
Remote Sens. 2013, 5, 5369-5396; doi:10.3390/rs5105369 
 

Remote Sensing 
ISSN 2072-4292 

www.mdpi.com/journal/remotesensing 

Article 

Derivation of Daily Evaporative Fraction Based on Temporal 
Variations in Surface Temperature, Air Temperature, 
and Net Radiation 

Jing Lu 1,2, Ronglin Tang 1, Huajun Tang 3,* and Zhao-Liang Li 3,4 

1 State Key Laboratory of Resources and Environmental Information System, Institute of Geographic 

Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; 

E-Mails: lujingljx@126.com (J.L.); trl_wd@163.com (R.T.) 
2 University of Chinese Academy of Sciences, Beijing 100049, China 
3 Key Laboratory of Agri-informatics, Ministry of Agriculture/Institute of Agricultural Resources and 

Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China 
4 ICube, UdS, CNRS, Bld Sebastien Brant, BP10413, Illkirch 67412, France; E-Mail: lizl@unistra.fr 

* Author to whom correspondence should be addressed; E-Mail: hjtang@caas.cn; 

Tel.: +86-10-8210-9395;  

Received: 30 August 2013; in revised form: 25 September 2013 / Accepted: 9 October 2013 /  

Published: 22 October 2013 

 

Abstract: Based on surface energy balance and the assumption of fairly invariant 

evaporative fraction (EF) during daytime, this study proposes a new parameterization 

scheme of directly estimating daily EF. Daily EF is parameterized as a function of 

temporal variations in surface temperature, air temperature, and net radiation. The 

proposed EF parameterization scheme can well reproduce daily EF estimates from a  

soil-vegetation-atmosphere transfer (SVAT) model with a root mean square error (RMSE) 

of 0.13 and a coefficient of determination (R2) of 0.719. When input variables from in situ 

measurements at the Yucheng station in North China are used, daily EF estimated by the 

proposed method is in good agreement with measurements from the eddy covariance 

system corrected by the residual energy method with an R2 of 0.857 and an RMSE of 

0.119. MODIS/Aqua remotely sensed data were also applied to estimate daily EF. Though 

there are some inconsistencies between the remotely sensed daily EF estimates and in situ 

measurements due to errors in input variables and measurements, the result from the 

proposed parameterization scheme shows a slight improvement to SEBS-estimated EF with 

remotely sensed instantaneous inputs. 
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1. Introduction 

Estimation of evapotranspiration (ET) using remotely sensed data has been a significant topic 

because of the capability of remote sensing to quickly obtain surface information at large spatial scales 

with less cost [1–6]. Current models for ET estimation from remotely sensed data, e.g., the surface 

energy balance system (SEBS), the surface energy balance algorithm for land (SEBAL), and  

two-source models, depend primarily on observations at the satellite overpass time [7–10]. Because of the 

influences of atmosphere, observational angular, heterogeneous surfaces, and scale issues, there are some 

uncertainties in retrieved surface variables from remote sensing [11–13]. Therefore, the accuracy of ET 

estimates could be largely subjected to retrieval errors in remotely sensed surface variables [14–16].  

Evaporative fraction (EF) is an important index for partitioning surface available energy (Q). A 

number of studies based on in situ measurements as well as analyses from land process modeling 

showed that EF exhibits a typical concave-up shape and is relatively stable during daytime [17–21]. 

Therefore, the constant EF method is often used to estimate daily ET from remotely sensed data, which 

converts the instantaneous ET at the satellite overpass time to daily values under the assumption of 

self-preservation of EF in a diurnal cycle [22–25]. EF at the instantaneous scale can be calculated by 

latent heat flux (LE) and Q from remotely sensed data. Some methods of estimating EF directly from 

remote sensing have been developed, in which the feature space method is one of the representative 

parameterizations [26,27]. Directly parameterizing EF can obviate uncertainties caused by the 

calculation of various resistances [28]. Because the temporal variation of surface variables is less 

sensitive to the retrieval errors [29,30], the day-night surface temperature difference from MODIS global 

daily products and the change rate of surface temperature during the morning from MSG-SEVIRI data 

and FY-2C data were used to construct the triangle feature space to improve EF estimation [31–33]. 

However, determination of the dry and wet edges in triangle feature space depends on the domain size 

and the spatial resolution of remotely sensed images [34,35], which could result in more uncertainties.  

The major objective of this study is to develop a new parameterization scheme for directly 

determining daily EF from temporal variations in surface variables. The proposed method will resolve 

uncertainties in EF estimation caused by errors in remotely sensed variables. Using simulation from an 

atmosphere-land exchange (ALEX) model [36], a new EF parameterization scheme is proposed in 

Section 2. The inputs from in situ measurements at the Yucheng station in North China and the 

MODIS products are also used to analyze performance of the proposed EF method. Data are described 

in Section 3. Results will be discussed in Section 4. To further demonstrate that the EF estimate from 

temporal variation is less sensitive to the retrieval error of remotely sensed data, daily EF estimates 

from remotely sensed data are also compared with the result from the SEBS model with instantaneous 

inputs. Finally, some conclusions are given in Section 5. 
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2. Method 

2.1. Background of Theory 

2.1.1. Radiometric Heat Conductance Prad  

According to the boundary similarity theory, it is the aerodynamic temperature (Taero) which 

determines the loss of sensible heat flux (H) from a surface [37]. Taero is defined as the extrapolation of 

the air temperature profile down to an effective height within the canopy at which the vegetation 

components of heat fluxes arise [38,39], but it is not an easily measured variable in reality. For H 

estimates, Taero is often replaced by surface radiative temperatures (Ts) by adding supplementary 

resistance, defining a radiometric exchange coefficient, or constructing the relationship between Taero 

and Ts [39–41]. In this study, H is expressed by 

rad a( )sH P T T= −  (1)

where Ta is the air temperature (K); Prad is defined as radiometric heat conductance corresponding to Ts 

or the heat transfer efficiency (W/(m2·K)). Figure 1 shows relationships among the values of Prad for 

different atmospheric conditions. Data are from the simulation by ALEX. Atmosphere forcing data and 

details about ALEX-based simulations can be found in Appendix. The majority of Prad vary from  

0–100 W/(m2·K). When the wind speed is the same, the root mean square error (RMSE) caused by the 

variations of atmosphere conditions is ~9 W/(m2·K), and the coefficient of determination (R2) is  

~0.9. This result indicates that the variation of atmospheric conditions could not lead to serious error  

in Prad estimates.  

