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Abstract: The reflected radiance in topographically complex areas is severely affected by 

variations in topography; thus, topographic correction is considered a necessary  

pre-processing step when retrieving biophysical variables from these images. We assessed 

the performance of five topographic corrections: (i) C correction (C), (ii) Minnaert, (iii) Sun 

Canopy Sensor (SCS), (iv) SCS + C and (v) the Processing Scheme for Standardised 

Surface Reflectance (PSSSR) on the Landsat-5 Thematic Mapper (TM) reflectance in the 

context of prediction of Foliage Projective Cover (FPC) in hilly landscapes in north-eastern 

Australia. The performance of topographic corrections on the TM reflectance was assessed 

by (i) visual comparison and (ii) statistically comparing TM predicted FPC with ground 

measured FPC and LiDAR (Light Detection and Ranging)-derived FPC estimates. In the 

majority of cases, the PSSSR method performed best in terms of eliminating topographic 

effects, providing the best relationship and lowest residual error when comparing ground 

measured FPC and LiDAR FPC with TM predicted FPC. The Minnaert, C and SCS + C 

showed the poorest performance. Finally, the use of TM surface reflectance, which 

OPEN ACCESS



Remote Sens. 2013, 5 6768 

 

 

includes atmospheric correction and broad Bidirectional Reflectance Distribution Function 

(BRDF) effects, seemed to account for most topographic variation when predicting 

biophysical variables, such as FPC. 

Keywords: topographic correction; surface reflectance; FPC; Landsat-5 TM; LiDAR; 

BRDF; vegetation; field data; validation 

 

1. Introduction 

Operational mapping, monitoring of vegetation cover and vegetation cover changes are important 

applications of remotely sensed data. The need for vegetation information over large areas has 

prompted the investigation of the relationship between ground measurement of vegetation cover 

metrics and vegetation indices from spectral reflectance measured by remote sensors. The common 

approach has been to correlate a ground measured vegetation cover metric with vegetation indices or 

image reflectance. Variation of measured reflectance by sensors caused by factors other than variation 

in vegetation cover modifies these relationships and reduces the accuracy of derived vegetation cover 

estimates. Changes in atmospheric conditions alter the amount of light scattered and absorbed by the 

atmosphere. Furthermore, topography can substantially affect the radiometric properties of remotely 

sensed data; hence, the estimation of vegetation cover on complex topography creates unique 

challenges compared to vegetation cover on flat terrain. Thus, it would seem that topographic 

correction is a necessary step in radiometric correction of satellite imagery when used for  

vegetation mapping. 

Numerous investigators have developed and tested topographic correction methods for normalizing 

reflectance variations related to topography. These correction methods can be divided into:  

(a) the Lambertian method and (b) non-Lambertian methods. The cosine correction [1–3] is the most 

commonly used Lambertian method for correcting reflectance variations of satellite images. The  

non-Lambertian methods can further be divided into: (1) statistical-empirical [3]; and  

(2) semi-empirical: Minnaert and C [3]; (3) physically-based topographic correction methods: Sun 

Canopy Sensor (SCS) [4], a simple physical model [5], Processing Scheme for Standardised Surface 

Reflectance (PSSSR) [6]; and (4) modified physically-based correction: SCS + C [7]. These studies 

have shown that these methods yield results with varying degrees of success for the respective 

investigated image. A consistent topographic normalization method is required for local and regional 

vegetation mapping and monitoring using medium resolution satellite data, such as Landsat TM. Thus, 

in order to find the most suitable topographic correction method for vegetation mapping, an 

appropriate method for accuracy assessment was required. 

One approach is to validate the performance of topographic correction methods on surface 

reflectance and assume that a more precise measure of surface reflectance leads to a better prediction 

of biophysical variables. Accuracy assessment of corrected reflectance would typically require spectral 

information recorded by a spectroradiometer in the field during the time of a satellite overpass. The 

application of this method presents a number of difficulties due to strong anisotropic canopy 

reflectance, including a lack of an efficient method for accurate measurement of reflectance over forest 
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canopy, physical accessibility and costs of personnel and equipment. However, several feasible 

methods for accuracy assessments of topographically corrected reflectance have been reported in the 

literature. Measuring the reduction of variance in reflectance by land cover class is one of the most 

commonly used methods to assess the performance of a topographic correction method, e.g., [7–10]. 

The method assumes that if topographically-induced illumination of an image has been effectively 

corrected, the spectral variability in each land cover class would be reduced, hence providing greater 

distinction between land cover classes. However, topography not only modifies the illumination of 

terrain, but also substantially modifies the biophysical properties of vegetation (e.g., foliage cover) on 

complex topography [11–13]. Unless very detailed land cover mapping is available, the land cover 

classification approach generally assesses the accuracy of topographically-corrected reflectance 

without separating the effects of within-class variation in biophysical properties of vegetation, due to 

topography. Hence, it is difficult to evaluate the performance of different methods of  

topographic correction.  

Another approach is to directly assess the impact of different topographic correction methods on the 

accuracy of predicting biophysical variables. Thus, the impact of topographic correction methods may 

be assessed by statistical comparison of predictions of biophysical variables based on topographically 

corrected satellite reflectance, with independent measurements of the same biophysical variable. This 

approach enables the separation of subtle variation in apparent reflectance values due to vegetation 

structure and composition, which may be due to topographic position, and the affect that topography 

has on reflectance. The available literature regarding the evaluation of the correction accuracy of 

topographic correction methods using biophysical variables is very limited. A recent study [14] 

assessed the performance of five established topographic correction methods on Landsat TM 

reflectance by comparing ground measured Foliage Projective Cover data (a detail description of 

Foliage Projective Cover was given in next paragraph). However, the study was only based on site data 

that covered accessible areas and gentle slopes, which represented a very small fraction of the 

landscape. This raised the question of how to assess the performance of topographic correction 

methods on images containing steep and inaccessible slopes. Therefore, in order to better understand 

the impact of topographic correction methods on reflectance across the landscape, a detailed 

investigation was required. 

