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Abstract: Past changes in gross primary productivity (GPP) were assessed using historical 

satellite observations based on the Normalized Difference Vegetation Index (NDVI) from 

the Advanced Very High Resolution Radiometer (AVHRR) onboard the National Oceanic 

and Atmospheric Administration (NOAA) satellite series and four terrestrial biosphere 

models to identify the trends and driving mechanisms related to GPP and NDVI in Asia. A 

satellite-based time-series data analysis showed that approximately 40% of the area has 

experienced a significant increase in the NDVI, while only a few areas have experienced a 

OPEN ACCESS



Remote Sens. 2013, 5 6044 

 

 

significant decreasing trend over the last 30 years. The increases in the NDVI are dominant 

in the sub-continental regions of Siberia, East Asia, and India. Simulations using the 

terrestrial biosphere models also showed significant increases in GPP, similar to the results 

for the NDVI, in boreal and temperate regions. A modeled sensitivity analysis showed that 

the increases in GPP are explained by increased temperature and precipitation in Siberia. 

Precipitation, solar radiation and CO2 fertilization are important factors in the tropical 

regions. However, the relative contributions of each factor to GPP changes are different 

among the models. 

Keywords: terrestrial carbon cycle; NOAA AVHRR; Asia; terrestrial biosphere model 

 

1. Introduction 

Asia, which is characterized by a rapidly growing economy, human-induced disturbances, and 

climate changes, is an important region for understanding global terrestrial carbon cycles [1–3]. 

Siberian regions have experienced a 1.0–2.0 °C increase in temperature from 1961 to 2004 [4]. China 

and India have recently experienced rapid economic growth and a large increase in CO2 emissions. For 

example, CO2 emissions in China and India accounted for 28% and 7%, respectively, of the global 

CO2 emissions in 2011 [5]. In addition, many regions, for example, China, Southeast Asia, and South 

Asia, have experienced land-use changes, including changes in the use of cropland and forest areas [6,7].  

Terrestrial gross primary productivity (GPP) is the largest atmosphere-land carbon flux, driving 

terrestrial carbon cycles as a primary input for vegetation carbon. An accurate estimate of the 

magnitude of temporal GPP changes is required to quantify and predict terrestrial carbon budgets. 

Numerous approaches have been used to analyze GPP at both global and regional scales, which 

include analyzing satellite-based remote sensing data as an indicator of GPP [8–11], using empirical 

upscaling with machine learning techniques [12–15], and assembling diagnostic [16–18] and 

prognostic [19,20] terrestrial biosphere model simulations.  

These approaches have also been used to analyze spatio-temporal GPP variations in Asia. 

For example, numerous studies have analyzed satellite-based time-series data, including data that from 

the Advanced Very High Resolution Radiometer (AVHRR) onboard the National Oceanic and 

Atmospheric Administration (NOAA) satellite series, to infer GPP variations in relation to 

environmental changes. Analyses of NOAA AVHRR data have revealed that vegetation productivity is 

increasing and the growing season has lengthened in boreal and Arctic regions [8,9,21]. In East Asia, 

including China, several studies have revealed that the vegetation greenness has increased over the last 

20–30 years [22–26]. In Southeast Asia, interannual variations in vegetation indices were found to be 

largely determined by the El Niño Southern Oscillation [27]. Furthermore, vegetation greenness was 

found to have increased in India because irrigated areas and fertilization use increased [28]. However, 

this increase in vegetation greenness has stagnated in recent years [29]. Terrestrial biosphere models 

and empirical models have also been used to analyze GPP variations in many regions in Asia. 

Empirically upscaled estimates of GPP in East Asia revealed a significant reduction in the summer of 
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2003 in response to meteorological anomalies [30]. Increased GPP has also been identified using 

diagnostic terrestrial biosphere models in China [31] and India [28]. 

Further analyses could utilize a combined application of satellite-based observations and terrestrial 

biosphere models. Moreover, satellite-based observation data can be used for model evaluation. Once 

the model output successfully reproduces the satellite-based observations, mechanisms from the 

observed results can be analyzed with process-based models using sensitivity experiments. Recent 

vegetation greening trends in northern high-latitude regions have been analyzed using the  

satellite-based leaf area index (LAI) and a terrestrial biosphere model; increases in temperature were 

related to the vegetation greening trend [32]. The combined use of remote sensing data and terrestrial 

biosphere models have helped explain the observed changes in the Normalized Difference Vegetation 

Index (NDVI) in the Amazon from 1984 to 1999. In this region, increased solar radiation has been 

found to enhance the terrestrial net primary productivity [33]. Vegetation growth in the Northern 

Hemisphere (>25°N) has been explained by a process-based terrestrial biosphere model and has been 

found to have resulted from changes in atmospheric CO2, temperature, and precipitation [34]. An 

application of the above approaches to Asian regions could elucidate the changes in vegetation 

greening trends in Asia in a process-based manner. 

Figure 1. (a) Land cover in the study regions. MODIS land-cover data (MCD12Q1) [35] 

were used. (b) The sub-continental division used in this study was based on the Greenhouse 

gases Observing Satellite (GOSAT) Level 4A product [36]. Abbreviations of the ecosystem 

types are evergreen needleleaf forest (ENF), evergreen broadleaf forest (EBF), deciduous 

needleleaf forest (DNF), deciduous broadleaf forest (DBF), and mixed forest (MF). 

 

In this study, we used both satellite-based time-series observations and four process-based 

terrestrial biosphere models to identify and understand changes in terrestrial GPP in Asia (the regions 

are defined in Figure 1). Using the updated satellite-based vegetation index products, that is, NOAA 

AVHRR NDVI3g [37,38], we first quantified changes in the NDVI from 1982 to 2011 in Asia and 



Remote Sens. 2013, 5 6046 

 

 

identified the regions with increasing or decreasing trends in vegetation activity. Then, we applied four 

different terrestrial biosphere models to simulate recent changes in terrestrial GPP; we verified these 

results with satellite-based NDVI variations as a proxy of terrestrial GPP at sub-continental scales. 

Finally, using the model simulation results, we determined the causes of the simulated trends in 

terrestrial GPP. 

2. Materials and Methods 

2.1. Study Region  

We analyzed a region that covers a wide range of vegetation and climate conditions in Asia  

(Figure 1a), including a temperature gradient from tropical forest regions in Southeast Asia (annual 

average temperature > 25 °C) to tundra regions in Siberia (annual average temperature < −10 °C) as 

well as a precipitation gradient from coastal and tropical regions (>2,000 mm·year−1) to semiarid or 

arid regions in Central Asia (<200 mm·year−1). The vegetation cover also exhibits large differences 

with evergreen tropical forests in Southeast Asia; temperate forests in East Asia; boreal forests in 

Siberia; croplands in China, India and Russia; grasslands in central Asia; and open shrublands (tundra) 

in northern Siberia. 

For a sub-continental scale analysis, we divided the region into nine sub-regions based on the 

definition used in the atmospheric CO2 inversion analysis (Figure 1b). We adopted the sub-continental 

division of the Greenhouse Gases Observing Satellite (GOSAT) Level 4A products (i.e., CO2 flux for 

each of the 64 global regions) [36]. The areal definition is based on the continental-scale vegetation 

type. Therefore, this sub-region definition is suitable for assessing the large-scale terrestrial carbon 

cycle changes in specific ecosystems at the sub-continental scale. 

