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Abstract: Mesoscale regional climate models (RCMs), the primary tool for climate 
predictions, have recently increased in sophistication and are being run at increasingly 
higher resolutions to be also used in climate impact studies on ecosystems, particularly in 
agricultural crops. As satellite remote sensing observations of the earth terrestrial surface 
become available for assimilation in RCMs, it is possible to incorporate complex land 
surface processes, such as dynamics of state variables for hydrologic, agricultural and 
ecologic systems at the smaller scales. This study focuses on parameterization of 
vegetation characteristics specifically designed for high resolution RCM applications using 
various remote sensing products, such as Advanced Very High Resolution Radiometer 
(AVHRR), Système Pour l’Observation de la Terre-VEGETATION (SPOT-VGT) and 
Moderate Resolution Imaging Spectroradiometer (MODIS). The primary vegetative 
parameters, such as land surface characteristics (LCC), fractional vegetation cover (FVC), 
leaf area index (LAI) and surface albedo localization factors (SALF), are currently 
presented over the Nakdong River Watershed domain, Korea, based on 1-km remote 
sensing satellite data by using the Geographic Information System (GIS) software 
application tools. For future high resolution RCM modeling efforts on climate-crop 
interactions, this study has constructed the deriving parameters, such as FVC and SALF, 
following the existing methods and proposed the new interpolation methods to fill missing 
data with combining the regression equation and the time series trend function for  
time-variant parameters, such as LAI and NDVI data at 1-km scale. 
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1. Introduction 

Mesoscale regional climate models (RCMs) are recognized as an essential and powerful tool to 
address scientific information associated with climate variability, changes and impacts at local and 
regional scales [1–3]. Both global and regional climate models have recently increased in 
sophistication and are being run at the increasingly higher resolution, which is supported by increases 
in the availability of remote sensing observations, as well as computational power. RCM simulations at 
higher resolutions are necessary for resource management and impact assessment, for example, climate 
change effects on water resources, ecosystem, extreme weather, hurricane frequency, and so on. The 
land surface models (LSMs) coupled to these climate models have also evolved from simple bucket 
models to sophisticated assimilation schemes by utilizing high resolution satellite data, such as from 
the Terra and Aqua platforms. With a large volume of available satellite remote sensing data of the 
earth terrestrial surface, it becomes possible to precisely monitor the dynamics of the land surface state 
variables for agricultural and land use management [4]. 

Numerous RCMs have been developed, applied, compared and improved by many scientists and 
research groups. Meanwhile, the next-generation weather research and forecasting (WRF) model was 
developed by a broad community of government and university researchers [5–7], and then the 
climate extension of the WRF (CWRF) has been developed to enhance the capability for climate 
applications [8,9]. The common land model (CoLM) [10], a state-of-the-art soil-vegetation-atmosphere 
transfer (SVAT) model, has been incorporated into the CWRF model with numerous crucial 
evaluations and updates for land processes [11–22]. For all RCMs, one of the essential components is 
the representation of surface-atmosphere interactions, which generally requires specification of surface 
boundary conditions (SBCs). The construction of SBCs based on best observational data is desired for 
the surface modules dynamically combined in RCM general applications for a specific region of the 
world. The required set of SBCs may generally depend on surface parameters specified by the 
formulation complexity in the model. The primary SBCs for use in CoLM have been constructed 
for North America or Asia domain at the 30-km grid scale [23–26]. Among the static SBCs, 
vegetation parameters are the fundamental input fields in CoLM, which play an important role in 
surface-atmosphere flux interactions. The vegetative SBCs consist of the land cover category (LCC), 
the fractional vegetation cover (FVC), the leaf area index (LAI) and the surface albedo localization 
factors (SALF) to mainly determine contribution partitioning between bare soil and vegetation for 
fluxes crucial to land-atmosphere interactions. Hence, this study has collected raw data sets at the fine 
resolution of 1 km from remote sensing satellite products provided by Advanced Very High Resolution 
Radiometer (AVHRR), Système Pour l’Observation de la Terre-VEGETATION (SPOT-VGT) or 
Moderate Resolution Imaging Spectroradiometer (MODIS) for complex land surface processes in the 
high resolution simulations, such as dynamics of state variables for hydrologic, agricultural and 
ecologic systems at smaller scales. This study has provided the deriving parameters, such as FVC and 
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SALF, following the existing methodologies for 1-km scale SBCs in CoLM applications. This study 
has also proposed data interpolation methods for missing values, since it is important to construct 1-km 
SBCs without missing data, especially for time-variant parameters, such as NDVI and LAI. 