This study considered five commonly used topographic correction methods and assessed their 

accuracy by comparing the prediction accuracy of a biophysical variable, overstory Foliage Projective 

Cover (FPC), using Landsat-5 TM (TM) in a topographically complex landscape. The FPC is defined 

as the vertically projected percentage cover of photosynthetic foliage of all strata (see Figure 1) [13] 

and has a logarithmic relationship with the effective leaf area index (LAI) [15]. Overstory FPC is 

defined as the vertically projected percentage cover of photosynthetic foliage from tree and shrubs 

greater than 2-m height and was the definition of woody vegetation cover adopted by the Statewide 

Landcover and Tree Study (SLATS) [16]. FPC is a widely adopted metric of vegetation cover that is 

used in vegetation classification frameworks in Australia [17]. Ground measured FPC collected from 

different slopes and aspects across the landscape provides highly accurate information for the 

evaluation of the impact of topographic correction methods on the TM-based predictions of FPC. 

However, it is difficult to adequately represent all combinations of slope, aspect and FPC using site 

data alone, due to the time involved in recording field measurements and the difficulty in accessing 
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hilly terrain. Small footprint LiDAR has been shown to have potential for generating FPC estimates 

that are equivalent to ground measurements over a range of vegetation types in Australia [18,19]. 

Using LiDAR surrogates, it is possible to sample many more areas than with ground measured data, 

including steep or complex topography. Therefore, LiDAR-derived overstory FPC surrogates could be 

used to assess the impact of topographic correction on FPC predictions based on TM reflectance. 

Figure 1. Schematic of Foliage Projective Cover (FPC) calculation. 

 

2. Method 

2.1. Study Area 

Two distinct vegetation types representing two areas were selected for this study: the Richmond 

Range National Park (RRNP) (28.69°S, 152.72°E) and the Border Range National Park (BRNP) 

(28.36°S, 153.86°E). They represent the broad range of vegetation characteristics found throughout the 

north east of the state of New South Wales (NSW) (Figure 2). The topography varies from rolling hills 

to fairly rugged terrain, with elevation ranges in RRNP being approximately 150 m to 750 m, and the 

average slope is 27°. Elevation ranges of BRNP vary between 600 m to 1,100 m, with average slope 

values reaching up to 36°. BRNP is a tall, closed canopy subtropical rainforest with 70%–100% 

overstory FPC, and RRNP is an open canopy eucalypt-dominated forest with 30%–70% overstory 

FPC and mesic understorey [13]. Both National Parks are managed by the NSW Office of 

Environment and Heritage. 

2.2. Field Data Collection and Processing 

Information on existing vegetation types was gathered from a comprehensive survey of existing 

field data and CRAFTI data (Comprehensive Regional Assessment Aerial Photograph Interpretation). 

CRAFTI includes all refined broad floristic maps from north east NSW compiled by the Resource and 

Conservation Division in 1997. 

Field measurements were made to directly assess the performance of topographic correction 

methods and to calibrate the LiDAR FPC products. A random sampling approach was used to ensure 

that site measurements were acquired in a range of cover types. The Queensland Remote Sensing 

Centre (QRSC) methodology on ground cover measurement [18] was used to estimate ground FPC. 

The QRSC methodology requires three transects radiating in N-S, NE-SW and SE-NW directions, and 

the length of each transect is 100 m. In order to select sample plots in uniform slopes and aspects, a 

modification was made for the length of the transect of the QRSC methodology. In this study, FPC 
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was estimated from three 50-m point intercept transects laid in the same star pattern using a compass, 

and the area of each sampling plots was approximately 0.25 ha (Figure 3). A total of 50 sampling plots 

representing 25 plots for each vegetation type were used. As both study areas are subtropical, the 

vegetation foliage mass does not vary greatly across seasons [20]. The tree species composition is 

mixed, with no obvious domination by any one species. 

Figure 2. Location maps and Digital Elevation Models (DEMs) of Richmond Range 

National Park (RRNP) and Border Range National Park (BRNP). LiDAR, Light Detection 

and Ranging. 
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Figure 3. Orientation of transects used for FPC collection in the field [18]. 

 

At 1-m intervals along each transect, overstory (woody plants ≥ to 2-m height) and understorey 

(woody or shrubs < 2-m height) were recorded. The overstory plant intercepts were recorded using a 

GRS™ Densitometer with intercepts classified as green leaf, dead leaf, branch or sky by the observer, 

as described by Johansson [21]. The measurement of the understorey was made with a laser pointer 

aimed downwards, with intercepts classified as green leaf, dead leaf, bare, cryptogam or litter by the 

observer. The centre of each plot was located at the intersection of the three transects and was 

determined by using a GPS unit (GARMIN GPSMAP (R) 62stc). Five GPS points were recorded at 

the centre of each sampling plot over a 20-minute period and then averaged. The standard deviation of 

the five measurements varied from 5 m to 8 m in BRNP and from 3 m to 6 m in RRNP.  
Ground measurements were summarised to create the overstory FPC values, which were used in the 

LiDAR calibration and validation of topographically corrected TM data. Overstory FPC was calculated 

from site measurements as the percentage of intercepts or overstory or mid-stratum green leaf. Branch 

intercepts were removed from the total number of intercepts when calculating the overstory FPC 

component of the canopy. Topography and vegetation cover summaries are provided in Table 1. 