2.2. Data 

2.2.1. Satellite-Based Time-Series Data: NDVI, LAI, and FPAR 

The latest version of the NDVI dataset generated from the AVHRR sensor onboard a series of 

NOAA satellites (Global Inventory Modeling and Mapping Studies (GIMMS) NDVI3g) from January 

1982 to December 2011 was used in this study [37,38]. The NDVI data were used as a proxy for 

terrestrial GPP [39] to compare with the model outputs. The datasets were provided with a spatial 

resolution of 8 km × 8 km and a 15-day temporal resolution over the period from July 1981 to 

December 2011. To create spatially and temporally consistent data with the terrestrial biosphere model 

simulations, we averaged the GIMMS NDVI3g data to create quarter-degree spatial resolution and 

monthly temporal resolution data. 

The third generation data of the LAI and Fraction of Photosynthetically Active Radiation absorbed by 

a canopy (FPAR) datasets (LAI3g and FPAR3g) [40] were used as inputs for the BEAMS model [18,41]. 

These datasets are integrated products of GIMMS NDVI3g data [37,38] and Moderate Resolution 

Imaging Spectroradiometer (MODIS) LAI/FPAR products [42] that include updated algorithms for 

data screening [43]. In generating the LAI3g and FPAR3g data, a set of neural networks were first 

trained on best-quality and post-processed MODIS LAI and FPAR products as well as GIMMS 



Remote Sens. 2013, 5 6047 

 

 

NDVI3g data for the overlapping period from 2000 to 2009. The trained neural networks were then 

used to produce the LAI3g and FPAR3g datasets using GIMMS NDVI3g data for the remaining 

period. The original data were provided at 15-day temporal intervals and 8-km spatial resolutions. We 

converted these data into monthly temporal resolution and quarter-degree spatial resolution by 

averaging that data using the same procedure used for the NDVI dataset. 

2.2.2. Climate Time-Series Data 

Daily climate data were generated from 1901 to 2011 with quarter-degree spatial resolution by 

merging reanalysis-based products and observation-based products based on a similar approach used 

with the CRUNCEP data [44]. For example, daily air temperature data from 1901 to 2011 were 

generated based on the Climate Research Unit Time Series 3.2 (CRU TS3.2) data (available period: 

1901–2011) [45] and National Centers for Environmental Prediction (NCEP)/the National Center for 

Atmospheric Research (NCAR) reanalysis (NCEP/NCAR reanalysis) data (available period: 1948 to 

present) [46]. The daily variations in air temperature were based on NCEP/NCAR reanalysis data; the 

monthly averages were adjusted to fit the CRU TS3.2 data by adding an offset. Because NCEP/NCAR 

reanalysis data are not available for the 1901–1947 period, the reanalysis data for 1948 were used 

instead. Similarly, precipitation data were generated by merging daily NCEP/NCAR reanalysis data 

and CRU TS3.2 monthly precipitation data [45] by multiplying by an adjustment factor. In addition, 

we found that the frequency of rainy days in the NCEP/NCAR reanalysis data was too high compared 

with the CRU TS3.2 wet-day frequency data. Therefore, the frequency of wet days was also adjusted 

using the CRU TS3.2 wet-day frequency data by redistributing the rain. Incoming surface shortwave 

radiation data were generated by merging daily shortwave radiation created by the Mountain Climate 

Simulator (MTCLIM) [47] (available period: 1901–2011) and monthly averages of Japan Aerospace 

Exploration Agency (JAXA) NASA/MODIS global 5-km irradiance (JAXA radiation) data [30,48] 

(available period: 2000–2010) by multiplying by an adjustment factor. The MTCLIM-based shortwave 

radiation relies on the assumption that variations in diurnal temperature ranges are related to incoming 

solar radiation. Because JAXA radiation data are not available for 1901–1999 and 2011, the average of 

the data for 2000–2010 was used instead. Daily vapor pressure deficit data were generated using 

MTCLIM. For longwave radiation and wind speed, NCEP/NCAR reanalysis data were directly used; 

the data from 1948 were used for the 1901–1947 period. 

2.2.3. Atmospheric CO2 Time-Series Data 

Atmospheric CO2 data were obtained from the observed monthly mean at the Mauna Loa station from 

1959 to 2011 [49] and from the observed annual mean from the ice core at Law Dome, Antarctica, from 

1901 to 1958 [50]. The monthly mean atmospheric CO2 concentration data from 1901 to 1958 were 

created by subtracting differences in the annual mean between 1959 and the corresponding year from 

the monthly data in 1959. The annual mean atmospheric CO2 concentrations were used as inputs to the 

Biome-BGC, LPJ and TRIFFID models. The monthly mean atmospheric CO2 concentrations were 

used as model inputs for BEAMS. 
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2.2.4. Static Data 

Static data used for the analysis included land cover, elevation, soil texture, and soil depth.  

Land-cover data were derived from MODIS products (MCD12Q1 collection 5.0) [35] by taking the 

most dominant land cover in each quarter-degree grid cell. Elevation data were obtained from 

GTOPO30 [51]. Soil texture data and soil depth data were created using the Harmonized World Soil 

Database version 1.2 and ISLSCP II Ecosystem Rooting Depths (mean 95% ecosystem rooting depth 

in meters [52]), respectively. All data were re-gridded to quarter-degree resolution using the nearest 

neighbor method. 

2.3. Terrestrial Biosphere Models 

We used four terrestrial biosphere models to analyze changes in GPP from 1982 to 2011. The 

models included BEAMS Version 1.3 [18,41], Biome-BGC Version 4.2 [53], LPJ Version 3 [20,54], 

and MOSES/TRIFFID [55,56]. These models differ in terms of their model structure, parameters, and 

required input data. The BEAMS model is categorized as a diagnostic terrestrial biosphere model, 

which simulates spatial and temporal patterns in the carbon cycle more realistically using  

satellite-based LAI and FPAR inputs than prognostic terrestrial biosphere models. The model 

calculates GPP using a function of FPAR, shortwave radiation and an environmental regulation factor. 

The environmental regulation factor is calculated by combined Farquhar’s photosynthesis model [57,58] 

and the Ball-Berry-type stomatal conductance model [59,60] using CO2, temperature, soil moisture, 

and relative humidity. The Biome-BGC model is a prognostic terrestrial biosphere model with fixed 

vegetation cover. The model runs with only climate data as a time-variant input. The model calculates 

GPP using a function of the CO2, shortwave radiation, temperature, soil moisture, and vapor pressure 

deficit using the Farquhar biochemical photosynthesis model [57] with a Jarvis-type stomatal 

conductance model [61]. LPJ and TRIFFID are dynamic global vegetation models that explicitly 

simulate vegetation types and run with only climate data as a time-variant input. The LPJ model 

calculates GPP using a function of CO2, shortwave radiation, temperature, and soil moisture using the 

Farquhar biochemical photosynthesis model [62] with stomatal conductance estimated from a  

Ball-type conductance model [59]. The TRIFFID model calculates GPP as a function of CO2, 

shortwave radiation, temperature, soil moisture, and relative humidity using a leaf-level photosynthesis 

model [58,63] with a coupled photosynthesis and stomatal conductance model [64]. 