The remote sensing observations provided in various map projections and different data formats 
often contain missing values or inconsistencies between variables. It is, therefore, significant and 
required for labor-intensive efforts to convert the vast and various raw data sets onto the RCM-specific 
grid mesh and model input data format. This study employs the Geographic Information System (GIS) 
software application tools from Environmental Systems Research Institute, Inc., particularly to 
determine the geographic conversion information from a specific map of each raw data to the identical 
RCM grid system. The missing values in raw data due to cloud contamination and atmospheric effects 
are filled by an interpolation scheme utilizing the regression equations between LAI and NDVI (main 
algorithm) and the cosine function based on the time series trend of observations (backup algorithm). 
This study has parameterized the high resolution vegetation characteristics by using remote sensing 
products and constructed the primary vegetative SBCs at the 1-km grid spacing over the Nakdong 
River Watershed domain in Korea, especially for future CoLM modeling efforts on climate-crop 
interactions. To assess impacts of the new SBCs treatments, future studies are required to perform the 
RCM climate sensitivity to these SBCs constructed at 1-km scale. 

2. Study Area and General Considerations 

For high resolution simulations in the CoLM, especially on climate-crop interactions over the 
Nakdong River Watershed in Korea, this study sets the study domain centered at 38.0°N and 127.0°W 
on the Transverse Mercator map projection, with total grid numbers of 203 (west-east) × 268  
(south-north) at the 1-km horizontal grid spacing. Figure 1(a) shows the country map of Korea overlaid 
with latitude and longitude lines, and Figure 1(b) denotes the 203 × 268 dimensional 1-km spacing 
grids over the Nakdong River Watershed domain projected on the Transverse Mercator map. 

The vegetation fields of SBCs, such as LCC, FVC, LAI and SALF, need to be modified from the 
remote sensing products. Especially for acceptable switching time dependence between FVC and LAI, 
it may be arguable whether the FVC, LAI or both variables should carry the information for time 
variations of terrestrial vegetation phenology. This study determines a static FVC by long-term 
climatological controls for distinct LCC types, whereas LAI includes temporal variations, following 
the argument of Zeng et al. [27] that assuming a static FVC and time-variant LAI is more realistic 
from a modeling perspective. 

The various remote sensing data sets that have different map projections and formats often contain 
missing values or inconsistencies between raw data sets. For most procedures to convert raw data sets 
onto the RCM-specific grid mesh and compute model input data parameters, this study mainly uses 
ArcInfo and ArcMap commands. In particular, IMAGEGRID and GRIDPOLY convert input data from 
the remote sensing image to the ArcGIS raster grid and to the polygon coverage formats, respectively; 
PROJECT remaps the raw data onto the Nakdong River watershed domain projection; GRID 
DOCELL and IF statements conditionally merge, replace or adjust different input datasets for more 
improved products. The time series LAI data that have missing value pixels due to cloud 
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contamination and atmospheric effects are filled by an interpolation scheme based on the regression 
equations and time series trend of observations. 

Figure 1. (a) Location map of the Korean Peninsular overlaid with latitude and longitude 
lines and (b) the Nakdong River Watershed domain overlaid with the 203 × 268 
dimensional 1-km spacing grids. 

(a) (b) 

3. Results and Discussion on Parameterizations 

This study has constructed and displayed the high resolution vegetative SBCs, such as LCC, FVC, 
LAI and SALF, from remote sensing products over the Nakdong River Watershed domain for 
prediction on fluxes crucial to land-atmosphere interactions in applications of distributed models, as 
well as land surface models at small scales. The details about the raw data sets and processing 
procedures for each vegetative SBCs over the study domain are discussed below. 

3.1. Land Cover Category (LCC) 

The CoLM uses the LCC to define static canopy data for morphological, optical and physiological 
properties in the land surface module. This study uses the 24-category USGS land cover classification 
developed from the April 1992–March 1993 AVHRR satellite-derived Normalized Difference 
Vegetation Index (NDVI) composites. This data is based on a flexible database structure and seasonal 
land cover region concepts. The regions are composed of relatively homogeneous land cover 
associations, which exhibit distinctive phenology and have common levels of primary production. 
Since some LSMs have used the International Geosphere Biosphere Programme (IGBP) 17-category 
land cover classification system [28,29], which is different from the USGS categories in the CoLM, 
there is a need to translate the old parameter sets for each IGBP class to the USGS LCC. 

The raw data of the USGS LCC are available at 1-km spacing on the geographic coordinate system 
in BIL image format [30] converted into the ArcGIS raster grid and polygon coverage and then 
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remapped onto the Transverse Mercator map projection. As illustrated in Figure 2 and Table 1, among 
the total 24-category USGS LCC, only 11 LCC types exist over the Nakdong River Watershed 
domain, and LCC types, 10 (savanna) of 45.5%, 15 (mixed forest) of 24.6% and 3 (irrigated cropland 
and pasture) of 14.6%, are in the majorities. Figure 3 shows the LCC geographic distribution over the 
Nakdong River Watershed domain. 