Table 1. Characteristics of topography and vegetation cover of field and LiDAR-based 

sample plots. Min, minimum; max, maximum. 

 Study Area Slope (degrees) Aspect (degrees) FPC (%) 

Min Max Mean Min Max Mean Min Max Mean 

Ground  

measured 

BRNP 11.5 29 22  5.2 353 191 63.4 98.2 89 

RRNP 3.3 26 20 0.8 344 180 57.3 77 71 

LiDAR 

BRNP 1.8 41.6 24 1.5 350 218 52 95.5 91.7 

RRNP 1.5 37.8 20.2 0.5 344 184 32.3 90.5 63.5 
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2.3. Remotely Sensed Data and Analysis 

2.3.1. Data Acquisition  

A cloud- and haze-free TM image (Level 1 G) (path/row-89/80) acquired on 15 October 2011, was 

obtained from the United States Geological Survey (USGS). The acquired TM image comprised a high 

sun elevation angle image (54.6°) with a sun azimuth angle of 61.2°. A Shuttle Radar Topography 

Mission (SRTM) Digital Elevation Model (DEM) with 30-m resolution [22,23] was acquired from 

Geosciences Australia. 

2.3.2. Image Pre-Processing 

The TM image was obtained from the USGS as rectified data in Universal Transverse Mercator 

(UTM) projection at 30-m resolution. The radiometric correction procedure used with TM images in 

this study was that described by Flood et al. [6] as part of their procedure for deriving standardised 

surface reflectance, also referred to as the PSSSR method in this paper. This procedure [6] contains 

multiple steps. A summary of the methodology for converting image digital values to standardised 

surface reflectance (ρstd) is as follows: 

• Converting digital numbers of images into top of atmospheric radiance 

• The apparent surface-leaving radiance (L) and horizontal-surface direct and diffuse  

bottom-of-atmosphere irradiances were computed using 6S 

• The direct irradiance is adjusted for the slope of the terrain, and the diffuse irradiance is 

adjusted to account for restricted sky view, due to slope and surrounding terrain, giving Edir and 

Edif, respectively  

• The behaviour of reflectance as a function of angular configuration is modelled using the Ross 

Thick-Li Sparse Reciprocal (RTLSR) Bidirectional Reflectance Distribution Function (BRDF) 

model of Schaaf et al. [24]. This model is driven with the average set of parameters suitable for 

the dominant landscapes of eastern Australia described in Table 7 of Flood et al. [6]. 

An estimate of the bi-directional reflectance for a standard angular configuration (nadir view and 

45° solar zenith) is then calculated as a function of the direct and diffuse illumination of the surface, 

the surface-leaving radiance, the ratio of the circumference to the diameter of a circle, (3.142) ߨ, and 

adjustment factors ߛ௦௧ௗ  and ߚ, calculated using the RTLSR BRDF model: ߩ௦௧ௗ = ܮ௦௧ௗߛ ௗ௜௥ܧߨ + ௗ௜௙ܧߚ  (1)

The full derivation of this method is given in Flood et al. [6]. 

2.3.3. Summary of Topographic Corrections Applied 

Five non-Lambertian topographic correction models that have been widely used in vegetation 

studies were assessed. These included C, Minnaert [3], SCS + C [7], SCS [4] and the recently 

developed PSSSR [6]. Both radiometrically and topographically corrected TM data using PSSSR were 

provided by the Joint Remote Sensing Research Program (JRSRP) (http://www.gpem.uq.edu.au/jrsrp). 
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All other methods were tested using TM images processed as PSSSR without topographic correction, 

which were also provided by the JRSRP. All the topographic correction methods were applied in both 

BRNP and RRNP study areas. 
If θo, ϕo, θn, ϕn denote solar zenith angle, solar azimuth angle, surface slope angle and surface aspect 

angles, respectively, the local incidence angle, cos (i), can be computed from the terrain slope and 

aspect and solar geometry using a DEM (see Equation 2): cos	( ݅) = cos ௢ߠ cos ௡ߠ + sin ௢ߠ sin ݏ݋௡ܿߠ (߮௢ − ߮௡) (2)

The solar illumination angle, cos (i), varies from −1 (minimum) to +1 (maximum). 

If L and Ln denote the surface radiance of inclined and horizontal terrain, respectively, then the 

cosine correction (Lambertian correction) for topographic correction is obtained by Equation 3: Ln = L(cos ௢/cosߠ (݅))  (3)

However, it is well known that this correction method overcorrects the images, mainly in areas of 

low incidence angle [3,25,26]; hence, the Lambertian method was not evaluated. 

The Minnaert correction (see Equation 4) [1,3] approach was developed to deal with  

non-Lambertian reflectance and is widely applied for topographic correction in vegetation studies. Ln = (L cos (௢ߠ /൫cos୩(݅) cos୩ ௢ߠ ൯ (4)

The Minnaert parameter, k, models the extent to which a surface has non-Lambertian reflectance 

properties. When k = 1, the Lambertian model applies. A lower k value indicates increasing anisotropic 

behaviour. The Minnaert k parameters were estimated by calculating the slope of the regression line 

for each band. 