Figure 1. Relationships among the values of Prad for different atmospheres under clear 

days but for the same wind speed observations from the measurements at the Yucheng 

station on 24 April 2010 (Data are from the simulation by ALEX under different vegetation 

cover and soil water content conditions for each atmosphere, and atmosphere forcing on 

three representative days was measured at the Yucheng station on 24 April (DOY 114), 29 

May (DOY 149), and 21 July (DOY 202) 2010, which can be found in Appendix. Prad is 

calculated by simulated H and Ts − Ta.) 
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Figure 2a shows the variation of Prad in a diurnal cycle for the same atmospheric condition but with 

different wind speed. Because wind speed is the major driving force for heat transfer, the magnitude of 

Prad is determined primarily by wind speed. For the same surface condition, high wind speed results in 

a large value in Prad. It is evident that given a certain wind speed, Prad mainly increases with increasing 

fc (see Figure 2b). This is because the roughness length for heat transfer at the vegetated surface is 

generally larger than that at the bare soil surface [37]. As a result, Prad is higher at the surface with 

dense vegetation cover than the bare soil surface. The conclusion of the dependence of Prad on wind 

speed and fc is similar to the studies from Carlson et al. and Lagouarde et al. [42,43]. They concluded 

that the heat conductance is highly sensitive to wind speed, roughness, and vegetation amount. 

Figure 2. Variation of Prad in a diurnal cycle (a) for the same atmosphere and surface 

conditions but with various wind speeds (Atmosphere forcing data, including air temperature, 

water vapor pressure, incoming solar radiation, etc., are from the measurements at the 

Yucheng station on 24 April 2010 (DOY 114). Fractional vegetation cover (fc) is 0.5, and 

soil water content (SWC) is 0.21 m3/m3. WH denotes the high wind speed condition, which 

is from the measurement at the Yucheng station on 24 April 2010, and the maximum wind 

speed during the day is 6.1 m/s; WM represents the medium wind speed condition from the 

measurement on 29 May 2010 (DOY 149), and the maximum wind speed is 3.6 m/s; WL 

denotes the low wind speed condition measured on 21 July 2010 (DOY 202), and the 

maximum wind speed is 1.3 m/s) and (b) for the same atmosphere and wind speed but with 

different fractional vegetation cover (atmosphere and wind speed are from the 

measurements at the Yucheng station on 24 April 2010). 

Referencing the study of Carlson et al. [44], it can be inferred from Figure 3 that Prad approximately 

linearly varies with fc when wind speed is given. The variation in Prad along the vertical axis is caused 

by soil water content (SWC). For the same atmospheric condition, the RMSE in Prad caused by the 

approximation of linear function of fc is ~5 W/(m2·K), i.e., the variation in Prad due to soil water 

content is ~5 W/(m2·K). Although soil water content is certainly a critical variable that controls the 

partitioning of surface available energy into H and LE, the role of SWC on Prad is not significant. This 

is because radiative Ts can reflect surface soil moisture to a certain degree [39].  
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Figure 3. Relationship between Prad and fc for three atmosphere conditions at the Yucheng 

station on 24 April (DOY 114), 29 May (DOY 149) and 21 July (DOY 202) 2010  

(Prad s calculated by simulated H and Ts − Ta at 10:30 A.M.) 

 

2.1.2. Diurnal Cycle of EF 

EF is generally defined as the ratio of LE to Q. Therefore, EF at any time t in a day can be 

expressed by 

n

( )
( )

( ) ( )

LE t
EF t

R t G t
=

−
 (2)

where Rn is the net radiation (W/m2); G is the soil heat flux (W/m2); Rn − G is the surface available 

energy, i.e., Q. A large number of studies indicated that EF during daytime about from 9:00 to 15:00 is 

relatively stable [17,24,45]. The cases for different surface and atmospheric conditions shown in 

Figure 4 also demonstrate this conclusion. Atmospheric status is generally more stable in the morning 

than in the afternoon. Therefore, EF during the morning from about 9:00 to 12:00 is relatively steadier 

than those values during the afternoon. In this study, daily average EF, daytime average EF, and 

morning average EF are calculated by the following Equations (3–5), respectively. 

daily
daily

n_daily

LE
EF

R
=  (3)

9:00 15:00
daytime

n_9:00 15:00 9:00 15:00

LE
EF

R G
−

− −

=
−  (4)

9:00 12:00
morning

n_9:00 12:00 9:00 12:00

LE
EF

R G
−

− −

=
−  (5)

From ALEX-simulated data driven by the atmospheric forcing at the Yucheng station in 2010 

(details about data can be found in Appendix), the conclusion that daily average EF can be related to 

daytime average EF and morning average EF for the majority of cases can be justified (see red and 

green symbols in Figure 5a). Some dispersed data mainly occur under the atmospheric condition on 26 
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March 2010 (DOY 85). This may be related to relatively low air humidity on this day (see Figure A1a 

in Appendix). Under the low humidity condition, the assumption of self-preservation EF may not be 

valid, e.g., Gentine et al. concluded that the self-preservation of daytime EF is mainly constrained to 

high humidity and solar radiation [19]. The daily average EF from in situ measurements at 

the Yucheng station during the wheat growth period in 2012 (details about data can be found in 

Section 3.2) is generally greater than the EF during daytime (see Figure 5b). Because of the relatively 

invariant EF during daytime, daily average EF is further related to an instantaneous EF at 10:30 A.M. 

(see blue triangles in Figure 5), and the RMSE is within 0.2. Therefore, daily average EF can be 

estimated by an instantaneous EF during daytime or during the morning to a certain degree, especially 

under the conditions of clear skies, humid air, and strong solar radiation. 