Figure 2. Coverage ratio of distribution areas for the existing eleven USGS Land Coverage 
Category (LCC) types over the Nakdong River Watershed domain. 

 

Figure 3. The geographic distribution of the 1-km USGS LCC types over the Nakdong 
River Watershed domain. 

 

3.2. Fractional Vegetation Cover (FVC) 

The FVC is an ecological parameter that determines contribution partitioning between bare soil and 
vegetation for surface evapotranspiration, photosynthesis, albedo and other fluxes crucial to  
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land-atmosphere interactions. The time-invariant FVC is computed from the NDVI product derived 
from the red and near infrared spectrums of multi–spectral remotely sensed data. The NDVI are 
measured from different satellite sensors, such as SPOT-VGT, MODIS, AVHRR, etc. The current 
CoLM uses the USGS LCC system developed from the AVHRR NDVI for April 1992–March 1993, 
but the AVHRR does not provide 1-km NDVI data for long-period time. For parameterizing the 1-km 
FVC, therefore, this study employs 1-km SPOT-VGT NDVI data that shows higher linear agreements 
with the AVHRR NDVI and is slightly better than the MODIS NDVI [31,32]. The SPOT-VGT NDVI 
data set is comprised of the vegetation data by a multispectral sensor instrument from the SPOT 4 
platform and the SPOT 5 platform. The sensor has four spectral bands: blue (0.43–0.47 μm), red  
(0.61–0.68 μm), near-infrared (0.78–0.89 μm) and shortwave infrared (1.58–1.74 μm). The red and 
near-infrared bands are used to characterize vegetation, and the blue wavelength band is used for 
atmospheric correction for the other bands. 

This study has collected the 10-day composites of the global 1-km SPOT-VGT NDVI product [33] 
for 10 years during 2001–2010. The raw NDVI data are adjusted to be confined by the USGS LCC for 
a consistent representation of water bodies, and the 10-year average of the annual maximum NDVI for 
each LCC are chosen to minimize the effect of cloud contamination on data quality. For each pixel, the 
FVC is computed by the following equation [34]:  

sv

sVGT

NN
NNDVIFVC

−
−=  (1)

where NDVIVGT is the SPOT-VGT NDVI value of an individual pixel, Nv is the NDVI value of pure 
green vegetation pixels and Ns represents the per-pixel bare soil NDVI value. Nv = 0.85 is defined from 
the NDVI value for 99% of the pixels of the histogram, and Ns is set to 0.1 from the 1% of pixels in the 
cumulative curve of the average annual maximum NDVI image for the Korean Peninsula. 

Table 1. The mean values of the average annual maximum Système Pour l’Observation de 
la Terre-VEGETATION (SPOT-VGT) Normalized Difference Vegetation Index (NDVI) 
and Fractional Vegetation Coverage (FVC) for the eleven LCC types over the Nakdong 
River Watershed domain.  

LCC Type Description Coverage(%) Max.NDVI FVC 
1 urban and built-up land 0.7 0.50 0.54 
2 dryland cropland and pasture 1.0 0.72 0.83 
3 irrigated cropland and pasture 14.6 0.74 0.85 
5 cropland/grassland mosaic 0.5 0.53 0.57 
6 cropland/woodland mosaic 8.7 0.80 0.93 
8 shrubland 1.4 0.67 0.76 

10 savanna 45.5 0.81 0.95 
11 deciduous broadleaf forest 0.4 0.79 0.92 
14 evergreen needleleaf forest 0.9 0.79 0.92 
15 mixed forest 24.6 0.82 0.95 
16 water bodies 1.7 - - 
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The SPOT-VGT NDVI data on the geographic coordinate system at 1-km spacing are remapped 
onto the Transverse Mercator map projection, and then the resultant 1-km FVC data are computed 
from Equation (1). Figure 4 illustrates the 1-km FVC geographic distribution derived from the average 
annual maximum SPOT-VGT NDVI over the Nakdong River Watershed domain. Table 1 presents the 
statistical quantities of average annual maximum SPOT-VGT NDVI and FVC values for the eleven 
LCC types along with the contributing area ratio over the Nakdong River Watershed domain. Note that 
time-variant FVC data sets can be constructed with 10-day composites of SPOT-VGT NDVI data 
following the same procedure for the consistency with the LAI time-series data sets, if necessary. 

Figure 4. The geographic distribution of the 1-km FVC values derived from the average 
annual maximum SPOT-VGT NDVI over the Nakdong River Watershed domain.  