The C correction consists of a modified cosine correction plus the parameter, c [3], which is derived 

from the linear relationship between the spectral data and the cosine of the solar incident angle, i, with 

the respective surface normal. Linear regression is used to estimate the intercept (b) and the gradient 

(m) using cos i as the independent variable and reflectance as the dependent variable. The c parameter 

is computed as b divided by m for each wavelength band, since the relationship between reflectance 

and cos i is wavelength-dependent [3]. The C correction, shown in Equation 5, introduces the c 

parameter to counterbalance and prevent the overcorrection of images. Ln = L ((cos ௢ߠ + ܿ)/(cos (݅) + ܿ)) (5)

In this study, the forest cover area of the image was stratified into different plant communities  

(i.e., eucalypt forest, grassland, rainforest), which are located on different slope and aspect ranges. 

Both field and CRAFTI data were employed to identify plant communities in both study areas. For 

each plant community, the k and c values were calculated for each band of the image. These 

parameters are summarized in Table 2. 

Another modification of cosine correction is called the SCS correction (see Equation 6), which was 

introduced by Gu and Gillespie [4] for all wavelengths. SCS is appropriate for topographic correction 

in forested areas, since it preserves Sun Canopy Sensor geometry [4]. This also assumes that radiation 

from the sunlit canopy is largely dependent on topography, due to the geotropic nature of tree growth. 

However, this method neglects the diffuse component of light, so it may lead to overcorrection in 

faintly illuminated areas [7]. 
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Ln = ܮ ((cos ௢ߠ cos cos)/(ߙ (݅))) (6)

where α is the terrain slope. 

Table 2. Estimated c and Minnaert k parameters for each vegetation type of both study areas. 

RRNP  

Vegetation type Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 

c k c k c k c k c k c k 
Grass 0.243 0.395 0.173 0.473 0.116 −0.403 0.641 0.343 0.495 0.524 0.175 0.629 

Eucalypts 3.92 0.044 2.09 0.063 2.10 −0.168 0.332 −0.333 0.768 0.201 1.85 0.104 

Rainforest 0.16 0.353 0.034 0.321 0.092 0.433 0.508 0.223 0.182 0.453 0.397 0.651 

BRNP  

Shrub 0.178 0.383 0.184 0.398 0.174 −0.384 0.326 0.339 0.054 0.456 0.08 0.536 

Rainforest 1.43 0.189 1.182 0.197 1.023 0.204 0.915 0.204 0.850 0.234 1.05 0.232 

The cause of overcorrection in the SCS correction is similar to that of the cosine correction.  

Soenen et al. [7] introduced SCS + C, as shown in Equation (7), adding the c parameter to the SCS 

correction to moderate the overcorrection in areas of low cos (i). This assumes that the improvement of 

SCS correction occurs in a similar way to how the C correction improves the cosine correction. ݊ܮ = cos))	ܮ ௢ߠ cos ߙ + ܿ)/(cos (݅) + ܿ)) (7)

The other method evaluated in this study was topographically corrected PSSSR. This was 

specifically chosen for evaluation because it has been used for vegetation mapping in Queensland and 
NSW. This method was developed to correct combined reflectance and illumination [6]. 

Radiometrically corrected PSSSR images were produced by the application of the same procedure 

described in the pre-processing section. It is similar to the pre-processing method described in  

Section 2.3.2, except that the calculation of incidence, existence and relative azimuth angles 

incorporated topographic slope and aspect angles derived from the DEM. These angles were used in 

the modelling of BRDF and diffuse irradiance used in the PSSSR approach methodology to minimise 

the topographically-induced illumination of images. A complete description of this methodology was 

given in Flood et al. [6]. 

2.4. LiDAR Data Acquisition 

LiDAR data was collected using a Leica ALS50-II LiDAR system at a flying height of 2,000 m in 

July 2010. Two transects in RRNP covering a length of approximately 7 km each were acquired, while 

BRNP was covered by an 8-km transect. The laser scanner was configured to record up to four returns 

per laser pulse. The laser pulse repetition frequency was 109 kHz, and the average off-nadir angle was 15°. 

The average point density was 1.3 points/m2, and the footprint diameter was 0.5 m. LiDAR data were 

documented as 0.07 m for vertical accuracy and 0.17 m for horizontal accuracy by the data provider. 

The data were classified into ground and non-ground points using proprietary software by the NSW 

Land and Property Information (LPI) and were delivered in LAS 1.2 file format. 
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Linking Field, LiDAR and Image Data 

LiDAR fractional cover is defined here as one minus the gap fraction probability, Pgap, at a zenith of 

zero. It was calculated from the proportion of first return counts by the following Equation (8): 1 − ௚ܲ௔௣ = ௩ܥ ௩(0)ܥ(ܼ) + ீܥ  (8)

where Cv (Z) is the number of first returns higher than Z m above the ground and CG is the number of 

first return points from ground level [27]. Z was set to 0.5 m for both study areas with the objective of 

reducing the impact of understorey and other ground objects. LiDAR fractional cover estimates were 

calculated by aggregating all points into 30-m spatial bins using Equation (8). Calibration of LiDAR 

fractional cover to predict overstory FPC (LiDAR FPC) was performed using ground measured 

overstory FPC estimates from both vegetation types. As both datasets were acquired using the same 

sensor and had a similar footprint diameter (~0.5 m) with off-nadir angle (15°), a common calibration 

of LiDAR fractional cover was conducted. It is important to note that other differences in the survey 

configurations (i.e., time and day of data acquisition) were not accounted for in the estimation of 

LiDAR fractional cover. LiDAR analysis was carried out using a LiDAR processing tool developed by 

Armston et al. [18]. 

