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Abstract: Traditionally, image registration of multi-modal and multi-temporal images is 

performed satisfactorily before land cover mapping. However, since multi-modal and 

multi-temporal images are likely to be obtained from different satellite platforms and/or 

acquired at different times, perfect alignment is very difficult to achieve. As a result, a 

proper land cover mapping algorithm must be able to correct registration errors as well as 

perform an accurate classification. In this paper, we propose a joint classification and 

registration technique based on a Markov random field (MRF) model to simultaneously 

align two or more images and obtain a land cover map (LCM) of the scene. The 

expectation maximization (EM) algorithm is employed to solve the joint image 

classification and registration problem by iteratively estimating the map parameters and 

approximate posterior probabilities. Then, the maximum a posteriori (MAP) criterion is 

used to produce an optimum land cover map. We conducted experiments on a set of four 

simulated images and one pair of remotely sensed images to investigate the effectiveness 

and robustness of the proposed algorithm. Our results show that, with proper selection of a 

critical MRF parameter, the resulting LCMs derived from an unregistered image pair can 

achieve an accuracy that is as high as when images are perfectly aligned. Furthermore, the 

registration error can be greatly reduced. 
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1. Introduction 

Remotely sensed images captured from satellites have been widely used for land cover mapping 

applications because of their capability to allow classification of different land cover types without 

having to physically assess the area of interest. In a situation where a single image does not provide 

sufficient classification performance, integrating multiple images of the same area is a common 

practice to increase the discrimination capability. Some applications, especially agricultural field 

mapping, particularly benefit from using multitemporal sequences of satellite images because 

vegetation appearance often changes according to the season. Moreover, multiple input images from 

different satellites can be used to further improve classification performance by providing better 

spectral separation characteristics that a single sensor alone cannot provide. A practical application is 

reported in [1] where multi-temporal sequences of synthetic aperture radar (SAR) images and a single 

optical image were used. The results from this study showed that the overall discrimination 

performance was increased, consistent with other similar research where multi-sensor data have been 

combined. Skriver et al. [2] emphasized the benefits of using multi-temporal SAR images in short 

succession (weekly to monthly acquisitions) for crop classification. These authors reported improved 

classification accuracy by using multi-temporal information. The authors in [3] exploited the crop 

phenology information to determine the growth stages by using multi-temporal TerraSAR-X, 

ASAR/ENVISAT and PALSAR/ALOS images. They reported a significant correlation between 

backscattering coefficient and the normalized vegetation index obtained from SPOT4-5 images. 

Similarly, the work in [4] used multitemporal remote sensing data for yield estimation of wheat. 

The problems of multisource and multitemporal land cover mapping have been extensively studied 

in [5–7]. In [5], the authors modeled the multisource and multitemporal images to have the MRF 

properties, and used this model to develop an image classification algorithm for remote sensing 

images. Thoonen et al. in [6] attempted to jointly classify a high spatial resolution color and a low 

resolution hyperspectral image of the same scene. In their work, a composite decision fusion (CDF) 

strategy combining a kernel-based decision fusion technique with the composite kernel classification 

has been introduced. Camps-Valls et al. used the kernel-based framework to classify multi-source and  

multi-temporal images. A common assumption in [5–7] is that all multisource and multitemporal 

images are perfectly registered. Registration [8,9] aligns multiple satellite images into a common 

coordinate system. Only when all of the input images are perfectly registered can a classification 

algorithm be applied. Otherwise mis-registration will produce classification errors. In practice, perfect 

registration may not always be achievable since there are some unknown variations in satellite 

platforms and flight paths when capturing images. As a result, the overall classification accuracy is 

likely to suffer from mis-registration effects. 

Mahapatra and Sun [10] proposed an idea to incorporate the reduction of image registration error 

into an image classification tool. They attempted to integrate the segmentation information into an 
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elastic image registration by using a Markov random field model. In their work, the configuration of a 

pixel contains both displacement of a pixel and a segmentation label. The multi-resolution graph-cut 

approach was employed in order to achieve sub-pixel registration accuracy. Although their results 

produced remarkable performance for the elastic image registration, this algorithm is not suitable for 

other type of image registration problems where one set of the registration parameters govern the 

remapping process of an entire image. Furthermore, since they only considered the segmentation 

problem, their algorithm does not cover the multi-class scenarios that are often considered in the land 

cover mapping of remotely sensed images. 

Another work by Chen et al. in [11] investigated the problem of joint image fusion and registration. 

In their paper, the observed images were remapped versions of the original images with possibilities of 

polarity reverse and/or DC offset. Chen et al. used an expectation maximization algorithm to solve the 

estimation problems of registration parameters and the true scene simultaneously. Different pairs of 

multi-sensor images were tested against the proposed joint process. Under the assumption that 

registration performance affects the quality of the fusion result, the authors reported that better fusion 

performance could be achieved due to reduced registration errors. However, their work did not cover 

the problem of image classification in the presence of image registration errors. 

In this paper, we employ an approach similar to [11] to incorporate the correction of mis-registration 

effects into the land cover mapping process. To do this, we assume that remotely sensed images are 

derived from a common unobservable land cover map (LCM), and then distorted, with unknown 

remapping parameters, into the observed remote sensing images. (Note that if these map parameters 

are known, the observed remote sensing images can be directly aligned with the land cover map.) Next, 

we assume that a land cover class of interest is more likely to occupy several connected patches than a 

number of isolated pixels. As a result, the Markov random field (MRF) is employed as the model of the 

LCM. MRF models have been used in various fields ranging from statistical physics [12,13] to remote 

sensing. The original work by Geman and Geman [14] on MRF-based statistical methodology in 1984 

has inspired a continuous stream of remote sensing researchers to employ the MRF model for a variety 

of image analysis tasks (e.g., [15–23]). Solberg et al. [15] developed MRF-based algorithms for image 

classification and change detection using multi-source data. A significant increase in classification and 

change detection accuracy was obtained using an MRF-based classification algorithm compared to 

other approaches. Kasetkasem and Varshney [16] and Bruzzone and Prieto [17] also applied MRF 

models for an image change detection problem. Similarly, Xie et al. [18] applied the MRF model to 

the recurring problem of speckle reduction in synthetic aperture radar (SAR) images. In [19], Pen et al. 

employed the MRF model together with the alpha-stable distribution for the problem of SAR image 

classification. In [20], the image fusion algorithm based on a MRF model has been developed. 

In [21,22], the problem of super-resolution mapping based on MRF models has been studied. More 

recently, Moser et al. in [23] discussed on how to apply the MRF to the LCM of very high remote 

sensing images. These promising results on image analysis problems have encouraged us to employ 

the concept of MRF models to the problem of generating an LCM. 

Based on our image model, the registration and classification process can be performed in the 

following fashion. First, we estimate the unknown map transformation parameters based on the 

maximum likelihood (ML) criteria, and then use these parameters to computer posterior probabilities 

for different arrangements of the land cover maps, where the MAP classifier selects the most likely 
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LCM. However, in order to find the map parameters, the conditional probability of observed images 

given certain map parameters is needed. This conditional probability can only be obtained by summing 

the joint probabilities of observed images and LCM associated with the map parameters, over  

all possible LCMs. This is impossible to obtain in most practical scenarios. As a result, the  

expectation-maximization (EM) algorithm [24] is also employed here. The EM algorithm iteratively 

searches for the most likely map parameters. The resulting parameters converge to one of the local 

optimum points of the likelihood function. 