 
3.3. Leaf Area Index (LAI) 

The LAI, an important structural property of a plant canopy, is defined as the total one-sided area of 
all green canopy elements over vegetated ground. The LAI data is required to calculate surface 
photosynthesis, evapotranspiration and net primary production as inputs for terrestrial energy, carbon, 
water cycle processes and vegetation biogeochemistry simulations. This study has constructed LAI data 
set from the MOD 15 LAI data [35] on the Integerized Sinusoidal projection, provided by MODIS from 
the Terra (EOS AM) and Aqua (EOS PM) satellites. The MOD 15 LAI data are the only available 1-km 
global data products updated once each eight-day period throughout each calendar year. This  
satellite-derived parameter is derived from the atmosphere corrected surface reflectance product MOD09, 
land cover product MOD12 and ancillary information on surface characteristics using a 3-D radiative 
transfer model and a look-up table (LUT) method (main algorithm). LUTs are generated for each biome by 
running the algorithm for various combinations of LAI and soil type. When the main algorithm fails, a 
backup algorithm based on relations between LAI and NDVI is utilized to retrieve LAI values.  

Many studies have shown that the widely used spectral reflectance index NDVI is a good estimator 
of LAI and has been used to estimate LAI indirectly [36–41]. In order to check consistency between 
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LAI and NDVI in different data sources and to find an effective and fast way for missing LAI values, 
this study has investigated the relationship between NDVI and LAI with respect to LCC types. For this 
analysis, both the raw LAI and NDVI data sets are respectively reconstructed as monthly time series 
for 10 years data sets during 2001–2010. 

Figure 5 presents monthly variations of LAI and NDVI climatologies for the ten LCC regions 
(except LCC 16 (waterbodies) in the total eleven LCC types) over the Nakdong River Watershed 
domain. For most LCC types in the study domain, the annual cycle patterns of the LAI climatologies 
increase dramatically from winter to summer, which are similar to seasonal variations of NDVI 
climatologies. NDVI climatologies peak around August for the all LCC, while LAI climatologies have 
the maximum in May for LCC types 1 (urban and built-up land), 5 (cropland/grassland mosaic), 
6 (cropland/woodland mosaic), 10 (savanna), 14 (evergreen needleleaf forest), 15 (mixed forest) and in 
August for LCC types 2 (dryland cropland and pasture), 3 (irrigated cropland and pasture), 
8 (shrubland), 11 (deciduous broadleaf forest) over the Nakdong River Watershed. Since both LAI and 
NDVI data contain large uncertainties in winter due to cloud contamination, especially for LCC type 
14 (evergreen needleleaf forests), low values in winter months need to be adjusted for the real  
growth rate [42].  

Figure 5. The annual cycle of Leaf Area Index (LAI) and NDVI climatologies for the ten 
LCC types over the Nakdong River Watershed domain. 
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Figure 5. Cont. 

  

 

In order to understand the relationship between LAI and NDVI, this study has performed regression 
analysis by creating scatter plots and regression equations between LAI and NDVI for the ten LCC 
types over the study domain, as shown in Figure 6. Table 2 also summarizes and compares the 
regression equations of the LAI-NDVI relationship corresponding to each LCC type in the study 
domain. The LAI for the ten LCC types in the Nakdong River Watershed domain shows the relatively 
high correlations with the general exponential relationship of NDVI.  

Figure 6. The scatter plots (blue spots) with the regression curves (red lines) for the  
LAI-NDVI relationship for the ten LCC types over the Nakdong River Watershed domain 
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Figure 6. Cont. 

 

Applying NDVI data in regression equations can be rapidly and simply used for missing LAI 
predictions, usually measured though time-consuming algorithms. The raw missing LAI data are filled 
by regression equations in Table 2 and adjusted to be confined by the USGS LCC for a consistent 
representation of water bodies. Note that the adjusted LAI data with respect to unit ground area can be 
divided by the FVC (time-invariant or time-variant values) for further necessary process to define the 
green LAI with respect to vegetated area only, following Zeng et al. [42]. In case the monthly LAI still 
has missing value pixels due to missing NDVI values simultaneously, alternatively, they are filled by 
an interpolation equation assumed as the cosine function for the time series trend of the  
10-year observations: 
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where LAIm is the interpolated LAI value in a month m  with no data (missing value), ܫܣܮതതതതത is the annual 
averaged LAI value, d is the annual maximum difference from ܫܣܮതതതതത and p is the month with the annual 
maximum value, respectively, for each missing value pixel. 

Figure 7 depicts seasonal variations of geographic distributions for January, April, July and October 
mean LAI climatologies after filling up all missing points in the Nakdong River Watershed. It is 
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observed that the seasonal trend of LAI is apparent for certain categories, especially those with 
croplands, where nothing may remain on the field after crops are harvested in fall. 

