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Abstract: Understanding the spatial patterns of urban land use at both the macro and the 

micro levels is a central issue in global change studies. Due to the nonlinear features 

associated with land use spatial patterns, it is currently necessary to provide some distinct 

analysis methods to analyze them across a range of remote sensing imagery resolutions. 

The objective of our study is to quantify urban land use patterns from various perspectives 

using multidimensional fractal methods. Three commonly used fractal dimensions, i.e., the 

boundary dimension, the radius dimension, and the information entropy dimension, are 

introduced as the typical indices to examine the complexity, centrality and balance of land 

use spatial patterns, respectively. Moreover, a new lacunarity dimension for describing the 

degree of self-organization of urban land use at the macro level is presented. A cloud-free 

Landsat ETM+ image acquired on 17 September 2010 was used to extract land use 

information in Wuhan, China. The results show that there are significant linear 

relationships represented by good statistical fitness related to these four indices. The results 

indicate that rapid urbanization has substantially affected the urban landscape pattern, and 

different land use types show different spatial patterns in response. This analysis reveals 
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that multiple fractal/nonfractal indices provides a more comprehensive understanding of 

the spatial heterogeneity of urban land use spatial patterns than any single fractal 

dimension index. These findings can help us to gain deeper insight into the complex spatial 

patterns of urban land use. 

Keywords: urban land use; spatial pattern; fractal methods; remote sensing imagery; 

lacunarity dimension; Wuhan 

 

1. Introduction 

Land use and cover change (LUCC) is one of the most profound human-induced alterations to the 

Earth’s surface [1–6]. Numerous studies have shown that remote sensing satellite imagery is the major 

data source for analyzing the spatial patterns of urban land use [7–13]. The availability of land use 

spatio-temporal information derived from multi-resolution images of remote sensing satellites, such as 

Landsat, National Oceanic and Atmospheric Administration (NOAA), Moderate resolution Imaging 

Spectroradiometer (MODIS), and Satellite pour l’Observation de la Terre (SPOT), has significantly 

facilitated the study of urban land use spatial structure [14,15]. Therefore, it is very important to 

provide some distinct analysis methods to characterize spatial patterns across a range of remote 

sensing imagery resolutions in land use studies. 

Remote sensing images can objectively and truthfully record the phenomena of the Earth’s surface. 

As remote sensing satellites have provided more abundant land use information in the past ten years 

than at any other time in history, the analysis of satellite-detected urban land use has been recognized 

as the current mainstream approach to studying urban spatial patterns [16,17]. For various remote 

sensors with different spatial resolutions, there are many case studies regarding the application of 

satellite-based remote sensing imagery that have demonstrated its good performance in assessing the 

spatial patterns of land use since 2000. In the early 21st century, Foody mapped land cover from an 

airborne thematic mapper (ATM) sensor with a neural network classification [18]. Kalluri et al. 

attempted to examine land cover dynamics based on Landsat Thematic Mapper (TM) using  

high-performance computing algorithms [19]. Tadesse et al. combined Landsat TM and geographic 

information system technology to detect the land use change in Addis Ababa [20]. Friedl et al. 

presented algorithms to map global land cover from MODIS [21], while Huete et al. analyzed land cover 

conversion and land degradation from Earth Observing 1 (EO-1) Hyperion hyperspectral data [22].  

Gitas et al. used NOAA-AVHRR imagery to map burned areas in Spain [23]. Thenkabail et al. utilized 

continuous streams of MODIS data to study the Ganges and Indus river basin land use/land cover [24]. 

De Almeida et al. used GIS to simulate the changes in urban land use from MSS and Landsat TM [25]. 

Duran et al. focused on acquiring and analyzing data on land use distribution in Istanbul by using GIS 

and remote sensing technology [26]. Recently, Chang and Tang used Landsat remote sensing images 

to assess the land use change after the Northridge Earthquake [27]. Zurita-Milla et al. used medium 

spatial resolution satellite images for land cover mapping [28], while Myint et al. extracted urban land 

cover information from high spatial resolution imagery [29], and Dymond et al. used SPOT 5 satellite 

imagery to explore the land use change in New Zealand [30]. In the past and at present, even in the 
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future, remote sensing will likely always be the most important tool for studying land use and  

cover change. 