Figure 4. Diurnal cycle of EF driven by atmospheric forcing obtained at the Yucheng 

station (a) on 24 April (DOY114), and (b) on 21 July (DOY 202) 2010 (The horizontal 

lines with different color correspond to daily average EF for each case). 

Figure 5. Relationships between daily average EF and EF at different times in one day for 

(a) ALEX-simulated data driven by the atmospheric forcing at the Yucheng station in 2010, 

and (b) in situ measurements at the Yucheng station during the wheat growth period in 2012. 
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2.2. Parameterization for EF Based on SVAT Modeling 

The surface energy balance equation at any time t in a day can be written as 

n( ) ( ) ( ) ( ) ( ) ( )LE t R t G t H t Q t H t= − − = −  (6)

The derivative of Equation (6) with respect to t can be written as, 

dLE dQ dH

dt dt dt
= −  (7)

Combining with Equation (1), if atmosphere and surface properties do not change greatly during a 

short study period of dt, the following equation can be derived: 

a
rad1 1 ( )sdT dTdLE dQ dH dQ dQ

P
dt dt dt dt dt dt dt

= − = − −  (8)

Q is the difference of Rn and G. G is frequently parameterized as a function of the vegetation index and 

Rn [9,46], i.e., 

n c c c s( (1 ) )G R f f= Γ + − Γ  (9)

where cΓ  and sΓ  are the ratio of G to Rn for full vegetation cover and bare soil, respectively. Values 

of cΓ  generally range between 0.05 and 0.1, and sΓ  varies from 0.2 to 0.5 [47]. From Equation (9), it 

can be obtained that n c c c s(1 ( (1 ) ))Q R f f= − Γ + − Γ . Therefore, dQ/dt in Equation (8) can be replaced by 

the variation of net radiation (dRn/dt) with a linear function of fc, and 1/(dQ/dt) in Equation (8) can be 

then approximated by (afc+b) /(dRn/dt). As analyzed in Section 2.1.1, Prad mainly changes with the 

wind speed and fc, and can be assumed as a linear function of fc given a wind speed, i.e., Prad = cfc + d. 

As a result, Equation (8) becomes 

2 a n
c c1 ( ) ( )sdT dT dRdLE dQ

A f B f C
dt dt dt dt dt

= − × + × + −  (10)

where A, B, and C are coefficients depending primarily on atmospheric conditions. Because EF is 

relatively invariant during daytime (dEF/dt ≈ 0), especially during the morning time, Equation (10) can 

be approximated as EF at time t during the morning, i.e., 

2 a n
c c

( )
( ) 1 ( ) ( )

( )
sLE t dT dT dRdLE dQ

EF t A f B f C
dt dt dt dt dtQ t

= = = − × + × + −  (11)

Ts, Ta, and Rn on cloud-free days generally vary linearly with time during the morning about from  

1.5 h to 4.5 h after sunrise [29,32] (see bold red, green, and blue lines in Figure 6), so their change 

rates with time during the morning can be used in Equation (11). In addition, daily average EF can be 

approximated by morning EF or an instantaneous EF during the morning as illustrated in Section 2.1.2. 

Therefore, the following equation is derived, 

2 a
daily morning c c

n

( ) ( )
( ) 1 ( )

( )
sT t T t

EF EF EF t A f B f C
R t

′ − ′≈ ≈ = − × + × +
′

 (12)

where Ts′(t), Ta′(t), and Rn′(t) are change rates of Ts, Ta, and Rn during the morning about from 1.5 h to 

4.5 h after sunrise, i.e., the slopes of linear relationships or the derivative of linear functions.  
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Figure 6. Variations of (a) Ts and Ta, and (b) Rn during a diurnal cycle for an ALEX-simulated 

case given fractional vegetation cover (fc) of 0.5 and soil water content (SWC) of  

0.21 m3/m3 and the atmospheric forcing at the Yucheng station on 24 April (DOY 114) 

2010. The bold red, green, and blue lines denote the approximately linear variations of Ts, 

Ta, and Rn during the morning about from 1.5 h–4.5 h after sunrise. delt_Ts, delt_Ta, and 

delt_Rn are the differences of Ts, Ta, and Rn between 1:30 P.M. and 1:30 A.M., 

respectively. The sunrise is 5:30 A.M., and the sunset is 6:30 P.M. on 24 April. 

From the analysis based on the ALEX-simulated data, there is a strong linear correlation between 

the values of (Ts′(t) − Ta′(t))/Rn′(t) and (ΔTs − ΔTa)/ ΔRn (see Figure 7a, ΔTs, ΔTa, and ΔRn are the 

differences of Ts, Ta, and Rn between 1:30 P.M./10:30 A.M. and 1:30 A.M./10:30 P.M., respectively.). 

From in situ measurements at the Yucheng station during the wheat growth period in 2012, the similar 

results are obtained (see Figure 7b). The values of (Ts′(t) − Ta′(t))/Rn′(t) are almost positively 

proportioned to the values of (ΔTs − ΔTa)/ΔRn, and R2 of linear least square fit is greater than 0.8 (see 

Table 1). The purpose of selecting these moments at 1:30 P.M./10:30 A.M. (MODIS/Aqua or 

MODIS/Terra daytime overpass time) and 1:30 A.M./10:30 P.M. (MODIS/Aqua or MODIS/Terra 

nighttime overpass time) was to make this method applicable to MODIS data. The underlying physical 

mechanism of the linear correlation between (Ts′(t) − Ta′(t))/Rn′(t) and (ΔTs − ΔTa)/ΔRn is that the 

change rate of Ts during the morning and its day-night difference are all strongly related to soil 

moisture or thermal inertia [48]. Therefore, daily EF can be parameterized as Equation (13) as follows, 

2 a
daily c c

n

1 ( ) sT T
EF A f B f C

R

Δ − Δ≈ − × + × +
Δ

 (13)

It is noted that Equations (12,13) have a similar form but with different inputs (i.e.,  

(Ts′(t) − Ta′(t))/Rn′(t) or (ΔTs − ΔTa)/ ΔRn). Therefore, coefficients A, B, and C in Equation (13) are 

different from the values of A, B, and C in Equation (12). For estimating daily EF by Equation (12), 

geostationary meteorological satellites could provide a good estimate of (Ts′(t) − Ta′(t))/Rn′(t), whereas 

Equation (13) can accommodate near-polar orbiting satellite data, e.g., MODIS/Terra, MODIS/Aqua. 