Figure 7. The geographic distributions of mean LAI values based on 2001–2010 
climatology data in (a) January, (b) April, (c) July and (d) October over the Nakdong River 
Watershed domain. 
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Table 2. The regression analysis summary of the LAI-NDVI relationship for the ten LCC 
types over the Nakdong River Watershed domain. 

LCC Type Description Regression Equations R² No. Of Pixels No. Of Data 

1 Urban and built-up land 0.078exp
0.216
NDVI

LAI = ⎛ ⎞
⎜ ⎟
⎝ ⎠

 0.810 36 432 

2 dryland cropland and pasture 0.072 exp
0.211
NDVI

LAI = ⎛ ⎞
⎜ ⎟
⎝ ⎠

 0.861 366 4,392 

3 irrigated cropland and pasture 0.075exp
0.211
NDVI

LAI = ⎛ ⎞
⎜ ⎟
⎝ ⎠

 0.828 5,388 64,656 

5 cropland/grassland mosaic 0.083exp
0.223
NDVI

LAI = ⎛ ⎞
⎜ ⎟
⎝ ⎠

 0.868 56 672 

6 cropland/woodland mosaic 0.080 exp
0.215
NDVI

LAI = ⎛ ⎞
⎜ ⎟
⎝ ⎠

 0.811 3,645 43,740 

8 shrubland 0.084 exp
0.214
NDVI

LAI = ⎛ ⎞
⎜ ⎟
⎝ ⎠

 0.773 395 4,740 

10 savanna 0.078exp
0.213
NDVI

LAI = ⎛ ⎞
⎜ ⎟
⎝ ⎠

 0.845 20,878 250,536 

11 deciduous broadleaf forest 0.064 exp
0.208
NDVI

LAI = ⎛ ⎞
⎜ ⎟
⎝ ⎠

 0.863 196 2,352 

14 evergreen needleleaf forest 0.080 exp
0.216
NDVI

LAI = ⎛ ⎞
⎜ ⎟
⎝ ⎠

 0.856 384 4,608 

15 mixed forest 
0.083exp

0.215
NDVI

LAI = ⎛ ⎞
⎜ ⎟
⎝ ⎠  0.813 11,099 133,188 

3.4. Soil Albedo Localization Factor (SALF) 

The surface albedo has a strong influence on the surface energy budget and partitioning, such as 
circulation patterns, hydrological processes and absorption of photosynthetically active radiation 
(PAR), which determines the productivity of the Earth’s ecosystem [43–46]. In the original CoLM, the 
surface albedo parameterization [10] was adopted from Dickinson et al. [44], with improvements by 
Zeng et al. [42]. The current CoLM specifies separate albedos for bare soil ߙ௚,ఒ,ఎ and vegetation 
canopy ߙ௖,ఒ,ఎ and determines the total snow-free surface albedo ߙఒ,ఎ as an area weighted mixture of the 
two [24]. 

( )FVCFVCSALF cg ηληληληλ ααα ,,,,,, )1( +−=  (3) 

where ܵܨܮܣఒ,ఎis a soil albedo localization factor, λ is visible and near-infrared wavebands  
(0.3–0.7 µm and 0.7–5.0 µm) and η is direct beam and diffuse radiation. Since local soil and canopy 
characteristics, such as soil color, surface roughness, mosaic distribution of multiple vegetation 
categories, and so on, have large impacts on surface albedo, the CoLM incorporates the SALF to depict 
the static portion of albedo geographically dependent. The SALF varies with geographic locations and 
spectral bands and differs between direct beam and diffuse radiation. The surface albedo ߙఒ,ఎis the 
dynamic component of the new parameterization that represents the predictable albedo dependencies on 
solar zenith angle, surface soil moisture, land cover category, fractional vegetation cover, leaf plus stem 
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area index, greenness, etc., while the statistical part represents the correction for static effects that are 
specific to local surface characteristics. Figure 8 shows the geographic distributions of the ܵܨܮܣఒ,ఎ 
determined following Liang et al. [24]. It is found that there are similar spatial patterns of the ܵܨܮܣఒ,ఎ 
between direct beam and diffuse radiation for either the visible or near-infrared band. 

Figure 8. The geographic distributions of ܵܨܮܣఒ,ఎ values over the Nakdong River Watershed 
domain for (a) direct beam visible band, (b) direct beam in the near infrared band, (c) diffuse 
radiation in the visible band and (d) diffuse radiation in the near infrared band. 
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4. Conclusions 

As the mesoscale climate and hydrology modeling studies need to incorporate more sophisticated 
linkages and process interactions at smaller scales from several 10s km to a few km, this study focuses 
on the construction of the high resolution vegetative SBCs by using 1-km spatial resolution remote 
sensing data from AVHRR, SPOT-VGT and MODIS, which are freely available. The several primary 
vegetative SBCs were constructed from remote sensing products at the 1-km grid spacing in the 
Nakdong River Watershed domain of the Korean Peninsula to parameterize the high resolution 
vegetation characteristics for use in the CoLM, especially for climate-crop interaction simulations.  