Urban land use patterns involve not only single patch features at the micro level but also the overall 

spatial distribution at the macro level. The local spatio-temporal changes at the micro level often 

generate larger-scale emergent patterns of land use, which are in turn affected and restricted by land 

use spatial structure at the macro level [31,32]. According to different scales of land use spatial 

patterns, the micro characteristics at the patch level are usually defined by the boundary complexity 

(i.e., the geometric complexity of the shape), while the macro spatial distribution mainly refers to 

specific overall features, such as balance, centrality, and self-organization. The micro characteristics 

can be measured through the complexity and randomness of single land use patches, which have been 

thoroughly elaborated by previous studies [33,34]. For characteristics at different levels, however,  

the macro is considerably more complicated than the micro [35]. For instance, the centrality describes 

the radial spatial distribution and variation around only one designated center. Conversely, the  

self-organization expresses the aggregation tendency around multiple cluster centers. Furthermore, the 

balance describes the spatial aggregation degree in all directions, whose distribution probability is 

assumed to be equal, as if no aggregation center exists. In terms of the statistical theory, previous 

studies have attributed distinctively nonlinear features to these four land use spatial patterns as 

discussed above. Schmit (2006) and Kwan (2008) have also noted that the modifiable areal unit problem 

(MAUP), affected by geographical scale, exists in the analysis of land use, which easily leads to a serious 

statistical bias that can radically affect the results of statistical hypothesis tests [36,37]. That is, these four 

land use spatial patterns cannot be well quantified using statistical analysis methods [38,39]. 

Fractal dimensions have been used for their potential to measure the nonlinear characteristics 

associated with the spatial patterns of urban land use derived from remote-sensing imagery. Both 

self-similarity and randomness are two basic characteristics of fractals. It has been demonstrated that 

fractal dimensions are suitable for modeling the spatial distribution of many geographic phenomena on 

the earth [40]. The foundational work on the complexity analysis of satellite-detected land use spatial 

patterns using fractal dimensions was reported by De Cola [41] and Lam [42–49]. Nevertheless, it was 

not until the development of high-resolution remote sensing imagery in the past ten years that those 

classic fractal dimensions with the divider method originally developed by Goodchild and Shelberg 

were gradually extended to more research fields and that these fractal dimensions began to be more 

widely applied [50]. Emerson et al. utilized a fractal dimension to aid in multispectral image 

classification, which was particularly effective in resolving land cover classes within urbanized  

areas [51]. Tang et al. applied the area-weighted mean patch fractal dimension, together with the core 

area percentage of landscape and the area-weighted centroid method, to simultaneously estimate the 

forest spatial movement and the spatial fragmentation process [52]. Tran et al. explored the use of 

fractal dimensions to identify the homogeneity/heterogeneity thresholds of urban structure. It was 

found that the fractal theory-based index was more robust and transferable to discriminate among 

urban contexts than the local variance method [53]. Based on the land use information derived from 

eight satellite images of Indianapolis, USA taken by five remote sensors, Liang et al. evaluated the 

efficiency of three fractal algorithms (isarithm, triangular prism, and variogram) for describing urban 

landscapes [54]. The aforementioned studies show that fractal dimensions can describe the non-linear 

characteristics of urban land use patterns and have the potential to examine the inherent regularity, 
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hierarchy and scale invariance of urban land use spatial patterns [55,56]. Despite these significant 

contributions of fractal dimensions to land use spatial pattern analysis, no substantial research has yet 

attempted to simultaneously use multiple fractal dimension indices to thoroughly examine land use 

spatial patterns. After all, the function of any single fractal dimension that quantifies land use spatial 

patterns from a certain perspective is too limited.  

As summarized by Ling, there are currently three fractal dimensions for measuring land use  

spatial characteristics: the boundary dimension, the radius dimension and the information entropy 

dimension [38]. The boundary dimension (shown in Figure 1a) is used to express the complexity and 

randomness of land use patches [57,58], and the radius dimension (shown in Figure 1b) is used to 

quantitatively describe the centrality of land use patches [59,60]. The information entropy dimension 

shown in Figure 1c is applied to reveal the balance of the land use spatial distribution [61–63]. In 

addition, we propose the lacunarity dimension to describe the self-organization spatial pattern of land 

use, which has been seriously ignored in the literature. As is well known, urban areas mainly appear to 

have a single centrality in the initial development stage. Due to the uncontrollable expansion 

associated with rapid urbanization, its spatial heterogeneity gradually increases and results in an 

unbalanced situation with many centers. For instance, there are strong residential zoning tendencies to 

use extra land as open space and recreation in some metropolitan cities of China as well as America. 

