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Abstract: Cushion peatlands are typical features of the high altitude Andes in South 

America. Due to the adaptation to difficult environmental conditions, they are very fragile 

ecosystems and therefore vulnerable to environmental and climate changes. Peatland 

erosion has severe effects on their ecological functions, such as water storage capacity. 

Thus, erosion monitoring is highly advisable. Erosion quantification and monitoring can be 

supported by high-resolution terrestrial Light Detection and Ranging (LiDAR). In this 

study, a novel Geographic Information System (GIS)-based method for the automatic 

delineation and geomorphometric description of gullies in cushion peatlands is presented. 

The approach is a multi-step workflow based on a gully edge extraction and a sink filling 

algorithm applied to a conditioned digital terrain model. Our method enables the creation 

of GIS-ready polygons of the gullies and the derivation of geomorphometric parameters 

along the entire channel course. Automatically derived boundaries and gully area values 

correspond to a high degree (93%) with manually digitized reference polygons. The set of 

methods developed in this study offers a suitable tool for the monitoring and scientific 

analysis of fluvial morphology in cushion peatlands. 
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1. Introduction 

Being strongly connected to climate and land use change, gully and soil erosion are an increasing 

problem causing major socio-economic impacts and significant loss of sediments exiting agricultural 

landscapes [1]. Soil degradation requires monitoring and a full understanding of the processes and 

complex interrelated systems, especially in highly sensitive ecosystems [2]. Cushion peatlands are 

typical elements of the high Andean vegetation zones and important ecosystems due to their water 

storage capacity in the mostly semiarid to arid Puna. Through rivers they also supply oases in the 

hyperarid coastal desert in Peru and Chile. Hence, cushion peatlands are part of the local people's 

livelihood as they are used as pasture and water reservoirs, and are therefore important for  

agriculture [2,3]. In these naturally regulated ecosystems, mostly anthropogenic intervention causes 

gully erosion and, thus, leads to degradation and desiccation [2,4]. 

Studies on gully erosion take place mostly in semi-arid regions, since erosion mainly occurs due to 

sparse vegetation cover and sporadic but often heavy rainfall. Background information about 

characteristics, processes and morphology of gullies is found in [1,5–7]. Although water erosion is not 

a typical process in peatlands, it is observed in various upland peats [8–10]. The studies of [2,3] 

provide more detailed information on these typical landforms of the Andean highland and [4] gives 

insights particularly into the Llamoca peatland in Peru, the study area of this research. 

Area-wide erosion monitoring and quantification in peatlands is made possible by applying remote 

sensing to collect detailed 3D topographic information and to derive digital elevation models (DEMs). 

DEMs are input to GIS-based geomorphometric analysis and the implementation of erosion  

models [11]. First, to generate such a submeter resolution DEM adequate data sources are necessary. 

Second, to identify the affected landscape in the DEM dataset, geomorphological landform mapping 

through feature detection algorithms is required. 

LiDAR, also referred to as laser scanning, provides reliable and accurate 3D point clouds, from 

which high-resolution Digital Terrain Models (DTMs) can be derived for geomorphological  

studies [12,13]. The DTM represents a DEM of the bare Earth without elevated anthropogenic objects 

and high vegetation. In particular ground-based LiDAR, i.e., Terrestrial Laser Scanning (TLS), offers 

high point densities to derive submeter resolution DTMs. TLS is applied for the investigation of 

landforms with small spatial extent and processes with low magnitudes of changes over time [14–16]. 

Additionally, TLS is a suitable field method to derive DTMs in areas where high precision airborne 

acquisition is hampered due to difficult flight conditions (e.g., high altitude, wind conditions) or costs. 

Furthermore, in gully research TLS is often used as high quality reference dataset to evaluate different 

field methods for quantifying gully erosion in 2D and 3D (e.g., eroded gully volume) [17,18].  

The quality of LiDAR-derived DTMs—in terms of DTM resolution, vertical and horizontal 

elevation accuracy—enables automatic detection of detailed natural landforms as well as man-made 

objects [19]. Automatic GIS classifications are usually based on morphometric characteristics, such as 

slope, curvature, aspect, or other derivatives of elevation [13,20,21]. Gully detection is of high 

importance regarding erosion monitoring and gully erosion modeling, which aims at predicting erosion 

rates and the impact of gully development, e.g., on hydrology and sediment budgets [22]. 