The primary vegetative SBCs that play an important role in surface-atmosphere interactions include 
land cover category, fractional vegetation cover, leaf area index and soil albedo localization factor. 
This study appropriately manipulates and manages remote sensing observations with various map 
projections and different data formats that often contain missing values or inconsistencies between raw 
products. The GIS application tools are mainly employed to process vast amount of raw data sets. 
They determine the geographic conversion information from a specific map projection of each remote 
sensing data to the Nakdong River Watershed domain.  

The land cover category types over the Nakdong River Watershed domain consist of the eleven 
LCC types among the total 24-category USGS LCC, and LCC types 10 (savanna), 15 (mixed forest) 
and 3 (irrigated cropland and pasture) command a majority in coverage. For the fractional vegetation 
cover parameter, the static FVC data was constructed with the 10-year average of the annual maximum 
NDVI to minimize the effect of cloud contamination on data quality, and the time-variant FVC data 
sets can be also constructed for consistency with the LAI time-series data sets, if necessary. To fill the 
missing values in raw LAI data due to cloud contamination and atmospheric effects, this study has 
examined the seasonal trend and consistency between SPOT-VGT NDVI and MODIS LAI and shown 
that the MODIS LAI data has very high correlations (coefficients of determination 2R  are 0.773 to 868 
for the ten LCC types) with exponential equations of the SPOT-VGT NDVI data for the study 
watershed. As a result, this study has proposed an interpolation scheme that consists of the regression 
equations between LAI and NDVI as the main algorithm and the cosine function for the time series 
trend of LAI observations as the backup algorithm when both LAI and NDVI values are missing. For 
surface albedo parameterization, the four kinds of soil albedo localization factors were computed with 
a combination of spectral bands (visible and near-infrared wavebands) and incident solar radiation 
(direct beam and diffuse radiation). 

The construction of vegetative SBCs without missing data is required to improve model 
predictability in the high resolution RCM simulations. Hence, the 1-km vegetative SBCs constructed 
in this study are specifically designed for mesoscale modeling applications to all effective, 
dynamically coupled or uncoupled combinations of the surface modules, especially for future CWRF 
modeling efforts on climate-crop interactions. Since this study deals with various remote sensing 
products, the SBCs so constructed may carry over uncertainties inherent in the raw data. Note that the 
evaluation of the raw data quality from the remote sensing satellite products is beyond the scope of this 
study. The climatic impacts of these vegetative SBCs, singly or in combination, will be investigated 
and documented in the future. Future studies also will be required to construct other high resolution 
SBCs required in the CWRF model, implement the comprehensive set of SBCs for general CWRF 
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applications and assess impacts of the SBCs treatments by analysis on the RCM climate sensitivity to 
these SBCs. 

Acknowledgements 

This research was supported by the Basic Science Research Program through the National Research 
Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology  
(2010-0003954). 

References 

1. Giorgi, F.; Mearns O. Introduction to special section: Regional climate modeling revisited. J. 
Geophys. Res. 1999, 104, 6335–6352.  

2. Intergovernmental Panel on Climate Change. Climate Change 2001: The Scientific Basis; IPCC: 
Cambridge University Press: Cambridge, UK/New York, NY, USA, 2001; p. 881. 

3. Leung, L.R.; Mearns, L.O.; Giorgi, F.; Wilby, R.L. Regional climate research. Bull. Amer. 
Meteorol. Soc. 2003, 84, 89–95. 

4. Zhan, X.W.; Gao, W.; Qi, J.G.; Houser, P.R.; Slusser, J.R.; Pan, X.L.; Gao, Z.Q.; Ma, Y.J. 
Remote sensing and modeling the dynamics of soil moisture and vegetative cover of arid and 
semiarid areas. Proc. SPIE 2004, 5153, 51–60. 

5. The Weather Research & Forecasting Model. Available online: http://www.wrf-model.org/ 
(accessed on 16 August 2012). 

6. Chen, F.; Dudhia, J. Coupling an advanced land surface-hydrology model with the Penn.  
State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. 
Rev. 2001, 129, 569–585. 

7. Klemp, J.; Skamarock, W.; Dudhia, J. Conservative split-explicit time integration methods for the 
compressible nonhydrostatic equations. Mon. Wea. Rev. 2007, 135, 2897–2913.. 

8. Liang, X.-Z.; Li, L.; Dai, A.; Kunkel, K.E. Regional climate model simulation of summer 
precipitation diurnal cycle over the United States. Geophys. Res. Lett. 2004, 31, L24208. 