Although this type of zoning land use pattern protects land for communities and to an extent preserves 

land from development, it is what ultimately leads to the suburban sprawl with the self-organization 

features shown in Figure 1d. For this emerging spatial pattern of land use, however, there is no 

corresponding fractal dimension index that could achieve a more comprehensive understanding of land 

use spatial characteristics and rules of urbanization process. 

Figure 1. Schematic of the Multidimensional Fractal Model (I and II refer to two opposite 

patch features or spatial distributions for a given land use). 
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The main objective of this paper is to quantify the nonlinear spatial patterns of urban land use 

through multidimensional indices and to assess the single patch features at the micro level as well as 

the overall spatial distributions at the macro level. In particular, a new lacunarity dimension is 

proposed to describe the degree of self-organization with multiple centers, which cannot be examined 

by the three commonly used fractal dimensions (i.e., the boundary dimension, the radius dimension 

and the information entropy dimension). It is beneficial for us to create a more comprehensive 

understanding of the spatial heterogeneity of urban land use spatial patterns. 

2. Methods 

2.1. Three Typical Fractal Dimensions 

The boundary dimension calculated using the divider approach [64] was first introduced to measure 

the city boundary complexity by Longley and Batty [58]. It was gradually applied to the study of land 

use spatial structure at the micro level. Assuming there was a land patch with an area of A and a 

perimeter of P, its boundary was characterized by the fractal feature, defined by the fractal dimension 

DB. For a certain land use type, the boundary dimension was determined from the area A and the 

perimeter P for all patches. lnܣ = lnܥ + ஻ܦ/2 × lnܲ (1)

where C is a constant coefficient. The boundary dimension DB, representing the relation between the 

patch area and the patch perimeter, can measure the complexity and randomicity of land use patches. 

Its value ranges from 1.0 to 2.0. A value of 1.0 means that the shape of the land use patch is a square, 

whereas a value of 2.0 represents the most complicated state. When the value is 1.5, it shows a fractal 

Brownian motion. In other words, the higher the value, the more complex the land boundary becomes. 

Another commonly used fractal dimension is the radius dimension proposed by Frankhauser and 

Sadler [59]. White and Engelen utilized the radius dimension to analyze the spatial patterns of urban 

land use [60]. The radius dimension was calculated using the mass-radius method [64], which was 

defined by the total patch area and its radius to depict the density change of a certain land use type 

radiating outward from a single point at the macro level. It was regarded as an effective evaluation 

criterion to assess the centrality of urban land use patterns using the relation  lnܵ(ݎ) = lnܥ + ோܦ × ln(2) ݎ

where r is the radius to the urban center; S(r) is the area of a certain land use within the circle with 

radius r; C is a constant coefficient; and DR is the radius dimension of a certain land type. When the 

radius dimension is less than 2.0, the spatial density for a certain land use type decreases nonlinearly 

outward from the given single point, and the decrease occurs more quickly with a smaller value. 

Conversely, when the value is greater than 2.0, the spatial density increases outward from the  

given single point. In particular, the spatial density remains unchanged from the center to external edge 

when the radius dimension is equal to 2.0. In short, the smaller the value, the stronger the aggregation 

degree is. 

In addition, some researchers have used information entropy to describe the balance for a certain 

type of urban land use. Although the information entropy index is regarded as a good measure of 
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spatial distribution, it is difficult to compare across different types of land use because of severe spatial 

scale effects. To solve this problem, Chen and Liu used the box counting method [64] to extend the 

information entropy to the information entropy dimension by the relation [55] (ߝ)ܫ = ଴ܫ − ூܦ × ln(3) ߝ

where ε  is the grid scale; I0 is the initial value of information entropy; I(ε ) is the information entropy 

of a certain land use type with the grid scale ε ; and DI is the information entropy dimension. The 

information entropy dimension is designed to explore the overall aggregation degrees of different 

urban land use types at the macro level. In principle, the value of the information entropy dimension 

varies from 0 to 2.0. When it is equal to 0, the spatial pattern of land use is concentrated to a point. 