The same location on the Earth can be observed at least four times around 1:30 A.M, 10:30 A.M., 1:30 

P.M., and 10:30 P.M. at local solar time in a day by the MODIS sensor. As a result, there are four 

different input schemes for Equation (13), i.e., the differences between 1:30 P.M. and 1:30 A.M., the 

differences between 10:30 A.M. and 10:30 P.M., the differences between 10:30 A.M. and 1:30 A.M., 
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and the differences between 1:30 P.M. and 10:30 P.M.. Different input schemes have different 

coefficients. For convenience, Equation (13) also represents Equation (12) in the following study. 

Theoretically, the coefficients in Equation (13) would vary with atmospheric conditions. For each 

atmosphere, coefficients can be obtained by using data with different fc and SWC conditions simulated 

from a soil-vegetation-atmosphere transfer (SVAT) model, and the procedure for obtaining 

coefficients is shown in Figure 8. In this study, the ALEX model is used. More details about ALEX 

simulation can be referred to in Appendix. Only the data of daily EF larger than 0 and less than 1 were 

selected to derive the coefficients in Equation (13) by the least square method. After obtaining the 

coefficients, daily EF can be calculated by Equation (13). For ALEX-simulated data driven by 

different atmospheric conditions from four sites (details about atmospheric forcing and these sites are 

given in Appendix), results from Equation (13) with different input schemes for four sites are listed in 

Table 2. The R2 of daily EF estimates from the developed parameterization scheme with respect to the 

values from the ALEX model is generally higher than 0.8, and the RMSE is ~0.1. Among all input 

schemes, the inputs from the differences between 1:30 P.M. and 1:30 A.M. (around MODIS/Aqua 

daytime and nighttime overpass times) can generate better results than other inputs schemes.  

Figure 7. Relationship between the values of (Ts′(t) − Ta′(t))/Rn′(t) and (ΔTs − ΔTa)/ ΔRn for 

(a) ALEX-simulated data driven by the atmospheric forcing at the Yucheng station in 2010, 

and (b) in situ measurements at the Yucheng station during the wheat growth period in 2012. 

Table 1. Statistics of relationships between the values of (Ts′(t) − Ta′(t))/Rn′(t) and  

(ΔTs − ΔTa)/ ΔRn (Y denotes the value of (Ts′(t) − Ta′(t))/Rn′(t), and X is the value of  

(ΔTs − ΔTa)/ ΔRn). 

Data Inputs Linear Relationships R2 RMSE 

ALEX-simulated data 

Aqua daytime-Aqua nighttime Y = 0.6619X − 0.0003 0.808 0.0047 

Terra daytime-Terra nighttime Y = 1.3435X − 0.0046 0.874 0.0038 

Terra daytime-Aqua nighttime Y = 1.0790X − 0.0017 0.882 0.0037 

Aqua daytime-Terra nighttime Y = 0.7858X − 0.0023 0.821 0.0045 

In situ measurements 

Aqua daytime-Aqua nighttime Y = 0.6066X − 0.0021 0.891 0.0029 

Terra daytime-Terra nighttime Y = 0.7854X − 0.0001 0.827 0.0036 

Terra daytime-Aqua nighttime Y = 0.8130X − 0.0006 0.853 0.0033 

Aqua daytime-Terra nighttime Y = 0.5996X − 0.0017 0.894 0.0028 
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Figure 8. Flow chart for obtaining the coefficients in Equation (13) using the  

SVAT-simulated data. 

 

Table 2. Results from Equation (13) with different input schemes for ALEX-simulated 

data driven by different atmospheric conditions from four sites. 

Sites Inputs R2 RMSE BIAS 

Yucheng 

Change rate during the morning 0.817 0.107 0.020 

Aqua daytime-Aqua nighttime 0.878 0.083 −0.002 

Terra daytime-Terra nighttime 0.810 0.103 −0.001 

Terra daytime-Aqua nighttime 0.869 0.086 0.007 

Aqua daytime-Terra nighttime 0.835 0.098 −0.009 

Goodwind 

Change rate during the morning 0.806 0.106 0.023 

Aqua daytime-Aqua nighttime 0.847 0.093 0.019 

Terra daytime-Terra nighttime 0.787 0.129 0.045 

Terra daytime-Aqua nighttime 0.826 0.106 0.029 

Aqua daytime-Terra nighttime 0.840 0.098 0.023 

Cottonwood 

Change rate during the morning 0.787 0.124 0.029 

Aqua daytime-Aqua nighttime 0.877 0.087 0.008 

Terra daytime-Terra nighttime 0.839 0.100 0.009 

Terra daytime-Aqua nighttime 0.850 0.111 0.033 

Aqua daytime-Terra nighttime 0.860 0.093 −0.007 

Audubon 

Change rate during the morning 0.827 0.101 0.001 

Aqua daytime-Aqua nighttime 0.858 0.092 −0.005 

Terra daytime-Terra nighttime 0.737 0.137 0.034 

Terra daytime-Aqua nighttime 0.837 0.104 0.019 

Aqua daytime-Terra nighttime 0.823 0.103 −0.005 

Coefficients A, B, and C obtained by the least square method for five input schemes and 35 

atmospheric forcing from four sites are displayed in Figure 9. It is obvious that coefficients A and B 
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strongly vary with the different atmospheres, whereas coefficient C is almost invariant with 

atmosphere. In addition, it can be observed that the increase of B corresponds to the decrease of C, and 

vice versa for many cases. Therefore, an approximate negative relationship between B and C can be 

inferred. Coefficients A, B, and C in Equation (13) can be assumed to be invariant to a certain degree 

for all selected atmospheric conditions. When the invariant A, B, and C are obtained by fitting all 

ALEX-simulated data for 35 atmospheric conditions, daily EF for different input schemes is finally 

parameterized as those equations listed in Table 3. 