The aim of our study is to present and examine the potential of a new GIS-based workflow for 

detecting gullies in cushion peatlands from TLS DTMs. Utilization of TLS data coupled with GIS 
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enabling automatic gully detection is still underexploited (Section 2). Former works on gully detection 

concentrated mostly on the extraction of linear features to form gully networks. In contrast, this work 

aims at mapping gully erosion areas as polygons, which enables straightforward volumetric and 

multitemporal analysis of changes in morphology over time. The study area is located in the catchment 

area of Río Viscas at the foot of Cerro Llamoca, Peru (Section 3). Due to the high altitude of the 

catchment (~4400 m a.s.l.), and its remote location, no detailed elevation information of the  

micro-topography has been available previous to this investigation. The objects of interests are gullies 

with a dimension of a few meters up to more than 50 m in width. In this study, we demonstrate for the 

first time the utilization of TLS for geomorphological mapping of gullies in high altitude Andean 

cushion peatlands for a relatively large study extent with almost 2 km2 (Section 4). The results are 

compared with gully outlines digitized manually by several geomorphologists (Section 5). 

Apart from the methodological progress in this paper, we expect to stimulate research on cushion 

peatlands using LiDAR and GIS, which will help to enhance the understanding of the underlying 

geomorphological processes, channel response and catchment behavior including gully erosion  

and hydrology. 

2. Related Works 

Previous works mainly used satellite or aerial images for mapping of gullies. GIS-based gully 

monitoring using high-resolution (<0.1 m) aerial photography taken from blimp and kite platforms are 

performed in the study of [23]. The monitoring over several years of two gullies located in Spain 

yields the capability of deriving DEMs from this data source. However, vegetation cover and the 

specific morphology of the gullies make fully automatic DEM derivation difficult. In [24] IKONOS 

and GEOEYE-1 satellite images are used as input of an object-based image analysis (OBIA) for 

mapping of the gully system area in a study site in Morocco. Input features for segmentation and 

classification are derived from topographic, spectral, shape and contextual information. They generate 

a 1m-DTM from a Digital Surface Model (DSM) derived from a GEOEYE-1 stereo-pair, from which 

features such as slope, flow direction, specific catchment area, etc., are derived. The detected gully 

system area differs only slightly (<2%) from the reference area. In the study of [25] a multi-scale 

OBIA approach is developed using unmanned aerial vehicle (UAV) photographs as an input layer 

where image (RGB) contrast information and shape properties of segments are considered. The OBIA 

workflow includes a multi-resolution segmentation and knowledge-based classification designed for 

the investigated landform. Compared with manually detected reference landforms, gully mapping 

achieves detection rates of around 67%. 

Recent studies make use of LiDAR data predominantly obtained from airborne platforms [13]. In 

particular, LiDAR can enable geomorphological mapping of vegetated areas where passive remote 

sensing techniques do not provide sufficient ground information below high vegetation (e.g., [26]). 

GIS-based geomorphological mapping by means of airborne LiDAR data for landform identification 

and delineation has been used for several years such as for fluvial morphological landforms [27,28] 

and quantification of multitemporal changes [29,30]. For a comprehensive review of studies using 

airborne LiDAR in geomorphology see [13] and references therein. 
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Several studies on (semi)automatic, object-based gully detection from airborne LiDAR have already 

been published. In the study of [26], a gully system in a forested area is investigated and gully 

morphologic information is extracted in a semi-manual procedure by looking at DTM-derived contour 

lines. They aim at deriving channel locations and network topological connectivity of the channels to 

improve channel-network maps and topological models. They conclude that the relatively low point 

density of terrain points and thus DTM resolution (2–4 m cell size) and, furthermore, occlusion of 

gully bottoms are the main limitations. This results in low mapping accuracy and poor morphological 

information. In [31] the authors derive gully maps in upland peatlands from airborne LiDAR DEMs 

with 2 m ground resolution. They identify gully areas through low difference from mean elevation 

(i.e., high-pass filter) and high positive plan curvature. Their automated workflow can be applied to 

large areas. The achieved accuracy of gully width and depth are within the range of the horizontal and 

vertical accuracy of the input LiDAR data. The results of the raster-based approach of [32] highlight 

the need for adaptive thresholds for the detection of natural landforms such as channels and gullies. 

They use curvature and openness maps derived from a 1m-DTM from airborne LiDAR to identify the 

channel network via unsupervised channel pattern recognition and classification. A statistical approach 

is applied to derive optimum kernel sizes. The approach introduced by [33] detects gullies in airborne 

LiDAR data through surface curvature in multiple scales (i.e., varying window sizes). Furthermore, 

they present an algorithm to connect fragmented parts to a gully network. Gaps in the network are due 

to eroded shallow parts in between.  

Compared to the results derived from airborne LiDAR datasets, only a few studies have assessed 

the potential of ground-based LiDAR for gully investigation. The analysis of [18] is based on TLS 

point clouds as input to model gully cross-sections and to derive geometric parameters  

(e.g., cross-section area computation). Furthermore, they automatically extract the thalweg of a gully. 