Sampled LiDAR fractional cover data and ground measurements of overstory were used to 

calculate LiDAR FPC using a LiDAR calibrated equation. In this study, a calibration of LiDAR 

fractional cover to estimate overstory FPC was performed using the power function developed by 

Armston et al. [18]. The advantages of employing this equation to our study were: (i) the form of this 

relationship was developed with a larger dataset covering a greater range of FPC than in this study; and 

(ii) it is bounded between 0% and 100% FPC, whereas linear regression calibrations could produce 

values outside this range. The equation of the regression line is: 

LiDAR FPC = LiDAR fractional cover α (9)

For each field sampling plot, the reflectance for each band, as represented by the 2 × 2 pixels 

surrounding the site centre, was extracted from the topographically corrected images. Potential sample 

points for further LiDAR FPC-based accuracy assessment for both study areas were randomly selected 

using Hawth’s Analysis Tools (version 3.27) in the ArcGIS™ Spatial Analyst Extension: ESRI™ Inc. 

Overall, there were 170 sample sites representing different slopes and aspects of the terrain and various 

tree species with a different density of foliage cover randomly selected from both vegetation types. 

Values of TM bands 2, 3, 4, 5 and 7 were extracted for the 2 × 2 pixel mean surrounding the locations 

where the LiDAR were sampled. The 2 × 2 block average provided the best match to 2 × 2 LiDAR 

bins of 30-m spatial resolution and also minimized the effects of geometric misregistration between the 

imagery and LiDAR data. As the sites were generally located in mature vegetation, it was assumed that 

any increase in FPC between the date of site measurement and the image acquisition date were less 

than the measurement error. The Multiple Linear Regression model for predicting overstory FPC 

developed by the QRSC [18] was used to predict Landsat TM FPC from TM images. This is an 

automated FPC prediction method that has been developed using an extensive set of over 2,000 field 

observations from different plant communities in Queensland. 
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Figure 4. Flowchart of the applied methodology for estimation of Landsat TM FPC and 

LiDAR FPC for the accuracy assessment. SRTM, Shuttle Radar Topography Mission; SCS, 

Sun Canopy Sensor; PSSSR, Processing Scheme for Standardised Surface Reflectance. 

 

To achieve better representation through the FPC range, computed FPC from all sample plots from 

both study areas were pooled and sorted into sets of plots by FPC classes. Subsequently, an even 

amount of sample plots were taken from each FPC class (i.e., 30–51, 51–71, 71–91, 91%–100%) 

together with 112 plots (28 plots per class by four class) without bias using the random number 

generation function of Microsoft Excel. 
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2.5. Accuracy Assessment 

The performance of topographic normalization methods on TM reflectance was assessed by visual 

analysis and statistically comparing topographically corrected and non-topographically corrected 

Landsat TM FPC with (i) ground measured overstory FPC and (ii) LiDAR FPC, using simple linear 

regression. Two regression diagnostics, including coefficient of determination (R2) and root mean 

squared error (RMSE), were used to quantitatively assess the accuracy of topographically corrected 

Landsat TM FPC. Repeated measures analysis of variance (ANOVA) was further used to compare the 

mean residuals for observed FPC (i.e., ground measured overstory FPC and LiDAR FPC) and Landsat 

TM FPC based on each topographic correction model. The repeated measures variable was 

‘topographic correction methods’. The between group factor was ‘vegetation types’ means, and 

standard errors (SE) for residuals were used to evaluate the effect of topographic correction and the 

vegetation types against the predicted FPC. The mean residuals of FPC should have been 

approximated to zero by minimising the variation in measured radiance caused by the different solar 

illumination on both vegetation types. Figure 4 shows a summary of the complete methodology.  

3. Results 

3.1. Visual Analysis 

Figure 5 shows the false colour composite Landsat TM bands 5, 4 and 2 as red, green and blue for 

BRNP and RRNP to highlight the difference between non-topographically corrected and 

topographically corrected images. Additionally, Landsat TM FPC based on the same set of images in 

the same study areas is shown as greyscale images, with bright for higher and dark for lower FPC 

values. The topographic variability in three-dimensional relief effects with dark shades was prominent 

in both the non-topographically corrected BRNP and RRNP images. The comparison between the  

non-topographic corrected and corrected images showed all topographic correction methods minimised 

different degrees of the topographic effect by minimizing the three-dimensional impressions in the 

topographically normalised images. However, the PSSSR and SCS corrections appeared to show a 

greater decrease in the three-dimensional relief effect, and the scenes look flat in the closed canopy of 

BRNP. In contrast, the three-dimensional impressions and dark shade areas were still evident, 

particularly in Minnaert, SCS + C and C corrections applied to BRNP scenes. Additionally, the 

topographic variability (i.e., three-dimensional relief effects) remained slightly visible in all 

topographic correction methods applied to RRNP scenes, when compared to the non-topographically 

corrected scene. 

Bright and dark areas on the greyscale images of Figure 5 correspond to different densities of FPC, 

and the influence of topographic effects in these images is much less than with the reflectance images. 

The prominent bright areas on the greyscale images were markedly visible from both study areas in 

steep slopes and gully areas, where dark shady areas were prominent in the non-topographically 

corrected images. On very steep slopes, the PSSSR method also seemed to overcorrect reflectance; 

however, the FPC greyscale image seemed less affected than the other images that had correction 

methods applied. This comparison showed that none of the topographic normalization methods 

resulted in better visual renditions in terms of the removal of three-dimensional relief effects. 
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Figure 5. False colour image (band 5, 4 and 2 shown as red, green and blue, respectively) 

extract of BRNP and RRNP showing non-topographically corrected and topographically 

corrected images and greyscale images showing computed FPC (bright and dark represent 

higher and lower FPC values). 
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3.2. Linking LiDAR Data with Ground Measured Overstory FPC Estimates 

For this study, the LiDAR fractional cover was utilised to estimate FPC for assessment of the 

prediction accuracy of different topographic corrections applied to TM data. Figure 6 shows the  

non-linear relationship (α = 0.293) between LiDAR fractional cover and ground measured overstory 

FPC. This non-linear relationship is used to adjust for systematic overestimation of LiDAR FPC by 

LiDAR fractional cover. The overestimation is most likely due to laser pulses being blind to the small 

holes in clumps of leaves (especially in the closed canopy condition) that would be detected using the 

point intercept field technique [18]. 