Figure 9. Variations of coefficients A, B, and C in the developed parameterization with 

atmospheric conditions for five different input schemes. 
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Table 3. Equations of daily EF estimates for different input schemes. 

Inputs Equations  

Change rate during the morning 
2 s a

daily c c
n

( ) ( )
1 (2.06 38.42 15.74)

( )

T t T t
EF f f

R t

′ − ′= − × + × +
′

 (14) 

Aqua daytime-Aqua nighttime 
2 s a

daily c c
n

1 ( 14.74 40.01 14.57)
T T

EF f f
R

Δ − Δ
= − − × + × +

Δ
 (15) 

Terra daytime-Terra nighttime 
2 s a

daily c c
n

1 ( 87.38 83.11 27.19)
T T

EF f f
R

Δ − Δ
= − − × + × +

Δ
 (16) 

Terra daytime-Aqua nighttime 
2 s a

daily c c
n

1 ( 57.02 71.17 21.58)
T T

EF f f
R

Δ − Δ
= − − × + × +

Δ
 (17) 

Aqua daytime-Terra nighttime 
2 s a

daily c c
n

1 ( 37.35 49.30 17.45)
T T

EF f f
R

Δ − Δ
= − − × + × +

Δ
 (18) 

Figure 10. Comparisons of daily EF estimated by Equations (14–18) with ALEX-simulated 

actual values based on 35 atmospheric conditions from four sites ((a) is for the inputs of 

change rate during the morning, (b) is for the differences between Aqua daytime and 

nighttime, (c) is for the differences between Terra daytime and nighttime, (d) is for the 

differences between Terra daytime and Aqua nighttime, and for the differences between 

Aqua daytime and Terra nighttime.) 
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For all simulated data from the ALEX model based on 35 atmospheric conditions at four sites, the 

daily EF estimates from Equations (14–18) are plotted in Figure 10a–e, respectively. It can be found 

that Equation (15) with the inputs of the differences between Aqua daytime and nighttime can better 

estimate daily EF than other input schemes, with an R2 of 0.719, an RMSE of 0.130, and a mean bias 

of 0.017. When Equation (17) is used with the inputs of the differences between Terra daytime and 

Aqua nighttime, daily EF estimates are slightly worse than the results from Equation (15), showing an 

RMSE of 0.137 and a mean bias of 0.033. The worst result is from Equation (16) with differences 

between Terra daytime and nighttime (see also the results shown in Table 2). This indicates that the 

differences of Ts, Ta, and Rn between Aqua/Terra daytime and Aqua nighttime can better reflect the 

variation of surface heat fluxes in a day than the differences from Terra overpass times. When the 

change rates of Ts, Ta, and Rn during the morning are used as inputs, the result from Equation (14) is 

not satisfied. On the one hand, the error may be from the weak ability of change rate of Ts, Ta, and Rn 

during the morning reflecting surface heat fluxes, and on the other hand, the approximation of linear 

relationship of Ts, Ta, and Rn with time during the morning also brings certain errors in daily EF 

estimates. Therefore, for the determination of daily EF, Equation (15) with the inputs of the differences 

between Aqua daytime and nighttime is recommended.  

3. Data 

To further validate Equation (15) for daily EF estimation, input variables of ΔTs, ΔTa, ΔRn, and fc 

from in situ measurements and MODIS/Aqua products would be applied.  

3.1. In situ Measurements 

In situ measurements, including meteorological variables, radiation data, and fluxes data, are from 

the Yucheng station (36.8291°N, 116.5703°E) in North China. Considering that the assumption of  

self-preservation EF during daytime may not be valid under the conditions of low solar radiation and 

air humidity, days with daily average incoming solar radiation <200 W/m2 and average relative 

humidity of air <20% were excluded. Daily average incoming solar radiation <200 W/m2 generally 

occurred in the winter or the cloud skies. Based on the available remotely sensed data and in situ 

measurements, 16 clear days during the wheat growth period in 2012 were finally selected. Surface 

characteristics of the Yucheng station during the wheat growth period in 2012, i.e., fc and crop height, 

are shown in Figure 11. fc is calculated by weekly measured leaf area index (LAI) from a portable leaf 

area meter (LI-3000) with the assumption of a random and spherical leaf angle distribution, i.e.,  

fc = 1 − exp(−0.5LAI). Meteorological variables were routinely measured at the heights of 2.89 m. 

Radiation data, including downwelling and upwelling shortwave and longwave radiations, were from a 

CNR-1 radiometer installed at the height of 3.98 m. Ts is not measured at the surface, which is 

calculated by the measured downwelling and upwelling longwave radiation with a surface emissivity 

of 0.98 in this study. H and LE were observed from an eddy covariance (EC) system installed at the 

height of 2.68 m. G was measured by a single HFP-01 soil heat flux plate at 2 cm below the surface. 

All data are at a 30-min interval.  
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Figure 11. Surface characteristics of the Yucheng station during the wheat growth  

period in 2012. 

 

3.2. Remotely Sensed Data 

Remotely sensed data used in this study include MYD021KM, MYD03, MYD05_L2, MYD11_L2, and 

MOD13A2/MYD13A2 products. MYD021KM, MYD03, MYD11_L2 and MYD05_L2 are used to 

estimate Rn at Aqua daytime and nighttime overpass times by the methods proposed by Tang et al. [49,50]. 

Because there is no incoming solar radiation at nighttime, Rn at Aqua nighttime overpass time equal to 

the net longwave radiation from Tang and Li’s method [50]. Both MOD13A2 and MYD13A2 NDVI 

products are jointly used to calculate fc every eight days using the formula proposed by Carlson and 

Ripley [51], i.e., 

2min

max min

( )c

NDVI NDVI
f

NDVI NDVI

−=
−

 (14)

where NDVImax and NDVImin are assigned to be 0.86 and 0.2, respectively, according to the study of 

Prihodko and Goward [52]. 