When it is equal to 2.0, the land presents a uniform spatial distribution. For the remainder of the 

values, a larger fractal dimension value represents a more even distribution of land use spatial patterns, 

whereas a smaller value is associated with a more concentrated distribution. 

2.2. A Novel Fractal Dimension—Lacunarity Dimension 

Although some successful research cases and informative studies on the three fractal dimensions 

have been performed, as discussed above, the question of how to describe the significant spatial 

patterns related to many distinct aggregation centers at the macro level remains largely unanswered, 

and systematic investigations to address such issues are urgently needed. 

The novel lacunarity dimension is derived from the landscape spatial index of lacunarity using the 

box counting method [64] but has a better comparability. In comparison with the existing literature, the 

focus of our work is to improve lacunarity according to its self-similarity feature at different spatial 

resolutions [65]. Lacunarity was proposed by Mandelbrot and was then introduced to landscape 

ecology by Plotnick to describe patterns of spatial dispersion [66–68]. It was regarded as a measure of 

the gap size of a geometric structure. The gaps or holes in a landscape pattern generate aggregation 

centers associated with land use distribution. The more gaps or holes, the more aggregation centers. In 

its calculation process, the pixel value of a known land use type was set to 1 and the pixel value of 

others to 0. The template, with a size of R R×  pixels, was to match the study area pixels from the first 

row and column and to move one column or row in one step, both from left to right, and from top to 

bottom. In the matching procedures, the land use type with the value of 1 in the template was  

counted and recorded as S . After the entire study area was scanned by the template, the occurrence 

frequency of S was calculated and defined as n(S,R), which was the occurrence frequency of S in  
all R R×  templates. If the study area was composed of M N×  pixels and the size of the window  

template was R R× , the maximum number N(R) of templates R contained in the study area was 

calculated as follows: ܰ(ܴ) = ܯ) − ܴ + 1) × (ܰ − ܴ + 1) (4)

The frequency distribution of n(S,R) was correspondingly transformed to the probability  

distribution Q(S,R): ܳ(ܵ, ܴ) = ݊(ܵ, ܴ)/ܰ(ܴ) (5)
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The lacunarity was defined as the ratio of the variance of Q(S,R) to the square of the mean-square 

deviation of Q(S,R):  Λ(ܴ) = ܼ(ଶ)/(ܼ(ଵ))ଶ (6)

where ( )RΛ  is the lacunarity index. The mean-square deviation and the variance can be expressed  

as follows: 

ܼ(ଵ) =෍ܵܳ(ܵ, ܴ)ோమ
ௌୀ଴  (7)

ܼ(ଶ) =෍ܵଶܳ(ܵ, ܴ)ோమ
ௌୀ଴  (8)

When the same window template is used to measure the spatial distribution of a certain urban land 

use type, a lower value of Λ(ܴ) reflects a strong scatter and homogeneity of its spatial distribution, 

while a higher value of Λ(ܴ)  reflects a more significant concentration. However, lacunarity is a  

scale-dependent measure of heterogeneity or texture [68]. In other words, the value of the lacunarity 

index is not a constant for a certain study area but depends heavily on the size and density of the 

sampling grid as well as the topological shape of the land use patch. The lacunarity index maps to a 

typical modifiable areal unit problem (MAUP), where the values of the lacunarity index will change 

with different observation scales. Thus, the metrics of lacunarity are not suitable to explain the spatial 

distribution differences of urban land use at different scales by direct comparison. To solve this 

problem, a novel fractal dimension is derived from and substituted for the lacunarity index, defined by 

the logarithmic expression between the lacunarity index and its scale. According to the lacunarity 

index ߉(ܴ௜)  and the grid size ܴ௜(݅ = 2,3, … , ݊ଶ) , a regression model based on the box counting 

method was determined from the relation  lnΛ(ܴ௜) = Λ଴ − ௅ܦ × lnܴ௜ (9)

where 0Λ  is the initial value of the lacunarity index and DL is the lacunarity dimension. A low 

lacunarity dimension reflects a more scattered spatial distribution of a certain land use type in the study 

area, while a high lacunarity dimension means a more concentrated spatial distribution. Although we can 

use the lacunarity dimension to quantify the self-organization features of a certain land use type, it is 

calculated on the assumption that there exists a fractal feature at different scales. Note that Equation (9) 

should be subject to the linear regression validation between the lacunarity index and the grid size in 

the natural logarithm. Figure 2 shows four possible lacunarity index trends with increasing grid size. 