They state the importance of data preprocessing, and identify TLS intensity correction (cf. [34]) and 

gully edge detection as future research topics. The study of [35] assesses the effect of TLS point 

sampling density on the characterization of ephemeral gullies within areas of agricultural land use. 

They outline guidance principles for multitemporal gully LiDAR surveys in order to minimize 

scanning effort while keeping the required topographic details as high as possible. The authors deploy 

the concept of semivariograms to quantitatively assess the relationship between LiDAR point density 

and topographic modeling. They conclude that, due to the inherent nature of heterogeneous point 

density distribution of TLS, there is a large potential to optimize scan settings and planning. In 

particular, data acquisition has to be regarded with respect to the (i) object of interest (e.g., scale, 

extent), (ii) detail of maintained micro-relief, and (iii) reduction of occlusion effects. One of the first 

comparisons of DEMs derived from terrestrial and airborne LiDAR for gully erosion estimation is 

presented by [36]. They stress the advantage of high point density of TLS and the preferable bird’s eye 

view from airborne LiDAR to capture data even in deeply incised gullies, which is not possible with 

TLS due to topographic occlusion. Thus, both LiDAR data sources are complementary. They advise to 

capture the main gully system area-wide with high-resolution airborne LiDAR and, additionally, apply 

TLS in areas with narrow gully tributaries. Furthermore, they state that TLS is a suitable and  

cost-effective tool to develop time-series for monitoring of gully erosion processes. 

To sum up, GIS-based geomorphological mapping of cushion peatlands using TLS data is not yet 

fully exploited. However, TLS has already proven a large potential to become a standard tool for 
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multitemporal monitoring of gully erosion. In particular the combination of DEMs from different data 

sources is increasingly gaining interest, such as airborne and terrestrial LiDAR as well as DTMs 

derived from images. 

3. Study Area and Datasets 

3.1. The Cerro Llamoca Study Site 

The study area is located in the province of Lucanas in the western cordillera of the Peruvian Andes 

(Figure 1) in the catchment area of Río Viscas at the foot of Cerro Llamoca (14°10′S, 74°44′W; 

4,450 m a.s.l.). It belongs to the partly dry and humid Puna. This typical vegetation zone in the Andes 

is known for its particular harsh environmental conditions. The Puna is characterized by high diurnal 

temperature amplitudes, frequent frost, high solar radiation, low oxygen concentration, and water 

deficiency [2,4]. At the Cerro Llamoca an annual rainfall of about 200–400 mm per year is measured, 

from which 90% of the precipitation is during austral summer from November to March. Due to these 

conditions, only few plants grow in this vegetation zone. Cushion peatlands are highly adapted to the 

difficult environmental conditions and are mostly situated in this vegetation zone. Although they are 

neither dominated by sphagnum plants nor ombrogenous peats, they are peatlands. The longish 

extension of the Llamoca peatland can be subdivided in five parts: The upper and southern area are 

completely separated from the rest of the peatland and are entirely dried out due to strong erosion. The 

northern area and the lower part are only partly eroded and incised by gullies. The deep incision causes 

a drainage effect that leads to a lack of saturation in the exposed regions and, thus, to a change of the 

vegetation cover. However, the central area is the most intact part of the peatland due to fencing to 

protect it against grazing [4]. 

Figure 1. (a) Location of the study site in the Peruvian Andes (14°10′S, 74°44′W). (b) and 

(c) pictures of the cushion peatland taken during a field trip in 2010.  
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The development of the Llamoca peatland is characterized through the alternation of periods of 

landscape stability with more humid climate and thus peat accumulation on the one hand, and phases 

of extreme events and thereby landscape destabilization on the other hand [4]. The latter had been 

responsible for the genesis of alluvial fans and sediment input. Nevertheless, cushion peatlands are 

able to recover from extreme events. However, anthropogenic influence decreases this ability so that 

erosion increasingly appears. Due to increased grazing, major changes in landscape stability have 

taken place. The reduction of vegetation in the proximity has great influence on the peat matrix, 

resulting in increased surface runoff and sediment flux [1]. Concentrated surface runoff incises gullies. 

This leads to a lower water level and thereby to a less saturated periphery of the peatland [4,10]. 

Through intensified grazing, the ecosystem loses the ability of regeneration and the auto-regulated 

processes of peat degradation are set off. Non-consolidated sediments at the peat surface are essential 

to initiate gully erosion in the Llamoca peatland. 