The models were used under a consistent protocol. The 1901–1930 period was used for the spin-up 

period dependent on each model’s spin-up setting. The models were run from 1901 to 2011 with  

time-variable inputs of climate data (for all models) and satellite-based LAI and FPAR data (for 

BEAMS only). BEAMS was spun-up for 3000 years using 1901 climate data. Biome-BGC was  

spun-up using the 1901–1930 climate data repeatedly until the soil carbon reached equilibrium, with 

6,000 years as the maximum spin-up length. LPJ was spun-up for 1,000 years using the 1901–1930 

climate data repeatedly with the fire module disabled. Finally, TRIFFID was spun-up for 1000 years 

using the 1901–1930 climate data repeatedly. 

In addition to the simulations with time-variable inputs for all climate parameters, we conducted 

sensitivity experiments based on an existing study to identify the causes of temporal GPP variations [65]. 
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For each simulation, the models were run using only one climate time-series with an interannual 

variability in temperature, precipitation, solar radiation and atmospheric CO2 concentration; the other 

climate components were held at their 1901 values. We tested four climate parameters (i.e., 

temperature, precipitation, solar radiation and atmospheric CO2 concentration) that are commonly 

incorporated in terrestrial biosphere models. 

2.4. Analysis 

2.4.1. Detection of the NDVI and Climate Trends from 1982 to 2011 

Using the NDVI data from 1982 to 2011, trends in the NDVI were estimated in each grid and each 

subcontinental region in a manner similar to an existing study [33]. The Mann-Kendall trend test [66] 

was used for statistical analysis because this technique does not require an assumption of normality in 

variance and is more robust against anomalous outliers compared with linear regression analysis. The 

slopes of the trends were calculated based on the Kendall robust line-fit method [67], which is a method for 

robust linear regression that chooses the median slope among all lines through pairs of two-dimensional 

sample points. The method is a non-parametric method and is relatively insensitive to outliers. 

To avoid including changes in non-vegetation effects (e.g., snow) in the calculation of temporal 

changes, we focused on the annual average during the vegetation growing season in each grid cell. The 

vegetation growing season is defined in each grid as those months in which the 1982–2011 monthly 

average air temperatures were greater than 5 °C and the monthly average NDVI was greater than 0.1. 

Climate trends (temperature and precipitation) were also estimated from 1982 to 2011 to interpret 

the NDVI trends using the same approach as for the NDVI analysis, that is, the Kendall robust line-fit 

method [62]. We used the growing season average for temperature and the annual total for 

precipitation in the trend estimation. 

2.4.2. Evaluation of Trends in NDVI and Modeled GPP from 1982 to 2011 

Recent trends in GPP from 1982 to 2011 were analyzed using model simulation results with  

time-variable inputs. Changing trends in the annual total GPP, which were estimated using the same 

methods as described in Section 2.4.1, were compared with satellite-based NDVI trends. Furthermore, 

we also evaluated the interannual variations in the NDVI and modeled GPP based on the correlation 

analysis between the NDVI and modeled GPP using Kendall’s rank correlation coefficients  

(Kendall’s τ) [66] to determine the ability of each model to simulate interannual variability 

consistently with the satellite-based NDVI. 

2.4.3. Attribution of the Detected Changes in NDVI and GPP 

Factors determining the modeled GPP trends were analyzed using the results of sensitivity 

experiments for each terrestrial biosphere model. A series of model simulations was conducted by 

changing a single time-series climate variable—temperature, precipitation, solar radiation, or 

atmospheric CO2 concentration—while keeping the other climate variables fixed. To ensure that the 

comparison was consistent among the models, we used outputs from three terrestrial biosphere models 

that can only be run with climate data (i.e., Biome-BGC, LPJ and TRIFFID). The BEAMS model was 
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not used in this analysis because the model uses time-variable satellite-based LAI and FPAR, which 

already contains climate variation effects, and isolating the unique effect of a specific climate 

parameter is difficult.  

We evaluated the relative contribution of each individual factor—that is, temperature, precipitation, 

solar radiation, and atmospheric CO2 concentration—to the simulated GPP trends under actual climate 

variations. Using the model results simulated by changing a single time-series climate variable, we 

evaluated the relative contribution of each individual factor by plotting them in stacked bar graphs in 

each region and for each model. 

3. Results and Discussion 

3.1. Observed Climate and NDVI Trend for 1982–2011 

For the 1982–2011 period, the temperature increased over most regions; precipitation had a 

geographically variable pattern in the sign of the trends (Figure 2). Distinct increases in temperature 

were distributed over eastern Siberia (60°N–75°N, 110°E–180°E) and semiarid regions around  

inner-Mongolia (45°N–50°N, 100°E–130°E). Precipitation had distinct increases in eastern Siberia 

(60°N–75°N, 110°E–180°E) and part of India (10°N–25°N, 70°E–80°E), with distinct decreases in 

semiarid regions around inner-Mongolia (45°N–50°N, 100°E–130°E). 

Figure 2. Trend in (a) growing season average temperature (°C·30 y−1) and (b) annual 

total precipitation (%·30 y−1) from 1982 to 2011. The trend slope was estimated using the 

Kendall robust line-fit method. Solid black lines in the map show the sub-continental 

division (only for the Eurasian continent) defined in Figure 1b. 

 

Increasing trends in the NDVI were dominant in Asia for the 1982–2011 period (Figure 3). 

Moreover, 41.8% of the vegetated regions had increased NDVI values, with distinct increases in 

eastern Siberia (50°N–80°N, 100°E–180°E), boreal Eurasia (45°N–60°N zones), parts of China and 

India, and some scattered regions in tropical Asia. However, the regions with significant NDVI 
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decreases were distributed among small regions (2.9% of the vegetated regions); for example, parts of 

western Arctic Siberia (60°N–80°N, 80°E–100°E) and semiarid regions around inner-Mongolia 

(45°N–50°N, 100°E–120°E). 

Figure 3. Trend in growing season average Normalized Difference Vegetation Index 

(NDVI) from 1982 to 2011. Only grids with statistically significant trends (p < 0.05) are 

colored. The Mann-Kendall trend test was applied for the significance test; the slope was 

estimated using the Kendall robust line-fit method. Solid black lines in the map show the 

subcontinental division (only for the Eurasian continent) defined in Figure 1b. 

 

Table 1. Temporal trends in the NDVI (NDVI·30 y−1) and model-based gross primary 

productivity (GPP) (gC·m−2·y−2) from 1982 to 2011. Values in parentheses are  

model-based GPP trends (TgC·y−1). 