For a given iteration of the EM algorithm, our method computes the expected value of the logarithm 

of the probability of the observed images and land cover map given the map parameters, based on the  

a posteriori probability of the LCM given observed remote sensing images and the current estimated 

map parameters. Then, new map parameters are obtained by maximizing the expected values. It has 

been shown in the research literature [24] that the new map parameters always correspond to a higher 

value of the likelihood function. Since each iteration of the EM algorithm calculates the a posteriori 

probability given the current estimated map parameters, an optimum LCM under MAP criteria can be 

easily obtained by choosing the LCM that maximizes the a posteriori probability. In other words, an 

optimum LCM for the most recent estimate of the map parameters under the maximum a posteriori 

(MAP) criterion is obtained for every iteration of the EM algorithm. 

The remainder of this paper is organized as follows. The next section will define the problem and 

the model that we employed. In Section 3, we will derive the optimum land cover mapping and image 

registration process based on the model presented in Section 2. The optimization problem and its 

corresponding solution are presented in Section 4. Our experiments to evaluate our proposed approach 

are described in Section 5. Finally, Section 6 offers concluding remarks. 

2. Problem Statement 

Let  denote the LCM where  is a set of pixels. We assume that there are  land cover classes 

in the area of interest and we let Λ  0, 1, … , 1  be the class labels. Therefore, we can express 

the LCM as  Λ . The label of LCM at pixel  is denoted by  which can also be called the 

configuration of  at the site s. Since land cover classes are more likely to occur in connected 

patches in the LCM than isolated pixels, the LCM is assumed to satisfy the MRF properties with Gibbs 

potential . Hence, the marginal probability density function (PDF) of a LCM can be written as Pr 1 exp  (1)

where  is a normalizing constant,  is a clique, and ∑  is called the Gibbs energy 

function [14]. Cliques are singleton or groups of pixels such that any two pixels are mutually 

neighbors. Figure 1 shows all possible clique types for four- and eight-neighborhood systems. The 

value of the Gibbs potential function depends on the configurations of the entire LCM and the clique. 

Usually, low values of the potential function correspond to similar configurations, whereas high values 

correspond to dissimilar configurations of a clique. For instance, the Ising model [11,13], given by,  
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, ;; 0;  (2)

For any two sites r and s, has been used extensively by statistical physicists to explain why 

neighboring particles are more likely to rotate in the same direction (i.e., either clockwise or 

counterclockwise). Here the notation  is a set of neighboring pixels of . We can extend the above 

model to our problem by letting  and  be the class labels of pixels  and  in , respectively. With 

this modification, the Ising model can be applied to describe the LCM because land cover class 

distributions are similar to the phenomenon described above (i.e., classes occupying neighboring pixels 

are likely to be the same). 

Figure 1. Clique types for (a) four-neighborhood; (b) eight-neighborhood. 

 
(a) 

(b) 

Furthermore, we assume that there are  remotely sensed images of the same scene acquired from 

different sensors and/or at different times. Here,   ; 1,2, … ,  denotes the -th 

remotely sensed image where  denotes the number of spectral bands, and  is a map coordinate 

system to which the n-th remote sensing image is registered. Since all remotely sensed images and the 

LCM are from the same scene, the relationship between  and  can be determined. Let us denote a 

coordinate of a pixel s in the LCM as ,  where  and  are the column and row of . Similarly, 

we can write ,  where  and  are the column and row of the pixel  in . In this 

paper, we employ the affine transformation, and the relationship between  and  can be written as  , ,, , ,,  (3)

where ,  and ,  are scale parameters, ,  and ,  are skew parameters, and .  and ,   

are displacement parameters in the column- and row-direction, respectively. We refer to  , ,  , ,  , ,  , , , ,  ,  as the map parameter vector between coordinate systems  

and . Note here that our work can be applied to another type of image mapping as well. 

When all the map parameter vectors are given, one can remap all remotely sensed images to 

perfectly align with the LCM. Let us denote  
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,  (4)

As the remapped and resampled version of the n-th remote sensing image. Here, we assume further 

that the remapped and resampled images are statistically independent for a given LCM, i.e., Pr | , Pr , … , | Pr |  (5)

where , … ,  and , … ,  are collections of the map parameters and the 

observed multispectral images. We observe that Equation (5) is similar to the hidden Markov model 

used in [25]. Moreover, the intensity vectors from different pixels in  are also assumed to be 

statistically independent when the LCM is given. Hence, the joint conditional PDF can be written as  

Pr | , Pr , |  (6)

where ,  denotes the intensity vector of the remapped image  at a pixel . We 

acknowledge that the assumption given in Equation (6) may not always be true for all cases since some 

land cover classes have a textural structure. One can incorporate texture information into our image 

model appropriately, which may further result in an increase in accuracy. This will, however, lead to 

extremely complex problems, which may not be desirable in practice. 

Furthermore, if we assume that the intensity vector at a pixel  of the remapped image  given 
the class label  is a multivariate normal random vector with mean vector ,  and covariance matrix 

Σ , , Equation (6) can be rewritten as  Pr | , 12 Σ , / exp 12 , , Σ , , ,  (7)

where T denotes the matrix transpose operation. 

By using the chain rule, the posterior probability of the LCM given the observed multispectral 

images and the map parameters can be written as  Pr | , Pr | , PrPr ,  (8)

Since Pr ,  is independent of the choice of , it can be treated as a constant. Hence, we have  Pr | , Pr | , Pr . (9)

By substituting Equations (1) and (7) into Equation (9), we obtain  Pr | , 1 | , . (10)

where ∑ | ,
Λ

 is a normalizing constant and independent of the choice of , and  | , 12 , , Σ , , , log Σ ,  (11)

is known as a conditional Gibbs energy function. Since, in this paper, we consider cliques comprised 

of pixel pairs only, the conditional Gibbs energy function can be written as  
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| , 12 , , Σ , , , log Σ ,12 , ,  

(12)

where  denotes the set of neighboring pixels of . The normalizing constant  cannot be computed 

in most practical scenarios due to the large number of possible configurations (e.g., there are more than 

24096 possible configurations for binary LCM of size 64 64.) As a result, we propose to use the mean 

field theorem [26,27] to remove the interaction between neighboring pixels defined in . The 

mean field theorem approximates the conditional Gibbs energy function as  | , 12 | ,  (13)

where  | ,
, , Σ , , , log Σ ,

, ,  

(14)

here, ,  is the expected value of the potential function with respect to the configuration of 

. The expected value , ,  does not depend on , and is equal to  

, , , | ,  (15)

where | , | , . Note here that ∑ | ,  is the normalizing 

constant for a pixel . By using the approximation given in Equation (13), the posterior probability can 

be written as  Pr | , Pr | , | ,  (16)

Of all approximations of the form ∏ | , , the approximation in Equation (16) is closest to Pr | ,  when the Kullback-Leibler (KL) divergence [27,28] is used as a distance measure. 

3. Optimum Image Registration and Land Cover Mapping Criteria 

The standard approaches to multi-temporal and/or multi-modal image classification entail two 

steps. First, images from different sources and/or times are registered to produce a set of images in a 

common coordinate system. Then, a land cover map is derived from this set of registered images. In 

this work, even though we propose an algorithm to simultaneously register and classify images, we 

still treat image registration and classification as two separate problems in order to follow standard 

approaches. As a result, we propose different optimization criteria for image registration and land 
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cover mapping. However, we will show in Section IV that both image registration and land cover 

mapping can be combined into a single algorithm so that the registration and land cover mapping can 

be performed simultaneously. 