3.2. LiDAR Datasets and Preprocessing 

The supplied data was collected in August 2010, with the time-of-flight scanner Riegl VZ-400. The 

scanner operates with a narrow near-infrared (1,550 nm) laser beam with 0.3 mrad beam divergence  

(3 mm diameter at 10 m distance) providing up to 122,000 measurements per second. Range 

measurements of up to 400 m distance are possible. The maximum distance strongly depends on target 

reflectivity. The Riegl VZ-400 performs online echo detection where single echoes are derived from 

the waveform during data acquisition. The waveform capability of the system enables the separation of 

several echoes for each emitted laser shot. In this study all online-recorded echoes are used as input for 

further processing. The whole Llamoca peatland area of about 1.8 km2 was captured with 46 scan 

positions and a total of 370 million single laser points (Figure 2).  

Figure 2. LiDAR point cloud view of the cushion peatland and part of the gully system. 

The subfigure shows a cross-section through the point cloud and gives estimates of the 

depth and width dimensions. 
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Figure 3. Scan positions and DTM with 0.5 m cell size derived from 370 million single 

point measurements shown as interpolated and filled shaded relief. The shaded DTM is 

superimposed and colored by elevation where cells contain recorded laser points. Thus, 

filled DTM cells are not colored by elevation in this map. The detailed zoom on the gully is 

outlined by a black rectangle in the shaded relief. 

 

First, a coarse alignment of the scan positions is performed by matching cylindrical reflectors 

scanned with high resolution and by finding corresponding points between overlapping scan positions. 

For further refinement of the overall co-registration, the iterative closest point (ICP) algorithm within 
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the Multi-Station Adjustment (MSA) extension of the RiSCAN PRO software is applied [37]. The 

MSA reports an error (standard deviation) of 3.4 cm, which is sufficient for our gully detection 

analysis. Subsequent filtering and transformation into a DTM with 0.5 m cell size was performed using 

the LiDAR software OPALS [38]. The average point density in the central part of the gully system is 

24 points/m2. Areas close to scan positions or with overlapping data acquisition have significantly 

higher point densities, whereas areas in larger distance have much lower values. A cell size of 0.5 m is 

chosen to achieve a high number of cells over the entire study site containing laser point information. 

DTM generation includes (i) removal of outliers, (ii) derivation of a minimum height raster (0.5 m cell 

size), and (iii) filling of gaps in the minimum height raster by moving planes interpolation of the point 

cloud in a local neighborhood. For the interpolation of a cell value, the nearest 10 laser point neighbors 

are used, which are found in a search radius of 10 m. Cells already containing a minimum elevation 

value are not changed in order to maintain the highest topographic detail. Thus, only nodata cells are 

interpolated by local best fitting planes in each cell center. Larger gaps still occur on the hillslopes 

where larger depressions could not be seen by the LiDAR system. All other data gaps have been 

successfully interpolated during DTM generation (Figure 3). 

4. Methods 

The aim of our GIS-based workflow is to detect and delineate gully channels as polygons at 

individual gully scale. This will enable further detailed studies on gully erosion and fluvial 

morphological analysis by automatic geomorphometric parameter extraction of gully systems. The 

resolution of the input DTM with 0.5 m cell size is sufficient for gully mapping in the Cerro Llamoca 

peatland, as the study site’s gullies clearly exceed 0.5 m in width. The main principle of the method is 

to parameterize a gully as a depression in the terrain surface (i.e., loss of volume due to erosion), and 

additionally having a clear separation from the plateau depicted by a terrain discontinuity, i.e., 

breakline (Figure 2). The outline of the gully polygon shall correspond to a certain upper boundary of 

the gully channel, such as the border between uneroded terrain and the incision.  

The chosen strategy is to make use of edge-based segmentation by breakline detection [20] 

combined with filling of sinks [39,40]. First, the upper breaklines of the gully incision are detected and 

serve as potential outline of the gully. In order to derive the gully as polygon, feature sink filling is 

performed on a conditioned DTM. For this purpose, the thalweg at the bottom of the gully is required 

and extracted from the DTM. Based on the thalweg, the gully system is divided into small patches by 

inserting artificial “dams” orthogonally to the gully thalweg along the gully course. Thereafter, both 

breaklines and small artificial dams at each patch are implemented into the DTM. This conditioned 

DTM is then used for sink filling of each “pool”. The gully outline can be defined by using a threshold 

on fill depth for the artificially filled pools. The workflow is developed in GRASS GIS [41] and the 

main single steps are shown in Figure 4. Preprocessing and DTM generation have been described above 

in Section 3.2. The workflow is followed by a comparison with manually digitized reference data. 