Figure 2a–c shows three non-linear relationships between the lacunarity index and the grid size in the 

natural logarithm, while Figure 2d shows an exact linear relationship. Thus, although the lacunarity 

dimension DL is defined by Equation (9), it can only work when the lacunarity index and the grid size in 

natural logarithm are linearly fitted well by the least-squares estimation, as shown in Figure 2d. This fit is 

both a prerequisite and a limitation for the application of the lacunarity dimension. 
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Figure 2. Four possible decreasing trends of the lacunarity index: (a) concave curve type, 

(b) convex curve type, (c) reverse curve type and (d) linear type. 

 

3. Study Area and Data Processing 

In this study, Wuhan in central China was selected for study of its urban land use patterns. Wuhan 

is located in the eastern part of the Jianghan Plain along the middle reach of the Yangtze River, from 

approximately 113°41′E to 115°05′E, and from 29°58′N to 31°22′N. Wuhan’s climate is humid 

subtropical with abundant rainfall and four distinct seasons. Its administrative area is almost 8,494 km2 

with a population of 10,120,000 people. Its major landform is plains, but the area is also covered with 

hills, lakes, and pools. There are dozens of lakes in this city, which distinguishes it from other 

metropolises in China; the water areas account for approximately 15% of the entire city, from which 

the reputation of “the City of a hundred lakes” arises. Red soil and yellow-brown soil are broadly 

distributed in this area. In the past three decades, this area was profoundly affected by the disturbances 

of human activity. The Yangtze River and the Hanjiang River meet in Wuhan and divide the central 

urban area into three parts: Wuchang, Hankou, and Hanyang. As the provincial industrial, educational 

and administrative center, Wuhan City was taken as the study area, as shown in Figure 3. 

Figure 3. Location of Wuhan City. 
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Figure 4. Land use information for four major types in Wuhan: (a) Built-up area, 

(b) Forest, (c) Farmland and (d) Water. 

 

A cloud-free Landsat-7 Enhanced Thematic Mapper Plus (ETM+) image (Row/Path: 038/123), 

collected on 17 September 2010, was acquired from USGS. The image was further rectified to the 

Universal Transverse Mercator project system (datum WGS84, UTM Zone N49) by a third-order 

polynomial using the nearest neighbor method, and good geometric correction accuracy was obtained 

with less than 0.5 pixels. We conducted field investigations to establish a precise classification system. 

Beforehand, an ISODATA classifier was used to detect subclasses by an unsupervised clustering 

method in consideration of different reflectance characteristics for different objects within the same 
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land use type. Then, we undertook supervised classification, and the image was classified into six land 

use classes: unused land, built-up area, water, grassland, forest, and farmland. The data from the filed 

investigations were used as a reference to evaluate the classification accuracy, and the overall accuracy 

of the classification result was greater than 90%. The classification result was used to separately 

extract four raster classification maps to express the spatial patterns of different land use types more 

clearly. These raster maps were further converted to vector maps, which were then used to identify the 

spatial features of land use patches by ArcGIS software. The land use patch features were input to 

calculate the fractal dimensions in Matlab. Due to the small number of patches and areas for grassland 

and unused land, this study mainly analyzed the other four land use types shown in Figure 4: Built-up 

area, water, forest and farmland, which accounted for more than 99% of the total number of patches as 

well as of the total area (Table 1). 

Table 1. The classification results of satellite-detected land use information in Wuhan. 

ID Land Use Types Number of Patches 
Percentage of Patches 

(%) 

Area  

(m2) 

Percentage of Area 

(%) 

1 Built-up area 7,274 10.089 607,801,492 7.075 

2 Forest 31,849 44.174 734,558,400 8.550 

3 Farmland 15,137 20.995 6,701,792,036 71.023 

4 Water 16,864 23.390 1,134,048,588 13.200 

4. Results and Discussion 

4.1. Boundary Dimension 

Statistically significant (p < 0.001) relationships between the logarithm of area and the logarithm of 

perimeter were established with linear regression analyses. Figure 5 shows that the correlation 

coefficients (R2) from the least-squares estimation for all four land use types are over 0.980. This result 

indicates that there are strong linear relationships between lnA and lnP. Thus, it is reasonable to use the 

boundary dimensions derived from Equation (1) to interpret different land use spatial structures at the 

micro level. 