4. Results and Discussions 

4.1. Daily EF Estimates with In situ Measurements as Inputs 

When ΔTs, ΔTa, ΔRn, and fc required by Equation (15) are from measurements at the Yucheng 

station during the wheat growth period in 2012, daily EF estimates are shown in Figure 12a. Compared 

with the measured daily EF that is calculated by LE from EC and Rn from CNR-1 radiometer (see open 

squares in Figure 12a), the serious discrepancies appear. Two main reasons can result in the 

discrepancies: one is from the lack of energy-balance closure in EC-based measurements, and the other 

is from errors in fc measurements. As shown in Figure 13, at the daily scale, the RMSE of energy 

balance closure from EC measurements is 17.0 W/m2. When daily average Rn − G is under 100 W/m2, 

daily average H + LE from EC measurements is generally higher than daily average Rn − G, whereas 

for those cases of daily average Rn − G greater than 100 W/m2, EC-measured H + LE is less than the 

values of Rn − G. The residual energy (RE) method and the Bowen ratio (BR) method are often used to 

correct the lack of energy balance closure from EC measurements. RE method is to assume that the 
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imbalance energy is due to the underestimation of LE measurements, whereas BR method is to 

partition the imbalance energy into H and LE according to Bowen ratio [53]. After EC-measured LE 

was corrected by RE and BR methods, the daily EF estimates can be improved to a certain extent (see 

black squares and cross symbols in Figure 12a) with an R2 of ~0.6 and an RMSE of ~0.24. From 

Figure 11, it can be observed that fc from MODIS is different from measured values, and is 

underestimated for most of days. However, fc from LAI measured by LI-3000 at a point scale was not 

able to reflect the vegetation cover at large scales. Therefore, fc from MODIS NDVI products instead of 

ground-based measurements was also applied to Equation (15). Results in Figure 12b show that daily 

EF estimates from in situ measurements but fc from MODIS data as inputs are closer to the EF 

measurements corrected by RE method with an R2 of 0.857, an RMSE of 0.119, and a mean bias of 

0.049. The results are comparable with the accuracy of Equation (15) driven by the ALEX-simulated 

data shown in Figure 10b. Therefore, if input variables are accurate, Equation (15) with the differences 

of Ta, Ts and Rn between 1:30 P.M. and 1:30 A.M. as inputs should give reasonable daily EF estimates. 

Figure 12. Comparisons of daily EF estimates (a) from in situ measurements as inputs and 

(b) from in situ measurements but fc from MODIS data as inputs with measured daily EF. 

Figure 13. Closure of energy balance from EC measurements at daily scale. 
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To understand the impact of error in input variables of Equation (15) on daily EF estimates, a 

sensitivity and error analysis based on in situ measurements but fc from MODIS data were performed. 

Each input variable varies under a given set of reference values, a 1 K step and the upper and lower 

limits of ±5 K for ΔTs and ΔTa, a 50 W/m2 step and the ±250 W/m2 range for ΔRn, and a 0.1 step and 

the ±0.5 range for fc. The range of variations and the averaged variations in daily EF estimates at each 

step of ΔTs, ΔTa, ΔRn, and fc are displayed in Figure 14a–d, respectively. In general, EF in  

Equation (15) is negatively correlated to ΔTs and fc, and positively correlated to ΔTa and ΔRn. The same 

error in ΔTs and ΔTa leads to the same error for daily EF estimates. 2 K variations in ΔTs and ΔTa lead 

to an averaged variation <0.1 in daily EF estimates. Error in EF caused by the underestimation of ΔRn 

is generally higher than the error caused by the overestimation of ΔRn, but the underestimation of  

100 W/m2 in ΔRn leads to the averaged error in EF <0.1. In addition, the variation of 0.2 in fc also leads 

to the variation of ~0.1 in EF. The range of variations in daily EF estimation caused by the error in 

inputs variables indicates that daily EF estimates from Equation (15) may be more sensitive to fc and 

the underestimation of ΔRn than other inputs.  

Figure 14. Variations in daily EF estimates caused by the variations in input variables  

(a) ΔTs, (b) ΔTa, (c) ΔRn, and (d) fc (the filled squares denote the averaged variations in 

daily EF estimates, whereas the error bars represent the range of variations.). 
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4.2. Application to Satellite Data 

A flowchart showing procedures for daily EF estimation from MODIS/Aqua data is presented in 

Figure 15. Input variables ΔTs, ΔRn, and fc required by Equation (15) are all obtained from 

MODIS/Aqua products, whereas ΔTa is from in situ measurements. Although MYD07_L2 products 

can provide atmosphere profile data, the retrieved atmosphere temperature at the bottom of the 

atmosphere was not used in this study because of different spatial resolutions between the MYD07_L2 

product (5 km) and other MODIS/Aqua products (1 km) used in this study and less available data at 

the Yucheng station. 

Figure 15. Flowchart of for daily EF estimation. 

 

For the selected 16 clear days at the Yucheng station during wheat growth period in 2012, daily EF 

calculated by Equation (15) from MODIS/Aqua data is shown in Figure 16. Compared with the daily 

EF from EC measurements and the values corrected by the RE or BR method, RMSE is about 0.24. 

For the majority of cases, the results estimated by Equation (15) are generally consistent with the 

measurements, but several large discrepancies deteriorate the overall results. One of the reasons of the 

discrepancies between daily EF estimates from remotely sensed data and the measurements may be 

ascribed to the difference in spatial scale between the MODIS observation and EC measurements. The 

nominal spatial resolution of MODIS senor at the thermal infrared bands is 1 km, whereas the footprint 
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of EC at the height of 2.68 m would be far less than MODIS observation scale [3,54]. Because of the 

heterogeneous nature of land surface, surface heat fluxes vary at spatial scales [20]. Therefore, the  

EC-measured surface fluxes may not represent the values at MODIS pixel scale. Although it is not 

appropriate to compare EF estimates from MODIS data with EC measurements because of different 

scales of observation, only the result shown in Figure 16 is given because of the lack of surface flux 

observation at MODIS pixel scale.  

