBH are less than 0.1 m, which are much smaller than the 

values (about 2 m) reported in [46].  

For the crown diameter estimation, the R
2 
values for CDs (x direction, y direction, and average) are 

larger than 0.9 in the two case studies, which are much better than the results reported by using ALS 

data, i.e., 0.44 reported in [50] and 0.63 reported in [48]. It should be noted that previous studies on the 

crown diameter estimation by using ALS data mostly focus on natural forest regions. As the density of 

trees cluster is high and many tree crowns are interlocked, segmenting individual trees in natural forest 

areas from ALS data is more difficult in comparison with separating urban street trees with MLS data. 

Consequently, the crown diameter estimation with MLS data is easier and more reliable in comparison 

with processing ALS data. 

Figures 14(b) and 18(b) indicate that the average error of DBH estimations for the two case studies 

are 0.007 and 0.004. Our method overestimated the tree diameter in comparison with field 

measurements. This is primarily due to the limitation of laser scanning density and the side looking 

geometry of the MLS system. As indicated in Figure 11(c), only a few laser points reflected from the 

front side of tree trunk facing the road were captured by the laser scanning system. Inadequate number 

of laser scanning points, particularly lack of laser scanning sampling points from back side of tree 

trunks adversely affect the circle fitting and hence the tree diameter estimation accuracy. Our method 

underestimated crown diameters (Figure 14(d–f), and Figure 18(d–f)), particularly in the first case 
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study. The species of street trees in the first case study area is Platanus acerifolia (Ait.) Willd, a 

typical deciduous tree. When the laser scanning data was collected in March, the trees were still in 

leave-off status. The edge of tree crowns, without flourishing leaves, cannot be fully depicted by the 

limited density of laser scanning point cloud.  

5. Conclusions 

This paper presents a novel Voxel-based Marked Neighborhood Searching (VMNS) method for 

automated identification and morphological parameters estimation for individual street trees based on 

Mobile Laser Scanning (MLS) point cloud data. Our VMNS method is comprised of six technical 

steps: voxelization, calculating voxel values, neighborhood searching and marking, extracting potential 

trees, estimating morphological parameters, and eliminating non-tree pole-like objects. In contrast to 

the use of a uniform constant voxel height in the voxelization process in many other studies, our 

method adopted variable voxel height for different voxel layers in order to improve the flexibility and 

accuracy for street tree extraction and tree morphological parameter estimations. We extended the 

traditional neighborhood searching from a 2D image grid to a 3D voxel grid system in our method. A 

top-down radius-constrained searching and marking, immediately followed by a bottom-up competing 

neighborhood searching and marking processes are designed to identify and group the foreground 

voxels belonging to a potential individual street tree. The consecutive processing of the MLS point 

cloud through the six technical steps, our method is capable of generating a voxel-based 3D model for 

each individual street tree and identifying associated laser scanning points belonging to each individual 

tree. The tree morphological parameters, including tree height, crown diameter, diameter at breast 

height (DBH), and crown base height (CBH), of individual street tree have been calculated with 

satisfactory accuracy. 

The primary innovations of our method are threefold. First, the consecutive neighborhood searching 

and marking algorithms make full use of spatial proximities both in vertical and horizontal directions 

of laser scanning points, constituting an individual tree into account by adopting an adjustable 

voxelization scheme. This enables us to construct a voxel-based morphological model for each tree. 

This represents a major technical improvement over 2D neighborhood search methods in the literature. 

Second, we embedded a competing neighborhood searching and growing algorithm in the bottom-up 

search and marking process. This algorithm component represents a critical technical innovation. As 

demonstrated, this technical innovation enables the separation of touching and overlapping tree crowns 

and, therefore, make our method more robust and reliable than in previous studies. Third, our study 

represents the first research effort in the automated derivations of a set of morphological parameters of 

street trees based on MLS data. 

Two case studies demonstrate that our VMNS method is effective and efficient to form 3D voxel 

models and derive morphological parameters for individual street trees. The detection completeness 

and correctness rates are over 98% for the case study areas. The estimated morphological parameters 

have been compared to in situ field measurements. The comparisons show tree height, crown diameter, 

DBH, and CBH, estimated from our method are in a good agreement with field measurements, and the 

RMSEs are small. In two case studies, the R
2
 values for tree height and crown diameter are over 0.9, 
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and for DBH and CBH are over 0.8. Our results are more accurate and reliable, in comparison with 

previous studies reported in literature.  

There are still some limitations to our method. Our method is difficult to extract the multiple-stemmed 

street trees if their furcal sections are lower than the initial searching height. The multiple stems of an 

individual tree would be detected as several separated trees. The method is tested only through two case 

study areas in Shanghai. In the future research, we will test and improve the method through other study 

areas and make further improvements on the algorithms for estimating morphological parameters of 

individual trees. In addition, we will include other important morphological parameters, such as crown 

project area, green volume, and leaf area index of street trees. 
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