4.1. DTM Conditioning 

Due to the nearly flat peat area and the steep gully slopes, the upper gully edges exhibit a high 

terrain curvature. Geomorphological breakline detection of upper gully edges is performed by the 
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method of [20], which is a curvature-based edge detection procedure. In this approach, a curvature 

raster is calculated by local surface approximation using a bivariate quadric function (cf. [42]). 3D 

breaklines can be derived by setting a threshold on high plan curvature and subsequent skeletonization 

of the masked areas. 

Figure 4. Workflow of GIS-based gully delineation and geomorphometric parameter extraction. 

 

The thalweg is defined as the connecting line of the lowest points inside the gully along the channel 

course [43]. Several studies such as [31,32] assume concavity along the bottom of the gully, which 

does not hold for the Llamoca gullies with predominantly U-shaped erosion channels. The approach  

of [43] to extracting thalweg networks combines the morphological criteria of significant curvature 

(i.e., discontinuous concave areas) and topographic convergence index. To generate the thalweg we 

use the topographic convergence index (TCI), which is defined as the logarithm of the ratio of flow 

accumulation and local slope [44]. Maximum TCI values describe regions with high chance for surface 

runoff. By masking areas with high TCI followed by skeletonization, the thalweg vector line is 

derived. In order to use the thalweg line for generating orthogonal transects, the vector line has to be 

smoothed to suppress effects of micro-topographic structures on the shape of the line. The final 

thalweg line is ready after applying vector line generalization by means of the Snakes algorithm [44]. 

Orthogonal transects, representing the artificial dams to construct pools along the gully channel, are 

constructed every 50 m with a lateral length of 40 m on each side of the thalweg. Shorter distances 

between transects should be chosen if the gully system has high elevation gradients along the channel 

in relation to the height step at the gully edges. In case of the Llamoca gully, the elevation changes 

within 50 m are much lower than the heights of the gully edges. To avoid transects to overlap 

neighboring gully channels, overhanging transect dangles at each side of the gully edges  

(i.e., breaklines) are removed by intersecting the transect lines with the vectorized breaklines. In this 

step, only transects intersecting breaklines on both sides are trimmed automatically by keeping the 

middle transect part. All other transects keep their original length. 
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As the method of filling sinks considers multiple flow directions in the DTM, the raster breaklines 

and transect lines must be grown by one pixel in all directions to prevent the virtual surface water from 

overflowing. Both breaklines and thalweg transect lines are inserted as vertically extended objects into 

the DTM by adding a certain height to the DTM elevation (Figure 5). A height value is applied that 

definitely exceeds the maximum expected gully depth of the study area (here 10 m). This ensures that 

the sink-filling algorithm fills the whole gully volume and not only small local depressions at the gully 

bottom. Results of this processing step are the thalweg line and the modified DTM, which is used as 

input in the next step. 

Figure 5. (a) Shading of original DTM. (b) Shading of modified DTM after insertion of 

breaklines and transects orthogonally to the thalweg by adding a constant height to the 

DTM elevations. The areas colored by fill depths indicate the artificial pools. Highest fill 

depth values are reached in sections that are completely encompassed by detected 

breaklines at the gully edges. 

 

4.2. Gully Delineation 

As outlined above, the DTM conditioned with artificial barriers serves as input for sink filling as 

implemented in GRASS GIS [40]. The conditioning of the DTM prior to sink filling has the advantage 

of providing distinct, detectable boundaries where the gully has clear edges. At the same time, due to 

the sink filling of the artificial gully pools, outlines can be derived even in areas where no clear edges 

are present. The artificially introduced sinks are filled up to the level of the sink spill point. In case of 

pools that are completely encompassed by breaklines and transects, the spill point corresponds to the 

location at the downstream orthogonal transect where the lowest gully channel elevation is present. In 

all other cases the spill point can be found at the gully edge with lowest elevation where no breakline 

was detected (Figure 5). 

Subtracting the input DTM from the filled DTM leads to a raster of fill depth values. Masking areas 

with a fill depth above a certain threshold marks the main gully channel areas and depressions outside 

gullies. The fill depth values correspond to the elevation difference between spill point elevation and 

original DTM elevation. Depth values of gully sections that are completely encompassed by breaklines 

do not have a geomorphological meaning, as they are mainly related to the height of the artificial 

barriers. In case of “open” pools with missing artificial barriers at the edges, the fill depths are determined 

by the elevation of the lowest “open” gully edge. The two possible cases can be seen in Figure 5b. 
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The derived mask still contains the artificial barriers as holes between the single patches. By 

mathematical morphology of closing of the binary raster mask, these gaps are bridged and the patches 

along the gully channel are connected to the final gully polygons. Small isolated sinks can be removed 

by a threshold on polygon area (here <10 m2). 