Figure 16. Comparisons of daily EF estimates from MODIS data with in situ measurements.  

 

Figure 17. Comparisons of (a) Ts and (b) Rn from MODIS/Aqua products with the 

corresponding measurements from CNR-1. 

  

 

In addition, retrieval errors in Ts and Rn also lead to the discrepancies between daily EF estimates 

from Equation (15) and EC measurements. Ts is directly from the MYD11_L2 product, which is 

produced daily at 5-minute increments using the generalized split-window algorithm [55]. Compared 

with the measured Ts that is calculated by CNR-1 measurements, MYD11_L2 products underestimated 

Ts by 2.6 K at Aqua daytime overpass time and by 0.4 K at nighttime overpass time. As a result, the 

underestimation in ΔTs is reduced to 2.2 K with an R2 of 0.840 and an RMSE of 4.2 K (see  

Figure 17a). Though both Rn at Aqua daytime and nighttime overpass times estimated by Tang’s 

method are all higher than the measured Rn (see Figure 17b), the quantity of overestimation of  
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123.7 W/m2 in ΔRn is still large because of the obvious overestimation of Rn at Aqua daytime overpass 

time. The quantity of Rn at nighttime is negative, so the value of ΔRn is greater than Rn at daytime. 

4.3. Comparison with SEBS-Estimated EF 

SEBS is a representative one-source energy balance model of estimating surface heat fluxes from 

remotely sensed data. In the SEBS model, EF is formulated on the basis of the energy balance at 

limiting cases [9]. Because the limiting cases are calculated by an equation similar to the Penman-Monteith 

combination equation rather than using the spatial information from remotely sensed data like  

triangle-type methods, the SEBS model cannot be restricted by the research domain in theory. The 

SEBS model estimates EF by the one-time observed remotely sensed data. Because of the relatively 

invariant EF during diurnal cycle, the instantaneous EF during daytime is often considered as the daily 

EF to estimate daily ET. By using MODIS products at Aqua daytime overpass time, daily EF at the 

Yucheng station can also be estimated by the SEBS model. From Figure 18a, it can be observed that 

the daily EF estimated by Equation (15) with remotely sensed data as inputs is well correlated with the 

SEBS-estimated value with an R2 of 0.838 and an RMSE of 0.124. However, when the difference 

between Ts and Ta at Aqua daytime overpasses, the time required by the SEBS model is less than 0,  

SEBS-estimated EF is greater than 1 and is also greater than EF from Equation (15). When  

SEBS-estimated EF is compared with the values from in situ measurements, the results shown in 

Figure 18b are inferior to the results from Equation (15) as shown in Figure 16 (see Table 4), and more 

dispersed data appear. This indicates that the EF estimates from instantaneous inputs are more 

sensitive to the retrieval error of remotely sensed data at one-time observation, whereas the application 

of the temporal variation in surface variables can reduce the uncertainties caused by retrieval errors in 

remotely sensed data. In addition, although daily EF can be approximated by instantaneous EF during 

daytime, daily EF is essentially different from instantaneous values. Instantaneous EF instead of daily 

EF would result in some errors, whereas Equation (15) can directly determine daily EF. Equation (15) 

needs fewer input variables than the SEBS model: only ΔTs, ΔTa, ΔRn, and fc are required. These input 

variables can be easily obtained from remote sensing. Therefore, Equation (15) has the potential to 

estimate surface ET at the regional scale.  

Figure 18. Comparisons of (a) daily EF estimates from Equation (15) with SEBS-estimated 

EF based on MODIS/Aqua data, and of (b) SEBS-estimated EF with measured daily EF. 



Remote Sens. 2013, 5 5388 

 

 

Table 4. Comparisons of the remotely sensed daily EF estimated by our proposed method 

and the SEBS model with EC-measured, RE and BR-corrected EF.  

 
EC RE BR 

R2 RMSE BIAS R2 RMSE BIAS R2 RMSE BIAS 

New method 0.139 0.215 0.051 0.394 0.242 0.093 0.382 0.210 0.066 

SEBS 0.125 0.268 0.053 0.292 0.275 0.096 0.296 0.249 0.069 

5. Conclusion 

On the basis of surface energy balance and the assumption of self-preservation EF (evaporative 

fraction) during daytime, this study developed a new parameterization scheme for deriving daily EF 

from temporal variations of Ts (surface temperature), Ta (air temperature), and Rn (net radiation). 

Among various input schemes as to temporal variations, the differences of Ts, Ta, and Rn between  

1:30 P.M. and 1:30 A.M. (around at Aqua overpass times), i.e., ΔTs, ΔTa, and ΔRn, can produce better 

estimates for daily EF with an R2 (coefficient of determination) of 0.719 and an RMSE (root mean 

square error) of 0.130 with respect to ALEX (atmosphere-land exchange model)-based estimates. 

When the input scheme in combination with input variables from ground-based measurements is used 

to estimate daily EF at the Yucheng station during the wheat growth period in 2012, the results agreed 

well with the daily EF corrected by RE (residual energy) method with an R2 of 0.857 and an RMSE of 

0.119. Sensitivity and error analysis show that variations in input variables of 2 K in ΔTs and ΔTa,  

100 W/m2 in ΔRn, and 0.2 in fc (fractional vegetation cover) could lead to errors <0.1 for daily EF 

estimates. Although daily EF estimates in combination with remotely sensed inputs are not in good 

agreement with the measured measurements, they are correlated with results from the SEBS (surface 

energy balance system) model, and are slightly superior to SEBS-estimated EF with remotely sensed 

instantaneous inputs.  

The developed EF parameterization scheme in this study required ΔTs, ΔTa, ΔRn, and fc as inputs. 