Figure 6. The relationship between ground measured overstory FPC and LiDAR fractional 

cover showing 95% confidence intervals. 

 

3.3. Overall Comparison of Landsat TM FPC with Ground Measured Overstory FPC and LiDAR FPC 

3.3.1. Comparison with Ground Measured Overstory FPC 

Note that the following abbreviations are used in the results and the discussion. 

• Non-topographically normalised TM predicted FPC (non-normalised FPC) 

• PSSSR corrected TM predicted FPC (PSSSR FPC) 

• SCS corrected TM predicted FPC (SCS FPC) 

• Minnaert corrected TM predicted FPC (Minnaert FPC) 

• C corrected TM predicted FPC (C FPC) 

• SCS + C corrected TM predicted FPC ( SCS + C FPC) 

Figure 7 illustrates the relationship between ground measured overstory FPC and Landsat TM FPC, 

before and after the topographically corrections. When the methods were compared by simple linear 

regression, the R2 ranged between 0.57 and 0.66 and the RMSE varied from eight to 12.5%. The 

PSSSR FPC showed the highest correlation (R2 = 0.66), with ground measured overstory FPC with the 
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lowest RMSE (8%) compared to the other Landsat TM FPC. The SCS corrected TM showed similar 

results to PSSSR corrected TM in terms of predicting FPC by depicting a slightly lower relationship 

(R2 = 0.62) between ground measured FPC estimates and RMSE that was higher (8.5%) than the 

PSSSR RMSE. SCS + C FPC and Minnaert FPC had lower correlations with ground measured FPC 

compared to the SCS and PSSSR FPC, and the respective RMSE for SCS + C FPC and Minnaert FPC 

were greater compared to the RMSE values obtained by SCS FPC. The results of this comparison 

showed that the C FPC had the lowest R2 and the highest RMSE when compared to all methods and 

non-topographically corrected FPC. 

Figure 7. The relationship between ground measured overstory FPC and Landsat TM FPC 

showing regression and 1:1 lines. RMSE, root mean squared error. 
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Figure 8. The relationship between LiDAR FPC and Landsat TM FPC showing regression 

and 1:1 lines. 
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3.3.2. Comparison with LiDAR FPC 

Figure 8 shows the regression comparison results of LiDAR FPC against topographically corrected 

and non-topographically corrected TM estimated FPC. The squared correlation between LiDAR FPC 

and PSSSR FPC was 0.76 (R2). PSSSR FPC reported relatively low RMSE (7.6%), which was the 

lowest RMSE of all other correction-applied FPC predictions. The second best correction applied FPC 

predictions were obtained from SCS FPC (R2 = 0.71, RMSE = 8.3%), but they were inferior to those 

based on the non-topographically normalised FPC (R2 = 0.72, RMSE = 8.02%). In contrast, the C 
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correction exhibited the poorest results of all corrections that were evaluated. The R2 for C FPC was 

0.66, and the RMSE of the prediction was 9.4%. 

3.4. Comparison of Landsat TM FPC between Vegetation Types 

On the basis of the results of the repeated measures ANOVA test (see Table 3), the ground mean 

FPC residual (ground measured overstory FPC-Landsat TM FPC) demonstrated significant differences 

between topographic correction methods (F = 46.03, p < 0.000) and the interaction of topographic 

correction methods and vegetation types (F = 9.732, p = 0.034). Higher mean ground FPC residuals 

were noted for C FPC (12.12) for the open canopy vegetation. The mean ground FPC residuals for 

PSSSR FPC were the lowest (6.47), and the respective SE was 1.27 for the same vegetation conditions 

(Table 4). In the closed canopy vegetation type, the lowest mean ground FPC residuals were recorded 

for the non-normalised FPC (4.10), and SE was 1.38. The second lowest mean ground FPC residuals 

(4.24) and the lowest SE (1.04) were observed for the PSSSR FPC. The mean ground FPC residuals of 

the Minnaert FPC showed 7.59; this was the largest mean ground FPC residual observed for BRNP, 

and the corresponding SE was 1.35. The second- and third-largest mean ground FPC residuals were 

reported by C FPC and SCS + C FPC, respectively. 

Table 3. Summary table of a repeated measures ANOVA for mean residuals of FPC 

(ground measured overstory FPC/LiDAR FPC, both topographically and non-topographically 

corrected Landsat TM FPC). df- degrees of freedom. 