3.1. Optimum Image Registration 

The maximum likelihood estimate (MLE) can be employed as the optimum map parameter 

estimator since the MLE is to known to be a consistent estimator [29]. The goal of the MLE is to 

determine the map parameters that maximize the joint probability density function (PDF) of all the 

observed images given the map parameters, i.e.,  , … ,  arg max,…, Pr , … , | , … ,  (17)

In order to solve Equation (17), the conditional PDF Pr , … , | , … ,  must be calculated 

and it is equal to  Pr , … , | , … , Pr , … , , | , … ,  
Pr | Pr X  

(18)

Note here again that  is the remapped and resampled version of . Since Equation (18) is written 
as a multiplication of ∑ Pr  | Pr XX , the solution of Equation (17) can be obtained 

individually, i.e.,   arg max Pr | Pr X  (19)

for 1, … , . Since  is also unknown, there are many possible sets of  that maximize  

Equation (19). For instance, if 1, 0, 0, 1, 0, 0  is the solution of Equation (19) for  0, 0 , 0, 1 , 1, 0 , 1, 1 , we know that 1, 0, 0, 1, 1, 0  is also the solution of  

Equation (19) for 0, 1 , 0,0 , 1, 1 , 1, 0 . As a result, it is imperative to limit the search 

space and number of possible solutions. Furthermore, in most practical situations, we may wish to 

produce the LCM registered to one of the input remote sensing images. Without loss of generality, we 

assume that the LCM is registered to , i.e., we have 1, 0, 0, 1, 0, 0 . 

Next, let us consider a small LCM of size 100 100  pixels. In this case, there are  2 , 2 10 ,  possible binary LCMs. Therefore, the direct calculation of Equation (19) is an 

impossible task, and hence, the solution of the MLE cannot be obtained in reasonable time. As a result, 

the expectation-maximization (EM) algorithm [24] is employed instead. The EM algorithm is an 

iterative parameter estimator which produces a new estimate for every iteration. It has been shown  

in [24] that this new estimate always results in a higher or at least the same value of the likelihood 

function. In other words, if we let ,  , … ,  N  be the collection of all estimated parameters 

at the t-th iteration of the EM algorithm, we will have Pr , … ,  N| Pr , … ,  N| , where 

 is the collection of estimated parameters at the t 1 -th iteration. Here, and throughout the rest 

of the paper, we omit  and  for the sake of brevity. In Section 4, we will discuss the details of the 

EM algorithm employed in this work and how it can be combined with the land cover mapping 
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process. However, before going into the detail of the proposed algorithm, let us state the optimization 

criterion for the land cover mapping considered in this paper. 

3.2. Optimum Land Cover Map 

The classifier based on the maximum a posteriori (MAP) criteria selects the most likely LCM given 

the observed data and the map parameters since the resulting probability of error is minimum among 

all other classifiers [30,31]. The optimum solution under the MAP criterion is expressed as  arg maxX Pr | ,  (20)

In general, Pr | ,  is a non-concave function and, therefore, conventional gradient-based 

optimization algorithms are not applicable for the solution of Equation (20). Furthermore, the number 

of possible solutions is also very large. A direct search for the solution of Equation (20) is too 

expensive to be practically implemented. As a result, we propose to use the mean field theorem [26,27] 

to remove the interaction between neighboring pixels defined in VC X . Hence, by substituting 

Equation (16) into Equation (20), the optimization problem becomes  arg maxX | ,  (21)

Since the optimizing function in Equation (21) is written in the form of the multiplication of 

functions of all individual pixels, and | ,  is a non-negative function, the optimum solution 

can be solved from all individual function, i.e., for s , arg maxX | ,  (22)

which is equivalent to  arg minX | ,  (23)

4. Joint Image Registration and Land Cover Mapping Algorithm 

Since the EM algorithm is employed in this article as the parameter estimator, we begin our 

discussion with the details of the EM algorithm. The EM algorithm [24] consists of two steps, namely 

the expectation (or E) and maximization (or M) steps. In the E-step, the EM algorithm finds the lower 

bound of the likelihood function provided on the right-hand side of Equation (20) by calculating the 

expected value of the joint log-likelihood function of the observed images and the LCM. Here, the 

expected value is computed over the LCMs given the most recent estimate of the map parameter 

vectors and observed data, i.e.,  || log Pr , | ,log Pr | , log Pr ,  
(24)

where , … ,  is the set of all observed remotely sensed images, , … ,  is the set of 

all unknown map parameters, and , … ,  is the set of all estimated parameters at the t-th 

iteration of the EM algorithm. Note here that . By substituting Equations (1) and (7) into 

Equation (24), the expected value becomes  
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|| 12 , , Σ , , ,log Σ , log 2 ,  (25)

In the M-step, the expected value given in Equation (25) is maximized and a new set of map 

parameter vectors is obtained, i.e.,  arg max, ||  (26)

Clearly, the terms log Σ , , log 2 , ∑ , and  in Equation (25) do not depend on 

. Hence, Equation (25) can be modified to  arg max, ||  (27)

where  

|| arg max, 12 , , Σ , , , ,  (28)

To find the solution of Equation (28), the a posteriori probability of the LCM given the observed 

images and the map parameters at the (t−1)-th iteration must be calculated in order to find the expected 

value. For the same reason as discussed in Section 2, the posterior probability cannot be practically 

calculated due to the huge number of possible LCMs. As a result, we employ the approximation given 

in Equation (16), and hence, we have  Pr | , | , 1 | ,  (29)

By substituting Equation (26) into Equation (29), we end up with || ||12 , , Σ , , , | ,  
(30)

Hence, in the M-step, the new map parameters can be obtained by maximizing the approximation 

given Equation (30), i.e.,  arg max, ||  
(31)

Since ,  depends only on M  and the right-hand side of Equation (30) is written as the summation 

of ,  from different images, the above optimization problem can be rearranged into the optimization 

of each individual mapping parameters, i.e., arg max || ; 2, … ,  (32)

where  || 12 , , Σ , , , | ,  (33)
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Using the approximations given above, the modified EM algorithm is displayed in Figure 2. For 

each iteration, the posterior probability Pr X| ,   is approximated by recalculating | , . 

We follow the work of Zhang [28] which suggested that | ,  can be obtained from | ,   | |
, , Σ , , , log Σ ,

, , ,  

(34)

where |  and |  are the potential functions depending upon the observation and 

neighboring pixels, respectively. 

Figure 2. Block diagram of the modified expectation maximization (EM) algorithm. 

 

Since | ,  is recalculated for every iteration of the EM algorithm, we can choose a land 

cover class that minimizes | , , and obtain the optimum LCM based on criterion given in 

Equation (23) By combining the EM algorithm given in Figure 2 and the land cover mapping process 

by minimizing Equation (23), the joint image registration and land cover mapping algorithm is given as  

(1) Initialize map parameters, i.e.,   and , … , , let 1 , and assign | ,  based on some prior knowledge. 

(2) Compute ||  for 2, … , . 

(3) Obtain  by solving Equation (32) for 2, … , ., and assign  and , , . 

(4) Compute | ,  by using Equation (34). 

Find initial mapping vectors  

Let t 1, , 

, and estimate Pr | ,  

E-Step: 
Compute the expected 
value || . 