The medial axis of the gully is the closure of the set of points that have at least two closest points on 

the boundary (cf. [45]). It is derived from the gully polygon by applying the grassfire model. In this 

procedure the raster polygon area is thinned from all sides to a line with one pixel width. Resulting 

bifurcations are removed to derive the medial axis line vector. Analogous to the thalweg, the medial 

axis is smoothed for further application. The results of this step include the vector polygon of the gully 

areas and corresponding medial axes. 

4.3. Gully Morphology 

Descriptive geomorphometric parameters are necessary for understanding the erosion processes and 

the development of gullies in complex cushion peatland systems. The gully channel geometry is 

assessed and quantified through a series of cross-sections orthogonal to the medial axis [18]. The 

lengths of the orthogonal cross-sections and the distance between the cross-sections along the gully 

course have to be chosen in relation to the geomorphological characteristics of the study object. In our 

case the length of the cross-section is adapted automatically as it is determined and limited by the gully 

polygon. The shortest reasonable distance between the cross-sections is determined by the given 

resolution of the DTM. By draping the cross-sections over the LiDAR DTM, 3D lines are generated 

which are the input for assessing the width, depth and cross-sectional area along the gully channel course. 

Furthermore, summarizing the single cross-sections allows for calculating the overall eroded volume. 

4.4. Comparison with Manual Reference Data 

Automatic geomorphological mapping results may differ strongly from manual digitization. In 

order to compare and evaluate the proposed method, the approach of [20] is applied, where a rich 

reference dataset is produced through manual digitization based on shaded reliefs of the LiDAR DTM. 

The operators were asked to digitize the outline of the gully as polygon feature. Nine reference datasets 

are available. The automatic delineation is performed 6 times with varying fill depth thresholds of  

0.5 m, 1.0 m, 1.5 m, 2.0 m, 2.5 m, and 3.0 m. 

First, the statistics of area values of the automatically detected polygons is analyzed regarding the 

effect of different fill depth thresholds. Second, the area values of the manually digitized reference 

polygons are investigated regarding different interpreters. Third, the automatic extraction with a fill 

depth threshold of 0.5 m is compared and spatially intersected with the maximum (by spatial union) 

and minimum polygon (by spatial intersection) of all reference datasets. 

5. Results and Discussion 

This section gives detailed insight into the results of the developed methodology and discusses the 

findings of the study. As indicated in Figure 4, our approach comprises several results, which can be 
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used directly for geomorphological quantification and interpretation. Additionally, they can be taken as 

input for further gully system analyses and simulations. 

5.1. Gully Detection 

The conditioning of the DTM implements breaklines and artificial dams orthogonally to the 

thalweg. The curvature-based breakline detection, already applied successfully to airborne LiDAR  

data [19,20], is able to detect distinct upper gully edges in the TLS DTM. In this step, a local window 

size of 9 by 9 cells and a curvature threshold of 0.2 have shown best results after manual testing  

of parameter combinations. In general, the optimum parameter set depends on gully shape  

(e.g., U-shaped) and the input DTM (e.g., resolution, scan geometry, and platform; [36]), and, thus, is  

site-specific. It is advisable to include an automatic threshold selection prior to breakline detection in 

case of transfer of the workflow to other study areas, data sources, gully characteristics, and so forth. 

This could be done by defining training edges and an accuracy metric to find optimal values [20]. 

The breakline detection outlines all convex surface discontinuities in the DTM (Figure 6). Due to 

the combination with sink filling, further breakline classification and removal are not required at this 

point. However, breaklines of gully incisions can easily be classified after gully detection using a 

distance threshold (e.g., buffer) between breakline and gully polygons. 

Figure 6. Breakline detection: Areas with high curvature are marked and resulting 

breaklines are shown. Not all parts of the gully are denoted by sharp edges and thus 

detected breaklines. 

 

Breaklines are not found in areas where the gully has a smooth transition to the peatland plateau, as 

shown in Figure 6 in the northeastern part. Furthermore, breaklines cannot be detected in areas where 

the gully bottom has not been captured by the ground-based survey. Thus, the incision shape is not 

apparent in the DTM. In [14], it is stated that the DTM error is strongly influenced by the position of 

the scan locations relative to the morphology being surveyed. Additionally, the effect of occlusion has 

large impact on accuracy and morphological quality of the DTM, leading to data gaps that have to be 

interpolated in DTM generation [36]. Figure 7 highlights the effect of occlusion and shows detected 

breaklines in areas with interpolated data gaps. Our approach does not necessarily require breaklines 

on both sides of the gully channel. Although no complete elevation cross-profile of the incision is 
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available, the gully outline detection succeeds due to the additional sink-filling step. However, too 

much missing gully channel information cannot be compensated by a detection approach relying on 

DTM information and leads to disconnected gully areas. The detected fragments need to be connected 

in a postprocessing step, such as in [33,43]. Data gaps are also caused by presence of water, which 

absorbs most of the near-infrared laser beams. Such laser shot dropouts could be modeled and used as 

additional input for gully detection [46]. 