Ground Measured Overstory FPC-Landsat TM FPC df F p 
Topographic correction methods  4 46.03 0.000 

Vegetation types 1 2.84 0.099 

Topographic correction methods × vegetation types 4 9.732 0.034 

LiDAR FPC- Landsat TM FPC    

Topographic correction methods 4 76.65 0.000 

Vegetation types 1 41.32 0.000 

Topographic correction methods × vegetation types 4 16.24 0.000 

The repeated measures ANOVA of mean LiDAR FPC residuals (LiDAR FPC-Landsat TM FPC) 

showed significant differences between topographic correction methods (F = 76.65, p < 0.000), 

vegetation types (F = 41.32, p < 0.000) and their interaction (F = 16.24, p < 0.000) (Table 3). The 

highest mean LiDAR FPC residuals were observed in the closed canopy vegetation compared to the 

open canopy vegetation (Table 4). The lowest mean LiDAR FPC residuals and lowest SE for the 

closed canopy vegetation type were obtained by the PSSSR FPC (8.80), SE (1.63). This is followed in 

rank order by the non-normalised FPC, Minnaert FPC and SCS + C FPC (Table 4). The SCS FPC 

(16.35) and C FPC (16.53) produced the highest mean LiDAR FPC residuals. Nevertheless, the SE for 

mean LiDAR FPC residual of SCS FPC was 1.81, and this was lower than SE reported for C FPC, 

SCS + CFPC, Minnaert FPC and non-normalised FPC. In contrast, the lower mean LiDAR FPC 

residuals for all topographically normalized and non-topographically normalised TM FPC were 

observed in the open canopy vegetation. The mean LiDAR FPC residuals for PSSSR FPC were the 

lowest (3.99), and SE was also the lowest (1.05). The estimated mean residuals for C FPC was 
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significantly higher (8.43) and produced the highest SE (1.10), which was greater compared to the 

non-topographically corrected TM predictions for the open canopy vegetation. 

Table 4. Summary of mean FPC residuals (SE in parenthesises) for topographic 

corrections and vegetation types. 

  Ground Measured Overstory  

FPC-Landsat TM FPC 
LiDAR FPC-Landsat TM FPC 

Closed Open  Closed Open  

Non-topographic 4.098 (1.38) 7.093(1.380) 11.096 (2.002) 4.205 (1.173)  

PSSSR 4.243 (1.048) 6.473 (1.268)  8.802 (1.633) 3.986 (1.051) 

SCS + C 7.176 (1.358) 10.36 (1.358)  15.714 (2.021) 6.011 (1.101) 

Minnaert 7.587 (1.345) 10.98 (1.345) 14.134 (2.065) 6.099 (1.171) 

SCS  5.014 (1.346) 8.566 (1.346) 16.354 (1.812) 7.323 (1.110) 

C 7.492 (1.389) 12.118 (1.389) 16.525 (2.132) 8.425 (1.102) 

4. Discussion 

4.1. Overall Accuracy of FPC Prediction of Topographically Corrected Images 

This study sought to evaluate the correction accuracy of five different topographic correction 

methods applied to TM reflectance by visual comparison of images and by statistically comparing the 

prediction accuracy of Landsat TM FPC with ground measured overstory FPC and LiDAR FPC. The 

results of the visual comparison test of topographically corrected images showed that topographic 

variability was minimised by different degrees for all topographic correction methods in both study 

areas (Figure 5). The visual analysis revealed that topographic influence on TM reflectance was most 

effectively minimised by the application of PSSSR and SCS. The improvement was indicated by lower 

variability in TM reflectance in areas with similar vegetation types and a reduction in the three 

dimensional relief effects in the images. However, the visual comparison of FPC images based on 

topographically corrected images was less conclusive. Most of the topographic effects visible in 

reflectance images were not present in the associated FPC images, including the FPC images that were 

based on non-topographically corrected reflectance. 

The results of statistical comparison of FPC prediction accuracy showed that PSSSR correction 

performed better than all other correction methods applied to TM images. The PSSSR corrected 

images achieved the best results by correcting topographically-induced illumination and preserving the 

biological properties of the reflectance of vegetation. Furthermore, statistical comparisons of LiDAR 

FPC with PSSSR FPC revealed that the PSSSR corrected TM seemed to achieve the most accurate 

results for prediction of FPC and reduced the overcorrection when large incidence angles due to steep 

slopes were encountered. This is possibly because the PSSSR method was the only method to 

explicitly model diffuse irradiance as a function of incidence, existence and relative azimuth angles. It 

is also the only model that used the same BRDF correction model for calculation of both the 

standardized surface reflectance and the topographic correction [6]. 

The SCS corrected TM image yielded satisfactory results for estimation of FPC by minimising 

topographic variation, although the accuracy of the prediction of FPC was not as high as with the 
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PSSSR method. Reflectance from forest canopies includes a large amount of diffuse sky radiation; the 

radiation from multiple sources in areas of shade and shadows cast by large tree crowns and adjacent 

hills. Due to the lack of correction of diffuse sky radiation and multiple reflections by the SCS [7,10], 

it is possible that the topographic effect has not been effectively removed. While the SCS method 

performed better than the C, Minnaert and SCS + C methods, it was not always better than the  

non-topographically corrected imagery. The results also showed that the Landsat TM standardised 

surface reflectance product without topographic correction was almost as effective as using an 

additional topographic correction when predicting FPC. This is consistent with the results from  

Flood et al. [6], who showed that NDVI images based on the standardized surface reflectance without 

topographic correction performed nearly as well as the additional topographic correction, in reducing 

topographic effects in NDVI. The similar result from this study with Landsat TM FPC suggests that 

the normalized ratio used in NDVI or the linear combination of transformed reflectance bands used in 

TM FPC minimise most of the topographic effects. 