Region NDVI BEAMS Biome-BGC LPJ TRIFFID 

Boreal Eurasia North West 0.015 0.5 (2.5) 2.4 (9.2) ** 3.2 (11.8) ** 3.8** (14.6) 

Boreal Eurasia North East 0.068** 1.3 (5.3) ** 3.6 (14.7) ** 5.0 (19.6) ** 5.7** (21.1) 

Boreal Eurasia South West 0.041** 1.9 (5.5) ** 5.9 (16.5) ** 5.5 (15.3) ** 3.5** (9.2) 

Boreal Eurasia South East 0.034** 1.8 (6.2) ** 1.9 (6.1) ** 3.4 (11.4) ** 0.8 (2.5) 

Temperate Asia North West 0.024** 1.4 (4.6) ** 0.6 (2.3) * 2.9 (9.3) * 0.9** (3.0) 

Temperate Asia North East 0.020** 1.7 (11.8) ** 2.5 (17.8) ** 1.3 (9.9) * 1.4* (11.2) 

Temperate Asia South East 0.032** 3.7 (15.5) ** 0.9 (4.1) ** 4.2 (17.4) ** 2.7** (11.6) 

Tropical Asia North 0.023* 5.1 (21.2) ** 6.6 (27.2) ** 7.1 (29.9) ** 4.5** (18.9) 

Tropical Asia South 0.013 3.0 (11.9) ** 11.8 (46.0) ** 7.9 (30.8) ** 7.9** (30.9) 

Statistically significant trends are marked as ** (p < 0.05) and * (p < 0.1). 
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In the sub-continental scale analysis, we detected a statistically significant NDVI increase in seven 

of the nine sub-continental regions (Table 1). The two exceptions were the Boreal Eurasia North West 

region and the Tropical Asia South region. However, these regions had positive but minor increases in 

the NDVI. In the Boreal Eurasia North West region, interannual variations in the NDVI gradually 

increased from 1982 to 2000 and decreased after 2001, except for 2011 (Figure 4a). In the Tropical 

Asia South region, the NDVI had large interannual variations without significant increasing or 

decreasing trends from 1982 to 2000 (Figure 4i). 

Figure 4. Interannual variations in the NDVI and annual GPP in each subcontinental 

region (Figure 1b and Table 1). Normalized NDVI anomalies and modeled GPPs (based on 

the average for the 1982–2011 period) are shown. 
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3.2. Evaluation of the 30-Year Trends in NDVI and Modeled GPP 

The terrestrial biosphere models suggest increasing GPP in Asia from 1982 to 2011, which is 

mostly consistent with the satellite-based NDVI trends. The Biome-BGC and LPJ models exhibited 

significant increasing GPP trends in all nine regions. Moreover, the BEAMS and TRIFFID models 

showed significant increasing GPP trends in eight regions (Table 1). The consistency between models 

and the NDVI is highest for the BEAMS model because the model uses satellite-based LAI and FPAR 

as inputs; only the Tropical Asia South region did not exhibit a difference in the trend significance 

(e.g., the BEAMS model predicts statistically significant increases in GPP, whereas the NDVI does 

not) likely due to uncertainties in the solar radiation data used for BEAMS models. In both the Boreal 

Eurasia North West region and the Tropical Asia South region, the prognostic terrestrial biosphere 

models (Biome-BGC, LPJ, and TRIFFID) suggest significant increases in GPP. However, a similar 

trend is not detected for the NDVI. 

The interannual variations in the NDVI and modeled GPP were highly consistent in temperate and 

boreal regions and weakly consistent in tropical regions (Table 2 and Figure 4). We found that the 

BEAMS-based GPP, in which GPP was calculated using satellite-based LAI and FPAR data, was 

highly consistent with the satellite-based NDVI (e.g., τ = 0.67 – 0.83 for boreal and temperate regions). 

The results from the prognostic biosphere models also showed good agreement with the satellite-based 

NDVI data regarding interannual variations in GPP (e.g., averages of τ in all boreal and temperate 

regions are τ = 0.48, 0.50 and 0.43 for Biome-BGC, LPJ, and TRIFFID, respectively). However, we 

found large deviations between the models and the satellite-based NDVI in tropical forest regions (e.g., 

τ < 0.3 for most tropical regions). 

Table 2. Correlation coefficients between the NDVI and GPP from each terrestrial 

biosphere model. Correlation coefficients were calculated based on Kendall’s rank 

correlation coefficients (Kendall’s τ).  

Region BEAMS Biome-BGC LPJ TRIFFID 

Boreal Eurasia North West 0.67** 0.31* 0.50** 0.33* 

Boreal Eurasia North East 0.72** 0.70** 0.66** 0.68** 

Boreal Eurasia South West 0.80** 0.40** 0.37** 0.16 

Boreal Eurasia South East 0.71** 0.45** 0.46** 0.37** 

Temperate Asia North West 0.83** 0.49** 0.51** 0.57** 

Temperate Asia North East 0.76** 0.44** 0.44** 0.39** 

Temperate Asia South East 0.74** 0.54** 0.55** 0.48** 

Tropical Asia North 0.58** 0.27* 0.23 0.20 

Tropical Asia South 0.17 0.26* 0.16 0.17 

Statistically significant correlations are marked as ** (p < 0.01), and * (p < 0.05). 

The consistency of interannual variability and 30-year trends in boreal and temperate regions 

between the NDVI and modeled GPP indicates that these increases are robust for the different 

methodologies, that is, terrestrial biosphere models and satellite-based observations. Therefore, we can 

use the models to perform a process-based analysis on the underlying mechanisms. As exceptions, 

disagreement between the model and the NDVI data was detected in several regions and specific years. 
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For example, in the Boreal Eurasia North West region, mainly during the 2007–2010 period  

(Figure 4a), the satellite-based NDVI had negative anomalies for this period, whereas the GPPs in the 

prognostic models (Biome-BGC, LPJ, and TRIFFID) had positive anomalies for this period. Another 

distinct difference was found in the Temperate Asia North West over the period 1996–2001. In this 

region, there was a consistent discrepancy between the three model simulations run with only climate 

data (i.e., BIOME-BGC, LPJ and TRIFFID) versus the NDVI data and the BEAMS model simulation 

that incorporates effects of satellite-based observation. In addition, the BIOME-BGC simulations had 

anomalously high spikes in 2007 for all temperate regions. The disagreement between these data 

should be analyzed in the future to identify the potential limitations of each methodology. 

Disagreements between the models and data for tropical regions are evident in the current study. 

Possible explanations may relate to both the satellite-based observations and the terrestrial biosphere 

models. In principle, monitoring tropical forests using shortwave radiations from satellite-based 

observations is difficult because of atmospheric effects, for example, severe cloud contamination and 

heavy aerosol loading in tropical regions [68]. Moreover, simulating the terrestrial carbon cycle using 

terrestrial biosphere models is difficult in tropical forests. For example, a site-level model comparison 

study showed that the model performance in simulating carbon fluxes was poor in tropical forests 

among various ecosystems in Asia [69]. The difficulty in modeling GPP in tropical forest is partly due 

to complex processes involving water and solar radiation controls on seasonal GPP variations and the 

requirement for appropriate rooting depth settings [70]. 