M-Step: 
Find the new map parameter 
vectors  by solving 
Equation (32). 

Let 1 

Does the EM 

algorithm 

converge? 
No 

Stop

Yes 

Approximate Pr | ,  by 

using Equation (28). 
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(5) Find the new LCM that minimizes | ,  for all . 

(6) Let 1, and go to Step 2 if the convergence criterion is not satisfied. 

The critical challenge in the successful implementation of the joint image registration and land 

cover mapping algorithm proposed above is how to solve Equation (32) efficiently. Here, to find the 

maxima, we employ the particle swarm optimization (PSO) algorithm [32] since the traditional 

gradient search approaches are likely to fall into one of the local optimum points of QMF M||M  

due to its non-convexity. The PSO exploits the cooperative behavior of a group of animals such as 

birds and insects. In the PSO, an individual animal is called a particle while a group of animals is 

called a swarm. Initially, these particles are distributed throughout the search space, and move around 

the search space. Based on some social and cooperative criteria, these particles will eventually cluster 

in the regions where the global optima can be found. 

In our work, for a given image Y , each particle represents a mapping parameter and we denote the 
i-th particle as ,  . At each iteration, the i-th particle moves with a velocity , which is a function of 

the best-known positions (mapping parameter) discovered by the i-th particle ( ) itself, and from all 

particles (G), i.e.,  

, ,  (35)

and  , ,  (36)

for n 2, … , N. where ω is the inertial weight, φ  and φ  are acceleration constants, and u  and u  are 

uniform random numbers between zero and one. The velocity is usually kept within the range of V , V ] to ensure that ,  is in the valid regions. Note here that the performance of the PSO 

depends on the selection of, ,  and , and the number of iterations. In this paper, we set the 

number of particles to 80 and the maximum number of iterations to 200 as a suitable setup for our 

experiment. We acknowledge that different setups of these parameters may result in different 

convergence rates. However, the investigation of the optimum parameter selection of the PSO in term 

of convergence rate is out of the scope of this paper. We refer to the report studied by [33] for  

further details. 

5. Experiments 

In this section, we provide the results of two experiments—based on the methodology derived in 

Section 4—to jointly register and classify a set of remotely sensed images. The first experiment was 

conducted over a simulated dataset in order for us to investigate many aspects of our proposed 

algorithm. Next, we examined the performance of our algorithm in an actual remote sensing image. 

For both examples, the goal was to examine the performance of the algorithm to different degrees of 

initial registration errors. If our algorithm performed perfectly, it would be able to align images 

together and produce an LCM from unregistered images as accurate as when images were registered. 
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5.1. Experiment 1 

In the first experiment, we examined the performance of the proposed algorithm in terms of 

classification performance and registration accuracy by attempting to produce a land cover map from a 

set of four simulated images. All the simulated images were of an equal size of 512 × 512 pixels 

(Figure 3) and contained four land cover classes (Classes 1–4) with intensity values of zero, one, two 

and three for black, dark gray, light gray and white areas, respectively. Based on the noiseless image, 

the ground truth image in this example is provided in Figure 4 where the blue, black, green and red 

colors correspond to Classes 1–4, respectively. Next, all of the input images were added with the 

independent and identical Gaussian noise with a zero mean and standard deviation of σ 1  to 

examine the performance of our proposed algorithm to image noise. Figure 5 shows an example of the 

input image for σ 1. We perceived that the observed image appeared to be very noisy. We note here 

that all four noiseless simulated images are identical, and differ only once the noise has been added. 

Figure 3. Noiseless Simulated Image in Example 1. 

 

Figure 4. The ground data of Example 1. 

 
  

Class 1

Class 2

Class 3

Class 4
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Figure 5. An example of the noisy input image at σ = 1 in Example 1. 

 

Since our algorithm performed both image registration and land cover mapping simultaneously, the 

performance of our algorithm could be evaluated in terms of how much the resulting LCM deviated 

from the reference LCM, and the estimation error between our calculated map parameters and the 

actual parameters that registered the LCM to the simulated images. If our algorithm performed perfect 

registration and land cover mapping, the resulting percentages of mis-classified pixels would be zero, 

and the registration error between the images and LCM would also be zero. In this example, the correct 
mapping parameters for all observed images were identical and equal to 1,0,0,1,0,0  which 

correspond to unit scale, zero skew, and zero displacement. Next, since we wanted to examine the 

effects of the initial registration errors on the performance of our algorithm, we investigated different 

scenarios of initial registration errors by varying the initial mapping parameters between the observed 

images and LCM at different values of displacement, scale and skew parameters. In particular, we 

investigated three scenarios for only the displacement, only the scale and only the skew errors, 

respectively. Table 1 shows the initial mapping parameters for all three scenarios. Here, δ, ρ and η are 

the initial displacement, scale, and skew parameter errors. Note that the initial mapping parameter 

errors for Image 1 for all scenarios were zero since we assumed that the first image is registered to the 

LCM as mentioned in Section 3.1. 

Before investigating the performance of our proposed algorithm, we examined the effect of 

registration errors on the performance of image classification. This value can be viewed as the worst 

case scenario where the LCM is derived directly from the set of mis-registered images. Here, we 

employed the maximum likelihood classifier (MLC) [30] to the set of four remapped images, and the 

LCM was obtained from  

arg min , , Σ , , , log Σ  (37)

where the subscript  denotes the n-th remapped image. We note here that Equation (37) is the special 

case of the optimum LCM obtained from Equation (22) when 0. Figure 6a–c displays the resulting 

LCM for 12 and 1 for Scenario I, 0.05 and 1 for Scenario II, and 0.05 and 
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1 for Scenario III. We chose these values so that all scenarios yielded the averaged registration 

errors between 12 and 22 pixels or 2%–5% of the image size. The averaged percentages of 

misclassified pixels after a hundred independent runs are equal to 28.66%, 31.93% and 27.03%, for 

Scenarios I, II and III given above, respectively. 

Table 1. Three scenarios for mapping parameter errors in Example 1. 

 Image 
Mapping Parameters 

      

Scenario I: 

Displacement error ( ) 

1 1 0 0 1 0 0 

2 1 0 0 1  0 

3 1 0 0 1 0  

4 1 0 0 1   

Scenario II: 

Scale error ( ) 

1 1 0 0 1 0 0 

2 1  0 0 1 0 0 

3 1 0 0 1  0 0 

4 1  0 0 1  0 0 

Scenario III: 

Sheer error ( ) 

1 1 0 0 1 0 0 

2 1  0 1 0 0 

3 1 0  1 0 0 

4 1   1 0 0 

Next, the proposed algorithm was applied to the above datasets. The whole process was 

implemented using CUDA on NVIDIA Tesla M2090 with 1 GB memory. Here, we assigned | ,  as the most extreme case where no prior information was given. In different trials, 

the value of β  was set to be 0.00, 0.25, 0.50, and 0.75 (see Equation (2)). Since our algorithm 

performed both image classification and registration, the termination criteria had to ensure the 

convergences in both the estimated posterior probability and mapping parameters. As a result,  

we defined  1| | | | , | , | (38)

to measure changes in the posterior probabilities from two consecutive iterations. We also define  

, 1| | ,  
(39)

to characterize the movement of coordinates of the remapped image Z  from two consecutive  

iterations where  

1, 2,3, 4,
1 5,6,  (40)

Here, m ,  denotes the mapping parameter m  from the nth at the tth iteration. In this example, the 

algorithm terminates when p  is less than p 10 , and d ,  is less than 0.1 pixels 

for five consecutive iterations for 2,3,4. To create a benchmark for our proposed algorithm, we 

investigated two extreme cases where LCMs were derived directly from the unregistered image pairs 
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and from a perfect registered image pair. The LCMs from these extreme cases were classified using 
our proposed algorithm by fixing . For perfect registration, we had  whereas, 

for unregistered image pairs, we set M  equal to the values given in Table 1 for the respective 

scenarios. The first extreme case could be considered as the lower limit on the classification accuracy 

if we performed the land cover mapping without alignment of images first. The second case was an 

upper bound on the classification accuracy when we produced a map from a registered image pair. By 

setting up our experiment in this fashion, we could investigate how much improvement our algorithm 

could gain by integrating the registration and classification together, and how far the performance of 

our algorithm was from the upper limit where all uncertainties in registration were removed. To ensure 

the statistical significance of our experiment, all experiments were repeated ten times. 