9. Liang, X.-Z.; Xu, M.; Yuan, X.; Ling, T.; Choi, H.I.; Zhang, F.; Chen, L.; Liu, S.; Su, S.;  
Qiao, F.; et al. Regional climate-weather research and forecasting model. Bull. Amer. Meteor. 
Soc. 2012, 93, 1363–1380. 

10. Dai, Y.; Zeng, X.; Dickinson, R.E.; Baker, I.; Bonan, G.B.; Bosilovich, M.G.; Denning, A.S.; 
Dirmeyer, P.A.; Houser, P.R.; Niu, G.; et al. The common land model. Bull. Amer. Meteor. Soc. 
2003, 84, 1013–1023. 

11. Niu, G.-Y.; Yang, Z.-L. The versatile integrator of surface and atmosphere processes (VISA) Part II: 
Evaluation of three topography based runoff schemes. Global Planet. Change 2003, 38, 191–208. 

12. Niu, G.-Y.; Yang, Z.-L.; Dickinson, R.E.; Gulden, L.E. A simple TOPMODEL-based runoff 
parameterization (SIMTOP) for use in GCMs. J. Geophys. Res. 2005, 110, D21106. 

13. Liang, X.-Z.; Xu, M.; Zhu, J.; Kunkel, K.E.; Wang, J.X.L. Development of the Regional  
Climate-Weather Research and Forecasting Model (CWRF): Treatment of Topography; In 
Proceedings of the 2005 WRF/MM5 User’s Workshop, Boulder, CO, USA, 27–30 June 2005; p. 5. 



Remote Sens. 2013, 5 488 
 
14. Niu, G.-Y.; Yang, Z.-L. Effects of frozen soil on snowmelt runoff and soil water storage at a 

continental scale. J. Hydrometeorol. 2006, 7, 937–952. 
15. Qian, T.; Dai, A.; Trenberth, K.E.; Oleson, K.W. Simulation of global land surface conditions 

from 1948 to 2004: Part I: Forcing data and evaluations. J. Hydrometeorol. 2006, 7, 953–975. 
16. Choi, H.I.; Kumar, P.; Liang, X.-Z. Three-dimensional volume-averaged soil moisture transport 

model with a scalable parameterization of subgrid topographic variability. Water Resour. Res. 
2007, 43, W04414. 

17. Niu, G.-Y.; Yang, Z.-L.; Dickinson, R.E.; Gulden, L.E.; Su, H. Development of a simple 
groundwater model for use in climate models and evaluation with Gravity Recovery and Climate 
Experiment data. J. Geophys. Res. 2007, 112, D07103. 

18. Lawrence, P.J.; Chase, T.N. Representing a new MODIS consistent land surface in the 
Community Land Model (CLM3.0). J. Geophys. Res. 2007, 112, G01023.  

19. Lawrence, D.M.; Thornton, P.E.; Oleson, K.W.; Bonan, G.B. The partitioning of 
evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: 
Impacts on land-atmosphere interaction. J. Hydrometeorol. 2007, 8, 862–880. 

20. Oleson, K.W.; Niu, G.-Y.; Yang, Z.-L.; Lawrence, D.M.; Thornton, P.E.; Lawrence, P.J.;  
Stockli, R.; Dickinson, R.E.; Bonan, G.B.; Levis, S.; et al. Improvements to the community land 
model and their impact on the hydrological cycle. J. Geophys. Res.2008, 113, G01021. 

21. Choi, H.I.; Liang, X.-Z. Improved terrestrial hydrologic representation in mesoscale land surface 
models. J. Hydrometeorol. 2010, 11, 797–809. 

22. Kim, E.S.; Choi, H.I.; Kim, S. Implementation of a topographically controlled runoff scheme for 
land surface parameterizations in regional climate models. KSCE J. Civ. Eng. 2011, 15, 1309–1318. 

23. Liang, X.-Z.; Choi, H.L.; Kunkel, K.E.; Dai, Y.; Joseph, E.; Wang, J.X.L.; Kumar, P. Surface 
boundary conditions for mesoscale regional climate models. Earth Interact. 2005, 9, 1–28. 

24. Liang, X.-Z.; Xu, M.; Gao, W.; Kunkel, K.E.; Slusser, J.; Dai, Y.; Min, Q.; Houser, P.R.; Rodell, M.; 
Schaaf, C.B.; et al. Development of land surface albedo parameterization bases on Moderate 
Resolution Imaging Spectroradiometer (MODIS) data. J. Geophys. Res. 2005, 110, D11107. 

25. Gao, W.; Gao, Z.Q.; Choi, H.I.; Xu, M.; Slusser, J.R. Construction of surface boundary conditions 
for regional climate modeling in China by using the remote sensing data. Proc. SPIE 2005, 5884, 
331–335. 