3.3. Attribution of Detected Changes in NDVI and GPP 

In boreal Eurasia regions (the Boreal Eurasia North West, North East, South West and South East 

regions), the modeled increases in GPP are explained by variations in temperature (Biome-BGC and 

LPJ models), precipitation (Biome-BGC, LPJ, and TRIFFID models), and atmospheric CO2 

concentration (LPJ and TRIFFID models) (Figure 5a–d). Changes in temperature and precipitation 

provide similar contributions to the GPP increase. The Biome-BGC model showed that increases in the 

atmospheric CO2 concentration had a small effect on the GPP increase. However, the LPJ and 

TRIFFID models showed that changes in atmospheric CO2 concentration, temperature, and 

precipitation had similar effects on GPP. 

In the temperate Asia regions (the Temperate Asia North West, North East and South East regions), 

the causes of the GPP increases were not consistent among the models (Figure 5e–g). The GPP increases 

were primarily due to changes in temperature in the Biome-BGC model. According to the LPJ and 

TRIFFID models, atmospheric CO2 concentration change is the main driver of the GPP increases. 

In tropical Asia (the Tropical Asia North and South regions), the GPP increases were mostly 

explained by changes in atmospheric CO2 concentration in the LPJ and TRIFFID models. In the 

Biome-BGC model, changes in precipitation and the atmospheric CO2 concentration equally 

contributed to the increases in GPP. Changes in incoming solar radiation were another important factor 

in the GPP increases in the Tropical Asia South region in the Biome-BGC and LPJ models. However, 

quantifying the solar radiation contribution requires better estimates of solar radiation (see  

Section 3.4). 
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Although the estimated GPP trends were similar for the different models and were generally 

consistent with the satellite-based NDVI trends, the contribution of CO2 fertilization to the increase in 

GPP differed among the models and regions (Figure 5). The CO2 fertilization effect on the GPP trends 

was lower in the Biome-BGC model compared with the LPJ and TRIFFID models. Therefore, further 

analysis using data from field observations [71] is required to elucidate the effects of CO2 fertilization 

on GPP. 

Figure 5. Contribution of the modeled GPP trend of each individual factor (i.e., 

temperature, precipitation, solar radiation, and atmospheric CO2 concentration) as stacked 

bar graphs in each region ((a) Boreal Eurasia North West, (b) Boreal Eurasia North East, 

(c) Boreal Eurasia South West, (d) Boreal Eurasia South East, (e) Temperate Asia North 

West, (f) Temperate Asia North East, (g) Temperate Asia South East, (h) Tropical Asia 

North, and (i) Tropical Asia South). Cumulative sums of GPP trends for the simulations 

with each input data temporally changing are approximately consistent with the GPP trends 

in the simulation with all input data temporally changing (y = 1.21 x + 0.09, R2 = 0.92; x is 

the sum of GPP trends for the simulations with each input data changing in each region and 

for every model, and y represents the GPP trends for the simulation with all input data 

changing in each region and for each model; 27 data points (3 models × 9 sub-regions)). 
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3.4. Limitations and Potential Further Studies 

Based on the analysis of the four terrestrial biosphere models and the satellite-based NDVI data, we 

found that the detected NDVI trends are mostly consistent with model-based GPP trends in Asia. 

These detected NDVI and GPP trends were analyzed to identify the important processes driving 

changes in the NDVI and GPP using the terrestrial biosphere models.  

To fill the gaps in the results from the satellite-based NDVI and model-based GPP, additional 

analyses are required. First, the terrestrial biosphere models need to be further improved to reproduce 

observed carbon fluxes in Asia [69,72] and other regions, for example, North America [73] and  

Europe [74]. Further refinements to these models using ground-based observation networks [75] may 

improve the consistency between the modeled GPP and the satellite-based NDVI and inter-model 

consistency. Second, an analysis of human-induced disturbances and land-use changes, including 

afforestation and agriculture, should be assessed in future studies because afforestation in China [22] 

and the increased irrigation area and fertilization use in India [28] have been found to contribute to 

increases in terrestrial GPP and the NDVI. In addition, the terrestrial biosphere models used in this 

study do not include disturbance effects or land-use changes, including plantation and deforestation in 

the tropical Asia. Third, to assess each model’s sensitivity to climate anomalies, terrestrial GPP 

anomalies in response to certain anomalous climate events should be analyzed. For example, the 

Boreal Eurasia South East region experienced cooler and cloudier meteorological conditions in the 

summer of 2003, corresponding to negative anomalies in GPP. All of the models showed the same 

negative GPP anomalies in 2003 (Figure 4d). The mechanisms should be carefully assessed using 

observations and models to determine if each model reproduces GPP anomalies through a similar 

mechanism. Fourth, a further assessment of model-data mismatches should be conducted to clarify the 

potential issues for both models and satellite-based observations. In this study, we demonstrated 

several model and data mismatches in Section 3.2. Identifying the mismatch causes may improve the 

performances of terrestrial biosphere models. 

A quantitative comparison of the models and data are also required in the further studies even 

though current qualitative assessments showed consistent variations in modeled GPPs and  

satellite-derived NDVI. To date, satellite-based vegetation indices have often been used for the 

evaluation of terrestrial biosphere models in continental-scale analysis [33]. A possible method to 

conduct a quantitative comparison is to use GPPs of empirically upscaled products that rely on the 

dense network of eddy-covariance observations and satellite-based data [12]. The eddy-covariance 

network dataset in Asia is insufficient to cover various ecosystems in Asia, especially in Siberia and 

Southeast and South Asia [70]; further improvements in the dataset are required. 

An improved solar radiation dataset is required to interpret the effects of solar radiation on the 

modeled GPP. In this study, we used empirically estimated surface radiation based on the MTCLIM 

model with corrections using satellite-based solar radiation data during the 2000–2010 period. The 

method relies on the assumption that variations in diurnal temperature changes are related to incoming 

solar radiation, which may produce large uncertainties in estimating solar radiation. Other  

satellite-based radiation data (e.g., SRB data; [76]) cover the period from 1983 to 2007; no data are 

available for the past 30 years. Solar radiation is one of the important variables that determines GPP [17]; 

improved solar radiation data are thus required to improve the analysis of GPP.  
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4. Conclusion 

Many regions in Asia have experienced vegetation greening from 1982 to 2011. Trends in 

vegetation greening have been reproduced using multiple terrestrial biosphere models for most regions 

in Asia. The analysis in this study clearly showed statistically significant increases in the NDVI for 

almost 40% of the regions in Asia, whereas decreasing vegetation trends were found for only a small 

percentage of the studied regions (less than 5%). Among the nine sub-continental regions, seven 

regions showed statistically significant increases in the NDVI. Simulations using the terrestrial 

biosphere models showed vegetation greening trends that were consistent with the results for the 

NDVI in boreal and temperate regions. 

Three terrestrial biosphere models were used to determine the causes of the detected increasing 

trend in the NDVI. The determined contributions of climate and atmospheric CO2 changes varied 

considerably among the models. Further assessment is required to determine the effect of CO2 

fertilization on GPP and assess the sensitivity of the models to climate anomalies. 

Acknowledgments 

We acknowledge Takahiro Sasai for valuable comments and discussions. This research was 

supported by the Environment Research and Technology Development Fund (RFa-1201) of the 

Ministry of the Environment, Japan, JSPS KAKENHI Grant Number 25281003, and the Korea 

Meteorological Administration Research and Development Program under Grant CATER 2013-3030. 