Figure 6. Examples of the maximum likelihood classifier (MLC)-based land cover maps 

(LCMs) for (a) Scenario I with δ = 12 and σ = 1; (b) Scenario II with ρ = 0.05 and σ = 1; 

and (c) Scenario III with η = 0.05 and σ = 1. 

 
(a) (b) (c) 

 

Table 2 displays the averaged percentages of misclassified pixels (PMP) of the LCMs for different 

values of  and for Scenario I with 12, Scenario II with 0.05 and Scenario III with 0.05 

when 1. Note here that, in this example, we employed the percentages of mis-classified pixels as 

the performance metric to evaluate the classification performance rather than the overall accuracy to 

highlight small differences in the classification performance between LCMs derived from image 

datasets without registration error and LCMs obtained from our proposed algorithm. From Table 2, it 

is clear that, from all scenarios, the PMPs derived from image datasets without registration errors 

corrections were always significantly poorer than those derived from registered image datasets. These 

results support our claims that it is important to consider a lack of alignments in performing image 

classification. We also observed that, for 0.25, 0.5 and 0.75, our proposed algorithm produced the 

LCM with an accuracy similar to those obtained from the image dataset without any registration errors. 

These results imply that our proposed algorithm attained the upper-bound accuracy with proper 

selection of the MRF parameter. 
  

Class 1 Class 4 Class 2 Class 3 



Remote Sens. 2013, 5 5105 

 

 

Table 2. Comparison of the averaged percentages of misclassified pixels (PMP) between 

two extreme cases and our proposed algorithm. 

 
No Registration 

Error 

No Registration Error Correction 
Proposed Algorithm with Initial 

Registration Errors 

Scenario I 

with 12 

Scenario II 

with  0.05 

Scenario III 

with 0.05 

Scenario I 

with 12 

Scenario II 

with  0.05 

Scenario III 

with 0.05 

0.0 25.65% 28.66% 26.87% 27.05% 28.65% 26.07% 27.12% 

0.25 0.43% 4.81% 5.96% 6.45% 0.45% 0.43% 0.43% 

0.5 0.039% 4.24% 5.65% 6.21% 0.039% 0.041% 0.043% 

0.75 0.021% 4.19% 5.56% 6.13% 0.024% 0.032% 0.026% 

To ensure the statistical significance, we computed the pairwise t-statistics for unequal variance 

populations [29] of the PMPs obtained from LCMs derived from the proposed algorithm for various 

initial registration errors against those obtained from image dataset with no registration error, The 

resulting p-values [29] of the t-statistics are given in Table 3. The p-value represents the probability 

that there is no difference in PMPs. Hence, a smaller p-value implies that PMPs from two experiments 

are different. We also computed the t-statistics comparing LCMs obtained from the image dataset with 

and without registration errors. The resulting p-values of these t-statistics are also summarized in 

Table 3. It is clear from Table 3 that there are significant differences in term of PMPs from LCMs 

obtained from the image dataset with and without registration errors. Furthermore, the p-values also 

support our claim that for 0.25, 0.5 and 0.75, our proposed algorithm produced the LCM with an 

accuracy similar to those obtained from the image dataset without any registration errors. However at 0, our proposed algorithm performed significantly poorer than those of perfect registration. In 

fact, at 0, our proposed algorithm achieved roughly the same performance as in the situation 

where there is no registration error correction since, at 0, our proposed algorithm could not 

correctly estimate the map vectors. Figure 7 shows examples of the resulting LCMs at 0.75 for all 

scenarios. We observed that all the LCMs appeared to be more connected than the MLC-based LCMs 

shown in Figure 6. 

Table 3. The p-values of the pairwise t-test with unequal variances of our proposed 

algorithm to the perfect registration cases. No registration error correction to the perfect 

registration cases. 

 

No 

Registration 

Error 

No registration Error Correction 
Proposed Algorithm with Initial 

Registration Errors 

Scenario I 

with  12 

Scenario II 

with 0.05 

Scenario III 

with 0.05 

Scenario I 

with  12 

Scenario II 

with  0.05 

Scenario III 

with 0.05 

0.0 1 1.5 10  1.6 10  4.0 10  1.9 10  4.0 10  3.9 10  

0.25 1 2.0 10  3.5 10  3.6 10  0.457 0.717 0.500 

0.5 1 1.5 10  2.8 10  1.8 10  0.712 0.167 0.401 

0.75 1 1.5 10  1.4 10  6.2 10  0.060 0.033 0.079 
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Figure 7. Examples of the resulting LCMs from our proposed algorithm (a) Scenario I 

with δ = 12 and σ = 1; (b) Scenario II with ρ = 0.05 and σ = 1; and (c) Scenario III with  

η = 0.05 and σ = 1. 

 
(a) (b) (c) 

 

Since at 0.75, our proposed algorithm achieved the highest performance, we examined the 

effect of the initial registration errors to the performance of our algorithm by varying values of , ρ, 

and  for Scenarios I, II and III, respectively, for  0.75. Again, ten independent runs were 

performed to ensure the statistical significance and the results are given in Table 4. We observed that, 

for all scenarios, the PMPs were roughly the same. In other words, the initial registration errors had 

little effect on the performance of our algorithm. These results imply the robustness of our proposed 

algorithm to the initial mis-registration errors if the proper value of  is chosen. 

Table 4. The averaged percentages of mis-classified pixels as a function of the initial 

registration error for all Scenarios. 

Scenario I Scenario II Scenario III 

 PMP  PMP  PMP 

0 0.019% −0.05 0.035% −0.05 0.036% 

4 0.032% −0.03 0.035% −0.03 0.029% 

8 0.029% −0.01 0.022% −0.01 0.043% 

12 0.026% 0.01 0.030% 0.01 0.040% 

  0.03 0.024% 0.03 0.036% 

  0.05 0.032% 0.05 0.026% 

Another key performance metric in this example is the residual registration errors after processing. 

Table 5 displays the means and standard deviations of the root mean square errors (RMSEs) from  

ten independent runs between each of the simulated images and the reference LCM. The RMSE of the 

n-th image is computed from  1| | ,  (41)

where ,  and ,  are the ground truth and estimated coordinates. Here, the ground 

truth coordinates obtained by letting . Clearly, for 0.25, 0.5 , and 0.75,  our 

Class 1 Class 4Class 2 Class 3
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algorithm can successfully register all images with the LCMs. However, at 0, our algorithm could 

not align these images with the LCM. The results in Table 5 emphasize the importance of parameter 

selection. Note here that the RMSE of Image 1 is not shown in Table 5 since it is assumed to be 

perfectly aligned (registration error is zero) with the LCM. 