The input requirements can be satisfied by remotely sensed data from the MODIS sensor or 

geostationary meteorological satellites. ΔTs, ΔTa and ΔRn rather than absolute Ts, Ta and Rn can 

diminish uncertainties in surface flux estimates caused by errors in remotely sensed data to a certain 

degree. Another advantage of the proposed method is that it directly determines daily EF without the 

need for the calculation of various resistances which requires many surface parameters. Fewer input 

requirements will enable the developed approach to estimate surface evapotranspiration over  

data-sparse region or at regional scale because some surface parameters are not easily measured at a 

large spatial scale. In addition, the accuracy of daily EF estimates is also independent of the errors in 

daily net radiation estimates.  

Because the parameterization scheme for daily EF estimation is developed based on the assumption 

of self-preservation EF during daytime, when the assumption cannot be met, it may not be applicable 

to estimating daily EF. Therefore, the method may be more appropriate to estimate surface fluxes 

under the conditions of clear skies, humid air, and strong solar radiation because of relative invariant 

EF at such conditions. The results from ALEX-simulated data and the measurements at the Yucheng 

station can demonstrate that the coefficients in the proposed parameterization scheme are not site-

specific and do not strongly depend on the atmospheric conditions. However, this is only a preliminary 
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conclusion. More validation across various land surface types needs to be performed in the future to 

further evaluate the robustness of the proposed EF parameterization scheme. 
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Appendix 

Simulated data used in this study are from an atmosphere-land exchange (ALEX) model. ALEX is a 

two-source dynamic model of heat, water and carbon exchange between a vegetated surface and the 

atmosphere. Details of the model can be found in Anderson et al. [36]. Atmosphere forcing, soil 

properties and vegetation characteristics are required as inputs of the ALEX model. Forcing data from 

four different sites are displayed in Figure A1. Criteria for selecting forcing data include that:  

(1) cloud-free day, (2) daily average incoming solar radiation greater than 200 W/m2, and (3) relative 

humidity of air not less than 20%. These criteria are to ensure that the implicit assumption of  

self-preservation evaporative fraction (EF) during daytime in the daily EF parameterization scheme 

can be satisfied. The main input quantities required by the ALEX model and the values used in model 

simulation are listed in Table A1.  
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Figure A1. Atmospheric forcing from (a) the Yucheng site in 2010, (b) the Goodwin site 

in 2006, (c) the Cottonwood site in 2008, and (d) the Audubon site in 2006 (Rg is the solar 

incoming radiation; RH is the relative humidity; Ta is the air temperature; and WS is the 

wind speed.). 
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Figure A1. Cont.  
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Table A1. The main input quantities required by the ALEX model and the values used  

in model simulation for forcing data (a) from the Yucheng site and (b) from three  

Ameriflux sites. 

(a) 

Quantities Units Values 

Site  Yucheng 

Longitude  116.5703 

Latitude  36.8291 

Year  2010 

Date  
26 Mar, 24 Apr, 29 May,  

28 June, 21 July 

17 Aug, 11 Sep, 

4 Oct. 

Measure height m 2.93 4.2 

Vegetation type  C3 grass corn 

Vegetation height m 0–0.6 0–2.4 

Leaf area index m2/m2 0–10 

Rooting depth m 0.5 

Soil texture  loam 

sand  0.42 

silt  0.4 

clay  0.18 

Bulk density g/cm3 1.5 

Moisture release parameter  4.5 

Air entry potential J/kg −1.1 

Saturated hydraulic 

conductivity 
K·g·s/m3 3.7 × 10−4 

soil water content (0–2 m) m3/m3 0.09–0.21, 0.43 

(b) 

Quantities Units Values 

Site  Goodwin Cottonwood Audubon 

Longitude  −89.7735 −101.8466 −110.5092 

Latitude  34.2547 43.95 31.5907 

Year  2006 2008 2006 

Date  

9 Feb, 14 Mar, 12 Apr, 12 

May, 15 June, 17 July,  

17 Aug, 13 Sep, 7 Oct 

10 Mar, 14 Apr, 17 May, 

14 June, 13 July,  

17 Aug, 14 Sep, 7 Oct 

19 Feb, 21 Mar, 15 Apr, 4 

May, 10 June, 20 July,  

27 Aug, 16 Sep, 20 Oct,  

2 Nov 

Measure height m 4 5 4 

Vegetation type  C3 grass soybean desert C3-type shrubs 

Vegetation 

height 
m 0–1 0–1 0–0.6 
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Table A1 (b). Cont. 

Quantities Units Values 

Leaf area index m2/m2 0–10 0–10 0–10 

Rooting depth m 1 2 0.5 

Soil texture  clay loam clay loam silt loam 

sand  0.32 0.32 0.2 

silt  0.34 0.34 0.65 

clay  0.34 0.34 0.15 

Bulk density g/cm3 1.5 1.5 1.5 

Moisture release 

parameter 
 

 

5.2 

 

5.2 

 

4.7 

Air entry 

potential 
J/kg −2.6 −2.6 −2.1 

Saturated 

hydraulic 

conductivity 

 

K·g·s/m3 

 

6.4 × 10−4 

 

6.4 × 10−4 

 

1.9 × 10−4 

soil water content 

(0–2 m) 

 

m3/m3 

 

0.13–0.25, 0.43 

 

0.13–0.25, 0.43 

 

0.11–0.23, 0.43 

Note: The values of inputs related to the hydraulic properties required by the ALEX model are from Table 

9.1 in the book edited by Campbell and Norman [56]. 

For each atmosphere, five different soil water contents from wilting point to field capacity and the 

approximate saturated soil water of 0.43 m3/m3 are assigned in ALEX simulation. The leaf area index 

(LAI) varies from 0 to 10 m2/m2, which corresponds to fractional vegetation cover (fc) from 0 to 1 with 

an interval of 0.1. Vegetation height in simulation linearly varies with fc. Because the case of high fc 

with wilting soil water rarely occurs in reality, the cases of fc greater than 0.5 at wilting soil water 

content were removed. As a result, 61 cases for each atmosphere are finally formed. 
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