RBM participation was made possible by funding from NASA Earth Science Division. 

Conflict of Interest 

The authors declare no conflict of interest. 

References and Notes 

1. Piao, S.L.; Ito, A.; Li, S.G.; Huang, Y.; Ciais, P.; Wang, X.H.; Peng, S.S.; Nan, H.J.; Zhao, C.; 

Ahlström, A.; et al. The carbon budget of terrestrial ecosystems in East Asia over the last two 

decades. Biogeosciences 2012, 9, 3571–3586 

2. Patra, P.K.; Canadell, J.G.; Houghton, R.A.; Piao, S.L.; Oh, N.H.; Ciais, P.; Manjunath, K.R.; 

Chhabra, A.; Wang, T.; Bhattacharya, T.; et al. The carbon budget of South Asia. Biogeosciences 

2013, 10, 513–527. 

3. Dolman, A.J.; Shvidenko, A.; Schepaschenko, D.; Ciais, P.; Tchebakova, N.; Chen, T.; van der 

Molen, M.K.; Belelli Marchesini, L.; Maximov, T.C.; Maksyutov, S.; et al. An estimate of the 

terrestrial carbon budget of Russia using inventory-based, eddy covariance and inversion 

methods. Biogeosciences 2012, 9, 5323–5340. 

4. Chapin, F.S.; Sturm, M.; Serreze, M.C.; McFadden, J.P.; Key, J.R.; Lloyd, A.H.; McGuire, A.D.; 

Rupp, T.S.; Lynch, A.H.; Schimel, J.P.; et al. Role of land-surface changes in arctic summer 

warming. Science 2005, 310, 657–660. 



Remote Sens. 2013, 5 6058 

 

 

5. Le Quere, C.; Andres, R.J.; Boden, T.; Conway, T.; Houghton, R.A.; House, J.I.; Marland, G.; 

Peters, G.P.; van der Werf, G.R.; Ahlstrom, A.; et al. The global carbon budget 1959–2011. Earth 

Syst. Sci. Data 2013, 5, 165–183. 

6. Lepers, E.; Lambin, E.F.; Janetos, A.C.; DeFries, R.; Achard, F.; Ramankutty, N.; Scholes, R.J. A 

synthesis of information on rapid land-cover change for the period 1981–2000. Bioscience 2005, 

55, 115–124. 

7. Liu, M.; Tian, H. China’s land cover and land use change from 1700 to 2005: Estimations from 

high-resolution satellite data and historical archives. Glob. Biogeochem. Cy. 2010, 24,  

doi: 10.1029/2009GB003687. 

8. Myneni, R.B.; Keeling, C.D.; Tucker, C.J.; Asrar, G.; Nemani, R.R. Increased plant growth in the 

northern high latitudes from 1981 to 1991. Nature 1997, 386, 698–702. 

9. Zhou, L.M.; Tucker, C.J.; Kaufmann, R.K.; Slayback, D.; Shabanov, N.V.; Myneni, R.B. 

Variations in northern vegetation activity inferred from satellite data of vegetation index during 

1981 to 1999. J. Geophys. Res. 2001, 106, 20069–20083. 

10. Kawabata, A.; Ichii, K.; Yamaguchi, Y. Global monitoring of interannual changes in vegetation 

activities using NDVI and its relationships to temperature and precipitation. Int. J. Remote Sens. 

2001, 22, 1377–1382. 

11. Xiao, J.; Moody, A. Geographical distribution of global greening trends and their climatic 

correlates: 1982–1998. Int. J. Remote Sens. 2005, 26, 2371–2390. 

12. Yang, F.; Ichii, K.; White, M.; Hashimoto, H.; Michaelis, A.; Votava, P.; Zhu, A.; Huete, A.; 

Running, S.; Nemani, R. Developing a continental-scale measure of gross primary production by 

combining MODIS and Ameriflux data through support vector machine approach. Remote Sens. 

Environ. 2007, 110, 109–122. 

13. Beer, C.; Reichstein, M.; Tomelleri, E.; Ciais, P.; Jung, M.; Carvalhais, N.; Rodenbeck, C.;  

Arain, M.A.; Baldocchi, D.; Bonan, G.B.; et al. Terrestrial gross carbon dioxide uptake: Global 

distribution and covariation with climate. Science 2010, 329, 834–838. 

14. Jung, M.; Reichstein, M.; Margolis, H.A.; Cescatti, A.; Richardson, A.D.; Arain, M.A.;  

Arneth, A.; Bernhofer, C.; Bonal, D.; Chen, J.; et al. Global patterns of land-atmosphere fluxes of 

carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and 

meteorological observations. J. Geophys. Res. 2011, doi: 10.1029/2010JG001566. 

15. Xiao, J.; Zhuang, Q.; Law, B.E.; Chen, J.; Baldocchi, D.D.; Cook, D.R.; Oren, R.; Richardson, 

A.D.; Wharton, S.; Ma, S. A continuous measure of gross primary production for the 

conterminous United States derived from MODIS and Ameriflux data. Remote Sens. Environ. 

2010, 114, 576–591. 

16. Goetz, S.J.; Prince, S.D.; Goward, S.N.; Thawley, M.M.; Small, J. Satellite remote sensing of 

primary production: An improved production efficiency modeling approach. Ecol. Model. 1999, 

122, 239–255. 

17. Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.;  

Myneni, R.B.; Running, S.W. Climate-driven increases in global terrestrial net primary 

production from 1982 to 1999. Science 2003, 300, 1560–1563. 



Remote Sens. 2013, 5 6059 

 

 

18. Sasai, T.; Ichii, K.; Yamaguchi, Y.; Nemani, R. Simulating terrestrial carbon fluxes using the new 

biosphere model “Biosphere model integrating eco-physiological and mechanistic approaches 

using satellite data” (BEAMS). J. Geophys. Res. 2005, doi: 10.1029/2005JG000045. 

19. Ito, A.; Oikawa, T. A simulation model of the carbon cycle in land ecosystems (Sim-cycle): A 

description based on dry-matter production theory and plot-scale validation. Ecol. Model. 2002, 

151, 143–176. 

20. Sitch, S.; Smith, B.; Prentice, I.C.; Arneth, A.; Bondeau, A.; Cramer, W.; Kaplan, J.O.; Levis, S.; 

Lucht, W.; Sykes, M.T.; et al. Evaluation of ecosystem dynamics, plant geography and terrestrial 

carbon cycling in the LPJ dynamic global vegetation model. Glob. Chang. Biol. 2003, 9, 161–185. 

21. Piao, S.; Wang, X.; Ciais, P.; Zhu, B.; Wang, T.A.O.; Liu, J.I.E. Changes in satellite-derived 

vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Glob. Chang. Biol. 

2011, 17, 3228–3239. 

22. Piao, S. Interannual variations of monthly and seasonal normalized difference vegetation index 

(NDVI) in China from 1982 to 1999. J. Geophys. Res. 2003, doi: 10.1029/2002JD002848. 