Table 5. The residual registration errors of our proposed algorithm for various scenarios 

and values of . 
Scenario   

No Registration 

Error Correction 
.  .  .  .  

I ( 12  

Image 2 
Mean 12 11.99 0.111 0.295 0.280 

STD - 0.0015 0.259 0.139 0.100 

Image 3 
Mean 12 11.99 0.031 0.192 0.312 

STD - 0.0018 0.020 0.120 0.156 

Image 4 
Mean 16.97 16.96 0.213 0.338 0.212 

STD - 0.0017 0.566 0.088 0.136 

II ( 0.05) 

Image 2 
Mean 14.06 13.56 0.028 0.281 0.327 

STD - 0.072 0.010 0.130 0.113 

Image 3 
Mean 14.06 13.49 0.020 0.353 0.312 

STD - 0.032 0.080 0.102 0.106 

Image 4 
Mean 21.97 20.97 0.253 0.245 0.315 

STD - 0.095 0.636 0.120 0.082 

III ( 0.05) 

Image 2 
Mean 14.76 14.71 0.025 0.295 0.296 

STD - 0.204 0.020 0.149 0.098 

Image 3 
Mean 14.76 14.73 0.017 0.415 0.350 

STD - 0.182 0.006 0.090 0.136 

Image 4 
Mean 21.72 22.04 0.350 0.312 0.371 

STD - 0.0325 0.983 0.155 0.088 

Next, we examined the effects of image noise on the registration accuracy by varying the noise 

variance  from −30 dB to 0 dB, and the resulting averaged RMSEs for 0.0 and 0.75 are given 

in Tables 6 and 7, respectively. We observed here that there were slight performance differences in 

term of the RMSEs for of −30, −20 and −10 dB for both 0.00 and 0.75. However, for the noise 

variance equal to 0 dB, our algorithm could only correctly align Images 2–4 with the LCM at 0.75. 

This result emphasizes the importance of the MRF model to the convergence of our algorithm. 

For the performance comparison, we compared the registration accuracy of our proposed algorithm 

for various scenarios and 0.75 with a traditional image-to-image registration technique. Here, we 

employed the mean square error criteria (MSEC) [8,34] since MSEC is suitable for registering images 

with the same modality and suffering from additive Gaussian noise. For the traditional image-to-image 

registration, we registered Images 2–4 with Image 1 since Image 1 was assumed to be aligned with the 

LCM. The averaged RMSEs from ten independent runs for various noise variances are shown in Table 

8. Again, the particle swamp optimization algorithm with eighty particles was employed to ensure 

global optimality. As expected, the registration accuracy decreased as the noise variance increased. By 

comparing Tables 6 and 8, the RMSEs from our proposed algorithm seem to be lower (better) than 

those obtained from MSEC for noise variances equal to −20, −10 and 0 dBs, respectively. 
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Table 6. The residual registration errors for various noise variances and 0.75. 
Noise 

Variance (dB) 

Average Root Mean Square Errors 
Scenario I, 12 Scenario II, 0.05 Scenario III, 0.05 

Image 2 Image 3 Image 4 Image 2 Image 3 Image 4 Image 2 Image 3 Image 4 

−30 0.007 0.011 0.009 0.006 0.010 0.019 0.012 0.019 0.013 

−20 0.010 0.012 0.009 0.023 0.016 0.012 0.017 0.016 0.011 

−10 0.036 0.035 0.037 0.028 0.018 0.029 0.028 0.030 0.022 

0 0.244 0.280 0.185 0.119 0.138 0.071 0.078 0.053 0.200 

Table 7. The residual registration errors for various noise variances and β 0. 
Noise 

Variance (dB) 

Average Root Mean Square Errors 
Scenario I, 12 Scenario II, 0.05 Scenario III, 0.05 

Image 2 Image 3 Image 4 Image 2 Image 3 Image 4 Image 2 Image 3 Image 4 

−30 0.016 0.08 0.010 0.015 0.007 0.019 0.009 0.011 0.019 

−20 0.017 0.012 0.014 0.015 0.018 0.015 0.010 0.015 0.017 

−10 0.014 0.018 0.015 0.018 0.018 0.023 0.019 0.016 0.014 

0 11.99 11.99 16.97 11.91 11.89 20.28 12.75 12.79 20.61 

Table 8. The residual registration errors using the minimum mean square error criteria for 

various noise variances. 

Noise Variance (dB) Image 2 Image 3 Image 4 
Mean STD Mean STD Mean STD 

−30 0.008 0.0029 0.007 0.0041 0.010 0.0054 

−20 0.422 0.0040 0.425 0.0033 0.423 0.0049 

−10 0.663 0.0037 0.665 0.0014 0.664 0.0017 

0 0.875 0.516 1.637 1.441 1.352 0.9744 

Next, we again performed the pairwise t-test to determine whether there were significant differences 

in RMSEs obtained from our proposed algorithm and MSEC. The resulting p-values [29] are shown in 

Table 9. From the p-values, we can conclude that our proposed algorithm achieves significantly better 

registration accuracies than those obtained from MSEC for the noise variances of −20, −10 and 0 dBs. 

Note here that, for a noise variance equal to −30 dB, the registration errors from our proposed 

algorithm and the MSEC were roughly zero and, therefore there was no difference in terms of 

registration accuracy. Another key performance metric is the processing time. For noise variance equal 

to 0 dB, the total processing time for image-to-image registration was 170 s whereas our approach with 0.75 took 3,761, 6,063 and 4,620 s for Scenario I with 12, Scenario II with, 0.05 and 

Scenario III with 0.05, respectively. However, the total processing times for our approach with 0.25 reduced 2,816, 1,039, and 989 s for Scenario I at 12, Scenario II at 0.05 and 

Scenario III at 0.05, respectively. Clearly, our algorithm demanded more computation than the 

image-to-image registration based on MSEC. However, the computation time can be significantly 

reduced if a small value of  is chosen. 
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Table 9. The p-value from the pairwise t-test between the traditional registration method 

and our proposed algorithm for various scenarios at β 0.75. 
Noise 

Variance 

(dB) 

Average Root Mean Square Errors 
Scenario I, 12 Scenario II, 0.05 Scenario III, 0.05 

Image 2 Image 3 Image 4 Image 2 Image 3 Image 4 Image 2 Image 3 Image 4 

−30 0.829 0.402 0.883 0.413 0.413 0.201 0.507 0.092 0.407 

−20 1 × 10−18 4 × 10−14 2 × 10−21 1 × 10−13 1 × 10−13 3 × 10−15 2 × 10−13 2 × 10−13 5 × 10−17 

−10 3 × 10−14 2 × 10−14 3 × 10−14 3 × 10−15 3 × 10−15 5 × 10−16 2 × 10−23 1 × 10−14 7 × 10−17 

0 0.004 0.016 0.004 0.001 0.001 0.003 0.0010 0.007 0.004 

Figure 8 shows the averaged number of iterations that the algorithm required before the 

convergence criterion was satisfied for different scenarios and . For 0.25, 0.5 and 0.75, more 

iterations were needed as the value of  increased. However, at 0, our algorithm terminated at the 

higher numbers of iterations than for 0.25 for Scenarios II and III whereas, for Scenario I, our 

algorithm terminated at the lower number of iterations. For Scenario I at 0, our algorithm quickly 

converged to the local optima since the resulting and initial registration errors shown in Table 5 were 

almost identical. The identical resulting and initial registration errors also suggested that this local 

optimum point was very close to the initial point. However, for Scenarios II and III at 0, the local 

optimum points might be further than in Scenario I, and the algorithm converged slowly due to the 

small changes in the mapping parameters from one iteration to another and since 0, these small 

changes in the mapping parameters had a significant influence on the posterior probability. 