Figure 5 shows that the four land use types share a common feature of low boundary dimensions, 

less than 1.5, suggesting that the shape complexities of each single patch are overall relatively simple. 

However, there are still some remarkable differences among the various land use types. The boundary 

dimensions of forest and farmland are 1.360 and 1.355, respectively. Both dimensions are close to 1.5, 

indicating more stochastic boundaries than the water and built-up areas. This result also suggests that 

the patch boundary shapes of forest and farmland are more irregular and fragmental than the boundary 

shapes of water and built-up areas. This difference is primarily due to the impacts of destructive 

agricultural activities and intense human disturbances on the farmland and the forest cover areas, such 

as regional land consolidation, unsustainable agricultural practices, and uncontrolled deforestation for 

farming potential. In particular, numerous forests have been converted into farmlands since the  

family-contract responsibility system, regarded as a significant breakthrough and innovation in the 

rural land property rights institution of China, was conducted in 1981. 
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Figure 5. The boundary dimension results for four land use types in Wuhan City: (a) Built-up 

area, (b) Forest, (c) Farmland and (d) Water. 

 

The boundary dimension of the built-up area is relatively low, which manifests as simple boundary 

shapes related to each single patch as a whole. This phenomenon may be caused by regular outlines 

derived from remote sensing imagery, which are mostly similar to ordinary geometric shapes, such as 

rectangles, squares and hexagons. Water, like the built-up area, also has a low boundary dimension 

value. Being second only to farmland, water accounts for 13.2% of the total area shown in Table 1 and 

is regarded as playing an important role in the improvement of ecological landscape and the mitigation 

of the urban heat island. This role has encouraged the government to devote more attention and 

investment to protecting lakes and rivers in the past ten years than before. For instance, there are many 

noticeable waterfront sidewalks around East Lake (the largest lake in the central district of China), as 

well as kilometers of man-made embankments for the cultural landscape on both sides of the Yangtze 

River. These municipal projects have transformed the random and natural boundaries into regular and 

artificial ones, creating a low boundary dimension value for water. 

4.2. Radius Dimension 

To understand the centrality of land use spatial patterns through the radius dimension, both the 

location of the analysis center and the interval value of the circle radius shown in Figure 1b need to be 

studied first. The analysis center generally refers to the urban center, which has three types of basic 

forms: the geometric outline center, the commercial center and the political hot spot. Because of the 

urban spatial expansion with economic development in Wuhan, the most famous commercial center is 
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the most suitable measurement center. In this study, the World Trade Plaza Shopping Centre, a 

landmark building of Wuhan, was chosen as representative of the overall centrality. Another key issue 

related to the radius dimension is the determination of the radius interval value. Due to the large 

amount of data involved, it is impractical to perform radius dimension analysis using too small a radius 

interval for the whole city. In turn, it is also meaningless to adopt a wide interval so that there are too 

few samples to accurately analyze its tendency based on statistical principles. Therefore, we chose a 

buffer zone with a width of 2,000 m for the spatial buffer overlay operation (shown in Figure 6) so that 

there are sufficient samples (more than 40) for regression analysis data but not a heavy computation 

burden in buffer operation. 

Figure 6. Buffer analysis used to identify area surrounding the given center within 

different radiuses.  

 

Figure 7 shows that there are strong linear relationships between the logarithm of area and the 

logarithm of radius for all four land use types, which are statistically significant at the 0.001 level. This 

result suggests that the radius dimension determined by Equation (2) is feasible for quantifying the 

land use intensity change from the urban center to the outer boundary. Notably, the correlation 

coefficient of farmland (R2 = 0.783) is dramatically lower than the correlation coefficient of the other 

three types (R2 > 0.850), as shown in Figure 7. This difference is caused by an abrupt change of 

farmland prevalence from the central districts to the rural districts. Figure 4c shows that the change 

occurs around the boundary of the built-up area, with a few areas of farmland closer to the urban center 

but a great many far from it. It has been further confirmed by the double logarithmic scatter plot 

between area and perimeter shown in Figure 7c that there is a distinctive change from the second point 

to the third one. This situation leads to a relatively poor regression fitting effect for farmland. 