Figure 7. (a) Occlusion effect in case of ground-based LiDAR leading to data gaps that 

have to be interpolated. (b) Missing gully shape information leads to smooth interpolated 

areas without distinct breaklines, e.g., on the southern side of the shown gully channel. 

 

The thalweg detected by reclassifying the TCI serves as input for the implementation of the virtual 

orthogonal barriers. By reclassifying the TCI values and further processing (e.g., simplification) the 

thalweg can be extracted successfully in areas where the gully bottom morphology is present in the 

DTM. To limit the gully detection to the main channel system, a TCI threshold of >9 was assessed by 

visual inspection of the TCI raster (Figure 8). 

Figure 8. Topographic convergence index (TCI) raster for extracting the thalweg of the gully. 
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The gully outline polygon is clearly defined in areas with sharp edges and breaklines (i.e., “closed” 

pools), whereas the sink filling determines the exterior outline in areas with smooth transitions 

between the gully bottom and the peatland plateau (i.e., “open” pools). In these areas, the gully edge is 

not well defined by elevation and exhibits a certain fuzzy boundary zone. GIS-based mapping of 

distinct objects implies defined object boundaries. Our approach enables the derivation of fuzzy object 

outlines and to model smooth transitions by varying the minimum fill depth threshold. In case of high 

values for the threshold of fill depth, only the deeply incised gully parts are delineated leading to 

narrower gully polygons. At lower thresholds, and, thus, fill depth, the gullies are wider in areas 

without a clear jump in elevation at the edge. In case of “open” pools, the fill depth is determined by 

the elevation of the spill point at the gully boundary where no breaklines were detected. Thus, only 

gully areas below this elevation exhibit a fill depth above zero. The distance between the orthogonal 

transects has to be chosen with regard to the upstream elevation gradient of the upper gully edge and 

the gully bottom. In our study area a distance value of 50 m between the orthogonal transects is 

appropriate because the elevation changes of edge and gully bottom within a single artificial pool are 

smaller than the incision depth of the gully. 

Figure 9 shows the sensitivity of the delineation approach in relation to the threshold on minimum 

fill depth and gully edge characteristics. Fuzzy boundaries can be recognized at the fluvial terraces in 

the eastern part of the gully, which were probably formed by various extreme events. In general, it can 

be stated that the selection of the appropriate threshold depends on the geomorphological research 

question and application (e.g., volume estimation or monitoring of gully edges). 

Figure 9. Derived gully polygons with varying threshold on minimum fill depth after sink 

filling. Fuzzy gully outlines are present in areas with a smooth transition between channel 

and peatland plateau. 

 

Based on the gully polygon the medial axis is derived (Figure 10). Although the medial axis has no 

geomorphological function, it is a valuable input for the following generation of cross-sections along 

the gully course. 
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Figure 10. Medial axis of gully delineation using a minimum fill depth threshold of 0.5 m 

(cf. Figure 9). The medial axis from east to west is used as profile line for Figure 11. 

 

5.2. Gully Morphology 

Additionally to the gully channel area and length, information on variations in gully width, depth, 

cross-sectional area and thus volume along the course is provided by the developed workflow. The 

main gully system of the Llamoca peatland is characterized by significant variation of gully width. The 

values of width range between 3.5 m and 51 m. A similar variation can be observed for maximum 

gully depth varying from 2.4 m up to 7.5 m. Investigating width or cross-sectional area (Figure 11) 

together with slope gradient along the thalweg helps to identify vulnerable gully sections with higher 

probability of lateral and vertical erosion in case of extreme runoff events. 

Figure 11. Profile of cross-sectional area sampled in 10-meter-distance intervals along a 

selected gully channel section. The profile line is taken along the medial axis shown in 

Figure 10. 
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5.3. Comparison with Manual Reference Data 

The maximum and minimum extents of the nine manual reference outlines are displayed in Figure 12, 

together with an automatically extracted gully delineation. Already visually, one can clearly depict 

high correspondence of automatic extraction and reference in areas with well-defined edges. Distinct 

edges support manual mapping based on shaded reliefs as well as automatic delineation. In contrast, 

the areas with smooth transitions show high variation of the boundary locations in the reference 

datasets and in the six automatically extracted outlines using different fill depth thresholds (Figure 9). 