23. Peng, S.; Chen, A.; Xu, L.; Cao, C.; Fang, J.; Myneni, R.B.; Pinzon, J.E.; Tucker, C.J.; Piao, S. 

Recent change of vegetation growth trend in China. Environ. Res. Lett. 2011, 6, 044027. 

24. Xiao, J.; Moody, A. Trends in vegetation activity and their climatic correlates: China 1982 to 

1998. Int. J. Remote Sens. 2004, 25, 5669–5689. 

25. Park, H.S.; Sohn, B.J. Recent trends in changes of vegetation over East Asia coupled with 

temperature and rainfall variations. J. Geophys. Res. 2010, doi: 10.1029/2009JD012752. 

26. Jeong, S.-J.; Ho, C.-H.; Jeong, J.-H. Increase in vegetation greenness and decrease in springtime 

warming over East Asia. Geophys. Res. Lett. 2009, doi: 10.1029/2008GL036583. 

27. Nagai, S.; Ichii, K.; Morimoto, H. Interannual variations in vegetation activities and climate 

variability caused by ENSO in tropical rainforests. Int. J. Remote Sens. 2007, 28, 1285–1297. 

28. Bala, G.; Joshi, J.; Chaturvedi, R.; Gangamani, H.; Hashimoto, H.; Nemani, R. Trends and 

variability of AVHRR-derived NPP in India. Remote Sens. 2013, 5, 810–829. 

29. Milesi, C.; Samanta, A.; Hashimoto, H.; Kumar, K.K.; Ganguly, S.; Thenkabail, P.S.; Srivastava, 

A.N.; Nemani, R.R.; Myneni, R.B. Decadal variations in NDVI and food production in India. 

Remote Sens. 2010, 2, 758–776. 

30. Saigusa, N.; Ichii, K.; Murakami, H.; Hirata, R.; Asanuma, J.; Den, H.; Han, S.-J.; Ide, R.;  

Li, S.-G.; Ohta, T.; et al. Impact of meteorological anomalies in the 2003 summer on gross 

primary productivity in East Asia. Biogeosciences 2010, 7, 641–655. 

31. Piao, S.; Fang, J.; Zhou, L.; Zhu, B.; Tan, K.; Tao, S. Changes in vegetation net 

primary productivity from 1982 to 1999 in China. Glob. Biogeochem. Cy. 2005, 

doi: 10.1029/2004GB002274. 

32. Lucht, W.; Prentice, I.C.; Myneni, R.B.; Sitch, S.; Friedlingstein, P.; Cramer, W.; Bousquet, P.; 

Buermann, W.; Smith, B. Climatic control of the high-latitude vegetation greening trend and 

Pinatubo effect. Science 2002, 296, 1687–1689. 

33. Hashimoto, H.; Melton, F.; Ichii, K.; Milesi, C.; Wang, W.; Nemani, R.R. Evaluating the impacts 

of climate and elevated carbon dioxide on tropical rainforests of the western Amazon basin using 

ecosystem models and satellite data. Glob. Chang. Biol. 2010, 16, 255–271. 



Remote Sens. 2013, 5 6060 

 

 

34. Piao, S.; Friedlingstein, P.; Ciais, P.; Zhou, L.; Chen, A. Effect of climate and CO2 changes on the 

greening of the northern hemisphere over the past two decades. Geophys. Res. Lett. 2006,  

 doi: 10.1029/2006GL028205. 

35. Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. 

MODIS collection 5 global land cover: Algorithm refinements and characterization of new 

datasets. Remote Sens. Environ. 2010, 114, 168–182. 

36. Takagi, H.; Saeki, T.; Oda, T.; Saito, M.; Valsala, V.; Belikov, D.; Saito, R.; Yoshida, Y.;  

Morino, I.; Uchino, O.; et al. On the benefit of GOSAT observations to the estimation of regional 

CO2 fluxes. Sola 2011, 7, 161–164. 

37. Tucker, C.; Pinzon, J.; Brown, M.; Slayback, D.; Pak, E.; Mahoney, R.; Vermote, E.; El Saleous, 

N. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT VEGETATION 

NDVI data. Int. J. Remote Sens. 2005, 26, 4485–4498. 

38. Pinzon, J.E. Revisiting error, precision and uncertainty in NDVI AVHRR data: Development of a 

consistent NDVI3g time series. Remote Sens. in preparation. 

39. Veroustraete, F.; Patyn, J.; Myneni, R.B. Estimating net ecosystem exchange of carbon using the 

normalized difference vegetation index and an ecosystem model. Remote Sens. Environ. 1996, 58, 

115–130. 

40. Zhu, Z.; Bi, J.; Pan, Y.; Ganguly, S.; Anav, A.; Xu, L.; Samanta, A.; Piao, S.; Nemani, R.; 

Myneni, R. Global data sets of vegetation leaf area index (LAI)3g and fraction of 

photosynthetically active radiation (FPAR)3g derived from global inventory modeling and 

mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 

to 2011. Remote Sens. 2013, 5, 927–948. 

41. Sasai, T.; Okamoto, K.; Hiyama, T.; Yamaguchi, Y. Comparing terrestrial carbon fluxes from the 

scale of a flux tower to the global scale. Ecol. Model. 2007, 208, 135–144. 

42. Myneni, R.B.; Hoffman, S.; Knyazikhin, Y.; Privette, J.L.; Glassy, J.; Tian, Y.; Wang, Y.;  

Song, X.; Zhang, Y.; Smith, G.R.; et al. Global products of vegetation leaf area and fraction 

absorbed PAR from year one of MODIS data. Remote Sens. Environ. 2002, 83, 214–231. 

43. Yuan, H.; Dai, Y.; Xiao, Z.; Ji, D.; Shangguan, W. Reprocessing the MODIS leaf area index 

products for land surface and climate modelling. Remote Sens. Environ. 2011, 115, 1171–1187. 

44. CRUNCEP Data Set. Available online: http://nacp.ornl.gov/thredds/fileServer/reccapDriver/ 

cru_ncep/analysis/readme.htm (accessed on 13 November 2013). 

45. Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly 

climatic observations - the CRUTS3.10 dataset. Int. J. Climatol. 2013, doi: 10.1002/joc.3711. 

46. Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; 

White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. 

Soc. 1996, 77, 437–471. 

47. Thornton, P.E.; Running, S.W. An improved algorithm for estimating incident daily solar 

radiation from measurements of temperature, humidity, and precipitation. Agric. For. Meteorol. 

1999, 93, 211–228. 

48. Frouin, R.; Murakami, H. Estimating photosynthetically available radiation at the ocean surface 

from ADEOS-II Global Imager data. J. Oceanogr. 2007, 63, 493–503. 



Remote Sens. 2013, 5 6061 

 

 

49. Trends in Atmospheric Carbon Dioxide. Available online: http://www.esrl.noaa.gov/gmd/ 

ccgg/trends/ (accessed on 13 October 2013). 

50. Historical CO2 Records from the Law Dome DE08, DE08–2, and DSS Ice Cores. Available 

online: http://cdiac.ornl.gov/trends/co2/lawdome.html (accessed on 13 October 2013). 