In contrast to the PSSSR and SCS methods, there were no improvements in the prediction accuracy 

of FPC after applying C, Minnaert and SCS + C based on the comparison of both ground measured 

and LiDAR FPC for both study areas. The results for comparison of ground measured overstory FPC 

with C-, Minnaert- and SCS + C-based topographic normalised TM images prediction of FPC showed 

higher R2 values compared to the non-normalised FPC; however, the corresponding RMSE values 

were always greater than the RMSE of non-normalised FPC. The comparison of ground measured 

overstory FPC and LiDAR FPC with the C FPC using simple linear regression clearly showed lower 

correlations and larger RMSE when compared to the other topographically corrected and  

non-topographically corrected TM. Instead of reducing the effect of topography on reflectance, the C 

correction seemed to have increased it (Figures 7 and 8) compared to the topographically  

non-normalized TM. Although several studies have adopted C correction and obtained promising 

results [9,26], this study noted that the C correction has performed poorly in the correction of the 

reflectance of TM. This is possibly because the C correction method assumes a Lambertian surface. 

The comparison for FPC estimates of SCS + C and Minnaert corrected TM data with ground and 

LiDAR FPC appear to provide no improvement. The c parameter was introduced by Soenen et al. [7] 

to the SCS method to moderate the overcorrection in images where pixels were faintly illuminated. 

However, the findings of this study demonstrated that despite the c parameter being added to the SCS, 

it did not improve predictions of FPC. The Minnaert corrected TM showed similar results to SCS + C 

corrected TM in terms of the prediction of FPC. The findings were consistent with [9,28], who 

demonstrated that Minnaert corrected Landsat data produce unsatisfactory results for vegetation 

classification. This finding suggests that Minnaert-, C- and SCS + C-based topographic corrections 

applied to satellite data are not suitable for quantitative biophysical parameters retrieval and forest 

mapping operations over landscape scale. 

The variation in vegetation structure and composition may have greater influence on the calculation 

of empirical parameters, which are used in Minnaert-, C- and SCS + C-based topographic corrections. 

The empirical parameters (i.e., k, c) are derived each TM band from the relationship between the 

terrain reflectance and the illumination angle of the image. As the Minnaert method is  

object-dependent [29], accurate calculation of the Minnaert k parameter is a prerequisite before the 

application of the correction. For this study, k and c empirical parameters were derived for each plant 
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community, including grassland, rainforest and eucalyptus forest, etc., for each study area. However, 

in most cases, there was considerable variation in the c parameters by vegetation type. The estimated 

Minnaert k parameter of the open canopy RRNP sites produced negative values for this study. This is 

probably due to the sparse canopy with mesic understory (Lantana camara shrubs and tall grass 

species), particularly in RRNP and some areas of BRNP. Detailed delineation of TM pixels 

representing the homogeneous plant community type was impractical and may have been responsible 

for weak (but significant) correlations between the spectral values and illumination angles in some 

instances. These issues may have influenced the accuracy of c and k and, ultimately, the overall 

performance for the removal of topographic effects by Minnaert-, C- and SCS + C-based topographic 

corrections. This issue may have implications for the accurate derivation of empirical parameters, 

particularly for open canopy forested areas, such as woodlands or savannah, etc. These findings are 

consistent with Gao and Zhang [28], who reported that the Minnaert, C correction method and  

SCS + C were limited in their application for forested areas, as accurate determination of parameters is 

infeasible in extensive landscapes. 

4.2. Comparison of Landsat TM FPC between Vegetation Types 

The ground mean FPC residual for topographically and non-topographically corrected Landsat TM 

FPC demonstrated no significant differences between the vegetation types. The open canopy 

vegetation type showed the greatest mean residual values that were observed for both the 

topographically and non-topographically corrected Landsat TM FPC (see Table 4). In contrast, the 

mean LiDAR FPC residuals for topographically and non-topographically corrected Landsat TM FPC 

revealed significant differences by vegetation types. The best overall results were achieved with the 

PSSSR FPC estimations, with relatively lower mean residuals than the all other topographic correction 

methods. No other topographic correction method produced Landsat TM FPC, which had lower mean 

residuals in both the open and closed canopy forest sites. 

Higher mean LiDAR FPC residuals were observed for both topographically corrected and  

non-topographically corrected TM for the closed canopy data. The magnitude of these residual were 

considerably greater than the ground mean FPC residual observed in this study. In the study, it was 

noted that LiDAR fractional cover values were always greater (>90%) in the closed canopy data 

compared with values for the open canopy data. This occurs as the laser pulses of a small footprint 

discrete LiDAR system are incapable of discriminating small holes in clumps of leaves in the closed 

canopy (70%–100% FPC), subtropical forest. Consequently, the laser pulses are blind to the small 

holes in clumps of leaves detected using the point intercept field technique. These may have caused the 

overestimation of LiDAR FPC in both vegetation types and, particularly, the closed canopy vegetation. 

5. Conclusions 

In this article, five commonly used topographic correction methods were evaluated by comparing 

their impact on the accuracy of the prediction of Landsat TM FPC over a topographically complex 

landscape. The results for the prediction of FPC indicated the Processing Scheme for Standardised 

Surface Reflectance (PSSSR) method yields better results than the other evaluated topographic 

correction methods. The standardised surface reflectance used in this analysis, which included 
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atmospheric correction and broad Bidirectional Reflectance Distribution Function (BRDF) effects, 

accounts for most topographic variation when predicting FPC. Minnaert, C and SCS + C showed the 

poorest performance in both study areas. This study highlighted that LiDAR-derived FPC estimates 

can be used as a proxy for field measurements for quantitative relative assessment of the accuracy of 

topographic correction images. Future investigations will be performed to better understand the 

corrections of the topographic effects by PSSSR with different structural types of plant communities 

(i.e., heath lands, shrub lands and grasslands) located on different slopes and aspects and with different 

densities of ground cover. 
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