Figure 8. The averaged number of iterations required before the termination criteria were 

satisfied for different scenarios in Example 1. 

 

5.2. Experiment 2 

A QuickBird dataset consisting of one multispectral image (MI) of size 150 300 pixels and one 

panchromatic image (PAN) of size 600 1,200 pixels was used in this experiment (Figure 9). The MI 
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and PAN have resolutions of 2.4 and 0.6 m, respectively. Both images captured a part of Kasetsart 

University in Bangkok, Thailand, covering around 0.2592 km2, on 10 July 2008. Through visual 

interpretation, we classified the area into five classes, namely, water, shadow, vegetation, and 

impervious type 1 and impervious type 2. The ground truth image is shown in Figure 10 where the 

blue, black, green, red and white colors correspond to water, shadow, vegetation, impervious type 1 

and impervious type 2, respectively. In this case, the impervious was divided into two types due to 

different roof and pavement colors in the scene. By using both PAN and MI images, we randomly 

selected 1,000 samples for each land cover class. 

Figure 9. QUICKBIRD dataset of a part of Kasetsart University (a) False color composite 

multispectral image (MI); and (b) panchromatic image (PAN). 

(a) 

(b) 
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Figure 10. Ground truth image for Example 2 (green, blue, black, red and white colors for 

vegetation, water, shadow, impervious type 1 and impervious type 2, respectively). 

 

In Experiment 2, we focused on the robustness of the proposed algorithm with respect to different 

degrees of the initial displacement, scale and rotation errors. In fact, there were six displacement errors 

in the x-direction and y-direction, four scale errors and six rotational errors in this experiment. The 

termination criteria used in this example were similar to those in Example 1, i.e., our algorithm was 
terminated if  (see Equation (38)) was less than 10  and ,  (see Equation (39)) 

was less than 0.1 pixels for five consecutive iterations. Before examining the robustness of our 

algorithm, we determined the benchmark performance of the MRF-based land cover mapping when 

MI and PAN were perfectly registered. The resulting LCMs are shown in Figure 11. Again, as we 

progressed to greater values of , more connected LCMs are obtained. The overall accuracy graph 

shown in Figure 12 agrees with the visual inspection that the classification performance increased as 

the values of  increased. In this example, we employed the overall accuracy rather than the 

percentages of mis-classified pixels used in Example 1 since overall accuracy is a more widely used 

performance metric in remote sensing image classification. 

Since the PAN had a higher resolution, we assumed that it was aligned with the LCM, and we  

only needed to find the map parameters of the MI. Here, the PAN has a higher resolution than the 

multispectral image by the factor of four, and both MI and PAN were obtained from the same satellite. 

The optimal map parameter vector relating the two images was therefore be equal to  0.25,0,0,0.25,0,0 . 
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Figure 11. LCMs for the perfect registration case for (a) β 0 ; (b) β 0.25 ;  

(c) β 0.50; and (d) β 0.75. 

 
(a) 

 
(b) 

 
(c) 
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Figure 11. Cont. 

 
(d) 

Figure 12. Overall accuracies for different values of β when MI and PAN are perfectly aligned. 

 

To investigate the robustness of our algorithm to displacement, scale and rotation errors, we 

introduced the registration errors in displacement in the x-direction, displacement in the y-direction, 

scale and rotation into the MI and PAN pair. If we introduced the displacements into the image pair, 

the initial map parameter was set to be equal to  M 0.25,0,0,0.25,Δx, 0  

Water Shadow Impervious 2 Vegetation Impervious 1 
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and M 0.25,0,0,0.25,0,Δy , 
for displacement errors in the x- and y-direction, respectively. Here, the values of Δ  and Δ  was set as 

−5, −3, −1, 1, 3, and 5. For the scale and rotation errors, we assumed that both images were aligned at 

mid points, i.e., the pixel (75,150) of MI was at the pixel (300,600) of PAN. Next, we applied the 

initial scale errors, Δ , of −5%, −2.5%, 0%, 2.5% and 5% when comparing the PAN image with the 

multispectral image. Here, the scale errors of −5%, −2.5%, 0%, 2.5% and 5% corresponded to the 

initial scales of PAN to MI of 3.8, 3.9, 4.0, 4.1 and 4.2, respectively. For rotation errors, we rotated the 

MI by Δ  degrees in a counter clockwise direction. Here, the initial rotation errors Δ  were set as −3°, 

−2°, −1°, 1°, 2° and 3°. The initial RMSEMI (see Equation (41)) for all cases are given in Table 10. 

Again, if our algorithm performed perfectly, the estimated map parameter would converge back to 

. In other words, we would eventually end up with . Once the correct map parameter 

vector was obtained, the classification accuracies of the LCMs were expected to be equal to those of 

the perfect registration cases (Figure 11a–d). In this example, we again assigned | , , 

the most extreme case where no prior information was given. 

Table 10. The initial RMSEMI in meters (pixels in LCM) for various cases in Example 2. 

Error in x-Direction Error in y-Direction Error in Scale Error in Rotation 
Δ  RMSEMI Δ  RMSEMI Δ  RMSEMI Δ  RMSEMI 

−5 12 (20) −5 12 (20) −5% 21.3 (36) −3 11.12 (19) 

−3 7.2 (12) −3 7.2 (12) −2.5% 10.7 (18) −2 7.45 (12) 

−1 2.4 (4) −1 2.4 (4) 0% 0.0 (0) −1 3.72 (6.2) 

1 2.4 (4) 1 2.4 (4) 2.5% 10.7 (18) 1 3.72 (6.2) 

3 7.2 (12) 3 7.2 (12) 5% 21.3 (36) 2 7.45 (12) 

5 12 (20) 5 12 (20)   3 11.12 (19) 

The overall accuracies as a function of Δ , Δ , Δ , and Δ  are shown in Figure 13a–d, respectively. 

From almost all scenarios, the overall accuracies increased as the value of  increased since the MRF 

model promoted more connected land cover maps, and, therefore, removed the isolated misclassified 

pixels. However, for Δ 5 and Δ 5, the overall accuracies of our algorithms decreased as  

increased. These performance degradations were mainly due to the fact that our algorithm terminated 

on one of the local optima since the EM algorithm employed in our work cannot guarantee the global 

optimum solution. The evidence can be seen Figure 14a–b. In Figure 14a, we observed that, for almost 

all of the initial values of Δ , the number of iterations increased as the value  increased. However, for Δ 5.0, our algorithm terminated at only 75, 109 and 129 iterations for 0.25, 0.5 and 0.75 

whereas, for 0.0, our algorithm terminated after 180 iterations. Similarly, we observed the same 

phenomena in Figure 14b for Δ 5.0 where the algorithm terminated at a lower number of iterations 

for 0.75 than for 0.0, 0.25 and 0.50. This result showed the effects of the initial registration 

errors on the convergence of our algorithm. In most practical situations, such large initial registration 

errors are unlikely to occur since most remote sensing images are embedded with coordinate 

information from a producer. 
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Figure 13. The effect of initial registration errors to the overall accuracies for (a) in the  

x-direction; (b) in the y-direction; (c) in the scale; and (d) in the rotation. 