A comparison among the four land use types indicates that the farmland yields the highest radius 

dimension (2.568), followed by the forest (2.402), water (1.222), and built-up area (0.834). This 

comparison reveals that the farmland is more sharply characterized than the others by an increasing 

distribution density from urban center to its surrounding area. This tendency of farmland has already 

been touched upon earlier in the discussion of determining its corresponding correlation coefficient. 

Although the area of forest is much smaller than the area of farmland, there is a slightly scattered 

distribution in the northwest, northeast, and southeast regions far from the urban center, as shown in 

Figure 4b. This distribution results in a radius dimension greater than 2. Both the built-up area and the 
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water have radius dimensions less than 2, which reveals that they have centrality trends, aggregating 

towards the urban center. However, the radius dimension value of the built-up area is distinctly lower 

than the radius dimension value of water, indicating a stronger centrality. This result may elucidate the 

appearance that it is easy to observe the centrality trend for the built-up area in Figure 4a, while the 

trend for water in Figure 4c is rather blurry. 

Figure 7. The radius dimension results for four land use types in Wuhan City: (a) Built-up 

area, (b) Forest, (c) Farmland and (d) Water. 

 

4.3. Information Entropy Dimension 

A simple linear regression analysis based on Equation (3) was performed to calculate the 

information entropy dimension by ordinary least squares. Figure 8 shows that the correlation 

coefficients for all four land use types exceed 0.999. This result suggests that the fits between I(ε) and 

lnε are extremely good. The same observation and result associated with the information entropy 

dimension are fairly well documented in fractal characteristic literature [38]. Therefore, this dimension 

is reasonable for assessing the balance of land use structure. 

The information entropy dimensions of urban land use are ranked in descending order as farmland 

(1.936), built-up area (1.778), water (1.711), and forest (1.579). This result suggests that the farmland 

distribution is relatively homogenous compared to the other three land use types. We speculate that 

this result may reflect its dominance in area over the city. Of those land use types in Wuhan, the 

farmland area is the largest, accounting for 71.023% of the total area. Although the central districts 

have a farmland area of less than 10%, as shown in Figure 4c, the suburban and rural districts are 
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dotted with patches of farmland. The information entropy dimension of the forest, on the other hand, is 

the lowest, indicating a seriously imbalanced spatial distribution. It can be confirmed from Figure 4b 

that the majority of forest is concentrated in the northeast and northwest, far from urban areas, with 

small scattered patches in the southeast. This distribution can easily lead to a fragile ecological 

environment in certain local areas. Thus, efforts should be intensified to develop and conserve forest 

resources in Wuhan. In addition, the information entropy dimension values of built-up area and water 

are closer to forest than to farmland, indicating that their land use spatial patterns are not balanced. 

This result agrees with their spatial distributions shown in Figure 4a and d as well as the results of the 

radius dimension, as discussed above. 

Figure 8. The information entropy dimension results for four land use types in Wuhan City: 

(a) Built-up area, (b) Forest, (c) Farmland and (d) Water. 

 

4.4. Lacunarity Dimension 

Figure 9 shows that the lacunarity indices of all four land use types decline as the grid size 

increases. The logarithm of the water lacunarity index, for instance, decreases from 3.14 to 2.62 as the 

logarithm of the grid size increases from 0.7 to 2.6. That is, the lacunarity index depends heavily on 

the size of the template. This result reveals that it is meaningless to directly compare the four land use 

types using the lacunarity index because of the scale effects involved. This problem is the main reason 

that we use fractal theory to improve the lacunarity index using Equation (9) in this study. 

All four land use types have significant linear regression correlations, as shown in Figure 9, which 

agree with the linear fit tendency presented in Figure 2d. Thus, explaining the degree of concentration 
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of land use using the lacunarity dimension is sound at the macro level. The lacunarity indices of the 

four land use types can be sorted in descending order as water (0.261), forest (0.140), built-up area 

(0.092), and farmland (0.046). Both the built-up area and the farmland are smaller than the water and 

forest, indicating that the former two categories present a more clustered spatial pattern than the latter 

ones. Combining this information with the status quo of land use shown in Figure 4, we find that large 

tracts of built-up area are gathered in the central districts, while the farmland aggregates in patches in 

the rural districts. This result implies that there is no zoning signal for the suburban sprawl with self-

organization features in Wuhan. Otherwise, the government will be forced to adopt cluster 

development to attempt to amend the zoning of land use, which has occurred in most of the 

municipalities of America. Although the farmland is far away from the city center, it can be considered 

to aggregate outward around the urban center. To sum up, the spatial self-organization characteristics 

as measured by the lacunarity dimension show that the built-up area and farmland are both highly 

distributed around a certain center. However, they present two different self-organization trends with 

opposite directions: the built-up area gathers towards the urban center, while the farmland diffuses 

outward from this center. These results in relation to the lacunarity dimension, as shown in  