Figure 12. Comparison of reference gully delineations with an automatic extraction (0.5 m 

depth threshold).  

 

The gully polygon with minimum area is derived with the highest threshold (3 m) on depth and the 

maximum area with the lowest depth threshold (0.5 m). Looking at the descriptive statistics in Table 1, 

a lower variation in areal extent is present in the automatically derived polygons (8.6%) than in the 

manual reference datasets (13.0%). This is confirmed in the area of intersection of all polygons of each 

dataset stack, where the combined intersection of all manual references accounts for 62.8% of the 

mean polygon area, compared to 89% in the automatic extraction. The minimum area accounts only 

for 53% of the maximum area in the reference datasets. The minimum area of the automatic 

delineation exhibits almost 79% of the maximum polygon area. There is high correspondence between 

mean area value of automatic and manual extraction. The automatically extracted mean value reaches 

92.5% of the manual area value. 

The spatial comparison of the automatic extraction (fill depth threshold of 0.5 m) with the 

combined maximum (spatial union) and minimum (spatial intersection) polygon of the reference 

datasets reveals a high correspondence. Most of the automatically delineated area (99.8%) intersects 

with the maximum reference polygon, which can also be clearly seen in Figure 12. Almost the entire 

minimum reference polygon (99.5%) is covered by the automatic delineation. However, the automatic 

extraction covers only 79.7% of the maximum reference extent. Furthermore, it overestimates the gully 

area by a factor of 1.7 in relation to the minimum reference extent. From this evaluation it can be 

concluded that the automatic extraction corresponds very well to results derived by manual digitization 

and lies within the spatial boundaries of minimum and maximum extent of the reference polygons. 
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Table 1. Descriptive statistics of nine reference datasets and six automatically extracted 

gully polygons. The evaluation site is shown in Figure 12. 

 Automatic Extraction Manual Reference 

No. of polygons 6 9 

Min. polygon area [m2] 6919 5284 

Max. polygon area [m2] 8773 9919 

Mean polygon area [m2] 7777 8411 

Std. deviation polygon area [m2] 665 1097 

Coefficient of variation of area [%] 8.6 13.0 

Min. area relative to max. area [%] 78.9 53.3 

Area of spatial intersection of all polygons [m2] 6919 5284 

Area of spatial union of all polygons [m2]  8773 10991 

6. Conclusions and Future Work 

Since gully erosion is a frequent phenomenon in highly sensitive ecosystems such as cushion 

peatlands, development of improved gully mapping methods and the derivation of geomorphometric 

parameters are essential. This paper presents the first study on automatic GIS and LiDAR-based 

detection and delineation of gully channels in a high altitude and remote cushion peatland in the 

Peruvian Andes. 

The developed method uses a combination of breakline detection and sink filling based on a 

conditioned DTM. This is particularly beneficial in areas with smooth transitions and several small 

terraces depicting the border between gully channel and peatland plateau. Furthermore, the method can 

delineate channels even if gully bottoms have been captured only partly due to topographic occlusion 

of the laser scan. Fully occluded channel bottoms remain a challenge in terrestrial LiDAR data 

analysis, independently of the mapping method. The comparison of automatic gully extraction and 

manually digitized reference polygons reveals a high correspondence (93%) in polygon area values 

and in the spatial comparison derived by polygon intersection. The automatically derived gully 

delineation lies within the maximum and minimum digitized extents. 

The introduced multi-step GIS workflow generates various results that can serve as input for 

multitemporal monitoring and gully system modeling. Results include the thalweg, medial axis, gully 

delineation and several geomorphometric channel parameters along the channel course (e.g., width, 

depth and cross-sectional area). In principle, the workflow can be transferred to other study areas and 

input DTMs with the necessity of tuning algorithm parameters and thresholds. 

Future work will concentrate on the investigation of optimizing terrestrial LiDAR data acquisition 

for multitemporal gully channel monitoring by setting up guiding principles for field surveys. The 

impact of scan geometry, point sampling density and DTM resolution on gully delineation accuracy 

and morphometric parameters will be assessed. The full potential of TLS for cushion peatland studies 

is still underexploited. Radiometric backscatter values provided by full-waveform TLS offer promising 

complementary information to monitor geomorphology and also vegetation in cushion peatlands. 

Furthermore, future research should include the complementary advantages of multi-source 3D 

sensing, such as combining terrestrial LiDAR to capture steep slopes with airborne 3D data acquisition 

(e.g., UAV-based) in order to achieve a complete morphological shape of the objects of interest. 
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