26. Choi, H.I. Use of sensor imagery data for surface boundary conditions in regional climate 
modeling. Sensors 2011, 11, 6728–6742. 

27. Zeng, X.; Dickinson, R.E.; Walker, A.; Shaikh, M.; DeFries, R.S.; Qi, J. Derivation and 
evaluation of global 1-km fractional vegetation cover data for land modeling. J. Appl. Meteor. 
2000, 39, 826–839. 

28. Belward, A.S. The IGBP–DIS Global 1 km Land Cover Data Set (DISCover): Proposal and 
Implementation Plans; IGBP–DIS Working Paper No. 13; IGBP–DIS Office: Toulouse, France, 
1996; p. 61. 

29. Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J.W. 
Development of a global land cover characteristics database and IGBP DISCover from 1 km 
AVHRR data. Int. J. Remote Sens. 2000, 21, 1303–1330. 



Remote Sens. 2013, 5 489 
 
30. GLCC Database; US Geological Survey: Washington, DC, USA. Available online: 

http://edc2.usgs.gov/glcc/glcc.php (accessed on 28 June 2008). 
31. Brown, M.; Pinzón, J.; Didan, K.; Morisette, J.; Tucker C. Evaluation of the consistency of  

long-term NDVI time series derived from AVHRR, SPOT-vegetation, SeaWiFS, MODIS, and 
Landsat ETM+ sensors. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1787–1793. 

32. Swinnen, E.; Veroustraete, F. Extending the SPOT-VEGETATION NDVI time series  
(1998–2006) back in time with NOAA-AVHRR data (1985–1998) for Southern Africa. IEEE 
Trans. Geosci. Remote Sens. 2008, 46, 558–572. 

33. Free VEGETATION Products; VITO: Belgium. Available online: http://free.vgt.vito.be (accessed 
on 1 April 1998). 

34. Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR 
data for use in numerical weather prediction models. . Int. J. Remote Sens. 1998, 19, 1533–1543. 

35. MOD 15 LAI Data; US Geological Survey: Reston, VA, USA. Available online: 
https://lpdaac.usgs.gov/get_data (accessed on 10 November 2011). 

36. Colombo, R.; Bellingeri, D.; Fasolini, D.; Marino, C.M. Retrieval of leaf area index in different 
vegetation types using high resolution satellite data. Remote Sens. Environ. 2003, 86, 120–131. 

37. Lu, L.; Li, X.; Ma, M.G.; Che, T.; Huang, C.L.; Veroustraete, F.; Dong, Q.H.; Ceulemans, R.; 
Bogaert, J. Investigating Relationship between Landsat ETM+ Data and LAI in a Semiarid 
Grassland of Northwest China. In Proceedings of 2004 IEEE International Geoscience and 
Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; Volume 6,  
pp. 3622–3625. 

38. Van Wijk, M.T.; Williams, M. Optical instruments for measuring leaf area index in low 
vegetation: application in arctic ecosystems. Ecol. Appl. 2005, 15, 1462–1470. 

39. Steltzer, H.; Welker, J.M. Modeling the effect of photosynthetic vegetation properties on the 
NDVI-LAI relationship. Ecology 2006, 87, 2765–2772. 

40. Fan, L.; Gao, Y.; Brück, H.; Bernhofer, C. Investigating the relationship between NDVI and LAI 
in semiarid grassland in Inner Mongolia using in-situ measurements. Theor. Appl. Climatol. 2009, 
95, 151–156.  

41. Martinez, B.; Cassiraga, E.; Camacho, F.; Garcia-Haro, J. Geostatistics for mapping leaf area index 
over a cropland landscape: Efficiency sampling assessment. Remote Sens. 2010, 2, 2584–2606. 

42. Zeng, X.; Shaikh, M.; Dai, Y.; Dickinson, R.E.; Myneni, R. Coupling of the common land model 
to the NCAR community climate model. J. Climate 2002, 15, 1832–1854.  

43. Charney, J.G.; Quirk, W.J.; Chow, S.-H.; Kornfield, J. A comparative study of the effects of 
albedo change on drought in semi-arid regions, J. Atmos. Sci. 1977, 34, 1366- 1385. 

44. Dickinson, R.E. Land surface processes and climate-surface albedos and energy balance. Adv. 
Geophys. 1983, 25, 305–353. 

45. Mintz, Y. Chapter 6 The Global Climate. In The Sensitivity of Numerically Simulated Climates to 
Land-Surface Conditions; Houghton, J, Ed.; Cambridge University Press: New York, NY, USA, 
1984; pp. 79–105. 

  



Remote Sens. 2013, 5 490 
 
46. Sellers, P.J. Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sens. 1985, 6, 

1335–1372. 

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/3.0/). 