Figures 9a,c, are entirely consistent with our earlier radius dimension results in Figures 7a,c, 

respectively. In this regard, we confirm that there is a specific relationship between the radius 

dimension and the lacunarity dimension when the spatial pattern of land use has an aggregation 

tendency with respect to a single given center in the whole urban extent. However, this phenomenon 

deserves further examination and verification over a larger area in the future. 

Figure 9. The lacunarity dimension results for four land use types in Wuhan City: 

(a) Built-up area, (b) Forest, (c) Farmland and (d) Water. 
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The land use type of water has the highest lacunarity dimension value, implying a strong 

distribution characteristic of gathering into pieces. This result is mainly due to an abundance of water 

areas in Wuhan, as shown in Figure 4d, including the Yangtze River, Han River, Dong Lake, Nan 

Lake, Sha Lake, Tangxun Lake, and many other lakes and ponds. According to lacunarity dimension 

theory, there exists a gathering self-organization center for each lake and pond in the land use spatial 

pattern. This result indicates that the water spatial pattern, with a crowd of scattered individual patches, 

leads to the maximum lacunarity dimension. The forest, on the other hand, has a lower value than the 

water, which suggests that the degree of aggregation of forest is weaker than the degree of aggregation 

of water. This result is also readily intuitive by contrasting Figure 4b,d. 

For the land use spatial patterns in Wuhan, the results suggest that the built-up area has relatively 

simple land use patches. It also presents a rapid downtrend in spatial distribution density from the 

urban center to the rural area and has an obvious aggregation distribution concentrated around the 

commercial center. This feature is due to the backward urban planning, maintaining a slow pace of 

urban-rural integration in Wuhan. Water patches generally have simple spatial boundaries, indicating a 

strong human influence. The fact that it keeps the second largest total area and is characteristic of their 

multiple aggregation centers suggests that the local government has paid substantial attention to 

protecting water resources during the urbanization process. Conversely, the forest is relatively complex 

in terms of the single patch shape at the micro level but is not obviously aggregative at the macro level. 

In fact, this is a typical phenomenon of deforestation, which may result from a rapid expansion of the 

cultivation area on the earth’s surface. 

5. Conclusions  

A novel approach was proposed to quantify urban land use patterns by using multidimensional 

fractal indices based on self-similarity and randomness. Three fractal dimensions, including boundary 

dimension, radius dimension, and the information entropy dimension, were introduced as the typical 

indices to examine the complexity, centrality, and balance of land use spatial patterns, respectively.  

A new lacunarity dimension was proposed to describe the self-organization feature with multiple 

centers of urban land use at the macro level. The main conclusions from this study can be summarized 

as following: 

(1) The utility of multidimensional fractal indices to analyze the spatial patterns of urban land use 

proved to be more comprehensive than the utility of any single fractal dimension index. The thorough 

analysis exhibits accurate spatial pattern detection, including correlation coefficients greater than 0.85 

and statistically significant with p < 0.001.  

(2) It is feasible to use the proposed lacunarity dimension to solve the typical modifiable areal unit 

problem associated with the scale effects of lacunarity index. It can effectively distinguish the  

self-organization feature (multiple centers) from the centrality (only one center) as well as the balance 

(no center) of land use spatial patterns at macro level. 

(3) Although the shape complexity of water was found to be highly similar to that of built-up area at 

micro level in Wuhan, there is a remarkable difference for their macro spatial patterns: Water patches 

tend to aggregate around multiple individual centers while built-up area only to the urban  

commercial center. 
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(4) It is suggested that we should confirm the goodness of fit and the statistical significance of 

estimated fractal dimensions before using the multidimensional fractal dimension indices to examine 

the satellite-detected urban land use spatial patterns. 

Despite the achievements in this research, there are several aspects need to be further investigated, 

such as the effects of classification uncertainties and spatial resolution differences onto fractal analysis. 

This is beneficial for the government and researchers to gain more accurate insight into the complex 

spatial patterns of urban land use. 
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