51. Global 30 Arc-Second Elevation (GTOPO30). Available online: https://lta.cr.usgs.gov/GTOPO30 

(accessed on 13 October 2013). 

52. Schenk, H.J.; Jackson, R.B. ISLSCL II Ecosystem Rooting Depths. Oak Ridge National 

Laboratory Distributed Active Archive Center: Oak Ridge, TN, USA, 2009. 

53. Thornton, P.E.; Law, B.E.; Gholz, H.L.; Clark, K.L.; Falge, E.; Ellsworth, D.S.; Goldstein, A.H.; 

Monson, R.K.; Hollinger, D.; Falk, M.; et al. Modeling and measuring the effects of disturbance 

history and climate on carbon and water budgets in evergreen needleleaf forests. Agric. For. 

Meteorol. 2002, 113, 185–222. 

54. Gerten, D.; Schaphoff, S.; Haberlandt, U.; Lucht, W.; Sitch, S. Terrestrial vegetation and water 

balance—hydrological evaluation of a dynamic global vegetation model. J. Hydrol. 2004, 286, 

249–270. 

55. Cox, P. Description of the “TRIFFID” Dynamic Global Vegetation Model; Hadley Center:  

Exeter, UK, 2001. 

56. Suzuki, T.; Ichii, K. Evaluation of a terrestrial carbon cycle submodel in an earth system model 

using networks of eddy covariance observations. Tellus B 2010, 62, 729–742. 

57. Farquhar, G.D.; Caemmerer, V.; Berry, J.A. A biochemical model of phytosynthetic CO2 

assimilation in leaves of C3 species. Planta 1980, 149, 78–90. 

58. Collatz, G.; Ball, J.T.; Grivet, C.; Berry, J.A. Physiological and environmental regulation of 

stomatal conductance, photosynthesis and transpiration: A model that includes a laminar 

boundary layer. Agric. For. Meteorol. 1991, 54, 107–136. 

59. Ball, J.T.; Woodrow, I.E.; Berry, J.A. A Model Predicting Stomatal Conductance and Its 

Contribution to the Control of Photosynthesis under Different Environmental Conditions. In 

Progress in Photosynthesis Research, Biggins, J., Ed.; Marinus Nijhoff: Leiden, The Netherlands, 

1987; Volume 4, pp. 221–224. 

60. Leuning, R. Modelling stomatal behavior and photosynthesis of eucalyptus grandis. Aust. J. Plant 

Physiol. 1990, 17, 159–175. 

61. Jarvis, P.G. The interpretation of the variations in leaf water potential and stomatal conductance 

found in canopies in the field. Philos. Trans. R. Soc. B-Biol. Sci. 1976, 273, 593–610. 

62. Haxeltine, A.; Prentice, I.C. BIOME3: An equilibrium terrestrial biosphere model based on 

ecophysiological constraints, resource availability, and competition among plant functional types. 

Glob. Biogeochem. Cy. 1996, 10, 693–709. 

63. Collatz, G.; Ribas-Carbo, M.; Berry, J. Coupled photosynthesis-stomatal conductance model for 

leaves of C4 plants. Aust. J. Plant Physiol. 1992, 19, 519–538. 

64. Cox, P.M.; Betts, R.A.; Bunton, C.B.; Essery, R.L.H.; Rowntree, P.R.; Smith, J. The impact of 

new land surface physics on the GCM simulation of climate and climate sensitivity. Clim. Dyn. 

1999, 15, 183–203. 



Remote Sens. 2013, 5 6062 

 

 

65. Ichii, K.; Hashimoto, H.; Nemani, R.; White, M. Modeling the interannual variability and trends 

in gross and net primary productivity of tropical forests from 1982 to 1999. Glob. Planet. Chang. 

2005, 48, 274–286. 

66. Kendall, M.G. A new measure of rank correlation. Biometrika 1938, 30, 81–93. 

67. Sokal, R.R.; Rohlf, F.J. Biometry: The Principles and Practice of Statistics in Biological 

Research. 3rd ed.; W.H. Freeman: New York, NY, USA, 1995; p. 539. 

68. Kobayashi, H.; Dye, D.G. Atmospheric conditions for monitoring the long-term vegetation 

dynamics in the Amazon using normalized difference vegetation index. Remote Sens. Environ. 

2005, 97, 519–525. 

69. Ichii, K.; Kondo, M.; Lee, Y.-H.; Wang, S.-Q.; Kim, J.; Ueyama, M.; Lim, H.-J.; Shi, H.;  

Suzuki, T.; Ito, A.; et al. Site-level model—Data synthesis of terrestrial carbon fluxes in the 

CarboEastAsia eddy-covariance observation network: Toward future modeling efforts. J. For. 

Res. 2013, 18, 13–20. 

70. Ichii, K.; Hashimoto, H.; White, M.A.; Potters, C.; Hutyra, L.R.; Huete, A.R.; Myneni, R.B.; 

Nemanis, R.R. Constraining rooting depths in tropical rainforests using satellite data and 

ecosystem modeling for accurate simulation of gross primary production seasonality. Glob. 

Chang. Biol. 2007, 13, 67–77. 

71. Piao, S.; Sitch, S.; Ciais, P.; Friedlingstein, P.; Peylin, P.; Wang, X.; Ahlstrom, A.; Anav, A.; 

Canadell, J.G.; Cong, N.; et al. Evaluation of terrestrial carbon cycle models for their response to 

climate variability and to CO2 trends. Glob. Chang. Biol. 2013, 19, 2117–2132. 

72. Ichii, K.; Suzuki, T.; Kato, T.; Ito, A.; Hajima, T.; Ueyama, M.; Sasai, T.; Hirata, R.; Saigusa, N.; 

Ohtani, Y.; et al. Multi-model analysis of terrestrial carbon cycles in Japan: Limitations and 

implications of model calibration using eddy flux observations. Biogeosciences 2010, 7,  

2061–2080. 

73. Schwalm, C.R.; Williams, C.A.; Schaefer, K.; Anderson, R.; Arain, M.A.; Baker, I.; Barr, A.; 

Black, T.A.; Chen, G.; Chen, J.M.; et al. A model-data intercomparison of CO2 exchange across 

North America: Results from the North American Carbon Program site synthesis. J. Geophys. 

Res. 2010, doi: 10.1029/2009JG001229. 

74. Jung, M.; le Maire, G.; Zaehle, S.; Luyssaert, S.; Vetter, M.; Churkina, G.; Ciais, P.; Viovy, N.; 

Reichstein, M. Assessing the ability of three land ecosystem models to simulate gross carbon 

uptake of forests from boreal to mediterranean climate in Europe. Biogeosciences 2007, 4,  

647–656. 

75. Saigusa, N.; Li, S.-G.; Kwon, H.; Takagi, K.; Zhang, L.-M.; Ide, R.; Ueyama, M.; Asanuma, J.; 

Choi, Y.-J.; Chun, J.H.; et al. Dataset of CarboEastAsia and uncertainties in the CO2 budget 

evaluation caused by different data processing. J. For. Res. 2013, 18, 41–48. 

76. SRB Data and Information. Available online: https://eosweb.larc.nasa.gov/project/srb/srb_table 

(accessed on 13 October 2013). 

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