(a) (b) 

(c) (d) 

Figure 14. The effect of the initial registration errors to the number of iterations (a) in the 

x-direction; (b) in the y-direction; (c) in the scale; and (d) in the rotation. 

(a) (b) 

(c) (d) 
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Similar to the previous example, we also compared the performance of our proposed algorithm 

(PA) with two extreme cases where images were perfectly registered (PR) and there was no 

registration error correction (NC). The results are provided in Tables 11–14. From this comparison, we 

observed that if our algorithm converged to the global optimum solutions, the resulting overall 

accuracies from our proposed algorithm were similar to those of the perfect registration cases, and 

significant improvements were obtained from the cases where there was no registration error 

correction. The maximum performance improvements from no registration error correction for each 

cases were 12.6% for Δ 5  and 0.75 , 12.4% for Δ 5  and 0.75 , 17.4% for  Δ 5% and 0.75, and 14.9% for Δ 3° and 0.75, respectively. We observed that the 

maximum improvements were achieved at 0.75 . This observation suggested that a higher 

performance gain could be obtained by increasing the value of . 

Table 11. Overall accuracies for different values of β in two extreme cases and our 

proposed algorithm for different initial displacement error in the x-direction Δ  where  

PA and NC denote the cases of the proposed algorithm and no registration error  

correction, respectively. 

 PR Δ 5.0 Δ 3.0 Δ 1.0 Δ 1.0 Δ 3.0 Δ 5.0 

PA NC PA NC PA NC PA NC PA NC PA NC 

0.0 67.5 67.7 57.6 67.8 62.2 67.7 66.9 67.8 66.7 67.7 61.8 67.8 57.0 

0.25 69.4 70.0 58.8 69.8 63.7 69.8 68.6 69.9 68.3 70.0 63.4 59.3 58.4 

0.5 70.3 71.8 59.7 71.4 64.6 70.6 69.6 70.9 69.2 71.5 64.4 60.2 59.2 

0.75 71.1 72.8 60.2 72.2 65.2 71.5 70.3 71.8 70.0 72.7 65.0 60.4 59.9 

Table 12. Overall accuracies for different values of β in two extreme cases and our 

proposed algorithm for different initial displacement error in the y-direction Δy  where  

PA and NC denote the cases of the proposed algorithm and no registration error  

correction, respectively. 

 PR Δ 5.0 Δ 3.0 Δ 1.0 Δ 1.0 Δ 3.0 Δ 5.0 

PA NC PA NC PA NC PA NC PA NC PA NC 

0.0 67.5 67.7 57.6 67.7 62.2 67.7 66.9 67.7 66.7 67.7 61.8 67.8 57.0 

0.25 69.4 69.9 58.8 69.9 63.7 69.8 68.6 70.1 68.3 70.1 63.4 70.3 58.4 

0.5 70.3 71.6 59.7 71.2 64.6 70.5 69.6 71.8 69.2 71.8 64.4 68.6 59.2 

0.75 71.1 72.5 60.1 71.9 65.2 71.2 70.3 73.4 70.0 73.4 64.9 62.9 59.9 

Table 13. Overall accuracies for different values of β in two extreme cases and our 

proposed algorithm for different initial scale error Δs where PA and NC denote the cases of 

the proposed algorithm and no registration error correction, respectively. 

 PR Δ 5% Δ 2.5% Δ 0% Δ 2.5% Δ 5% 

PA NC PA NC PA NC PA NC PA NC 

0.0 67.5 67.8 52.7 67.7 61.0 67.7 67.5 67.8 64.9 67.8 57.8 

0.25 69.4 69.6 53.4 69.5 62.4 70.0 69.4 70.3 66.1 70.2 58.9 

0.5 70.3 71.1 54.2 70.6 63.3 71.0 70.3 71.6 67.0 72.1 59.7 

0.75 71.1 72.1 54.7 71.5 64.2 71.1 71.1 72.7 67.6 73.4 60.1 
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Table 14. Overall accuracies for different values of β in two extreme cases and our 

proposed algorithm for different rotation error Δθ where PA and NC denote the cases of 

the proposed algorithm and no registration error correction, respectively. 

 Perfect 

Registration 

Δ 3° Δ 2° Δ 1° Δ 1° Δ 2° Δ 3° 

PA NC PA NC PA NC PA NC PA NC PA NC 

0.0 67.5 67.6 57.3 67.6 60.8 67.6 65.3 67.7 64.8 67.7 59.8 67.8 55.5 

0.25 69.4 69.9 58.5 69.8 62.2 69.7 66.9 69.9 66.5 69.7 61.1 69.8 56.6 

0.5 70.3 71.6 59.3 71.4 63.0 71.0 67.8 71.1 67.4 71.4 62.0 71.5 57.4 

0.75 71.1 73.0 59.7 72.3 63.6 71.9 68.4 71.9 68.1 72.5 62.6 72.9 58.0 

Next, we also noticed that our proposed algorithm could sometimes achieve even higher accuracies 

than those of the perfect registration cases. This was due to the fact that our algorithm required more 

iterations than the scenarios where the image pair was perfectly registered since our algorithm 

terminated if both the estimated map parameters and the resulting LCM converged whereas, in the 

perfect registration case, the process terminated if only the resulting LCM converged. Hence, our 

algorithm might terminate at lower percentages of changes in the LCM, and lead to more accurate 

LCM which, in turn, resulted in higher precision. 

Another key performance metric of our algorithm was the resulting registration errors. Figure 15a–d 

show the residual registration errors in terms of RMSE (in meters) between the MS image and the 

LCM for different initial registration errors. We observed that, if our algorithm converged to the global 

optimum solution, it could successfully reduce the registration error down to around 1.8 m in the LCM 

(or equivalently, 0.75 pixels on the MS image and 3 pixels on the PAN image and LCM). These results 

imply that our algorithm can align images together to the accuracy less than those of the lowest 

resolution (which was the MS image in our case). For each initial registration error cases, the minimum 

RMSEs of 1.718 (2.86 pixels in the LCM) m for Δ 1.0, 1.672 (2.79 pixels in the LCM) m for Δ 1.0, 1.730 (2.88 pixels in the LCM) m for Δ 0% and 1.704 (2.84 pixels in the LCM) m for Δ 1° occurried at 0.75. These results suggest that, if our algorithm converges, the larger 

value of  increases the accuracy of registration as well as the classification. However, for the cases of Δ  5.0 and Δ 5.0 , our algorithm could not register the MS image to the LCM since our 

algorithm was stuck in one of the local optima. The residual registration errors for Δ 5.0 were 

1.896 (3.16), 10.96 (18.3), 11.14 (18.6), and 11.41 (19.0) m (pixels in the LCM), and for Δ 5.0 

were 1.827 (3.05), 1.834 (3.06), 3.133 (5.22) and 11.57 (19.3) m (pixels in the LCM) for  0.0, 0.25, 0.50, and 0.75, respectively. Here, the initial displacement error corresponded to the 

RMSE of 20 pixels in the LCM. Such a large initial RMSE is only found when remote sensing images 

have significant differences in spatial resolutions. LCMs derived from remote sensing image datasets 

with such a large scale difference are often unreliable and seldom found in practice. 

For performance comparison, we applied the normalized cross correlation method [34] to register 

the PAN and MS images together, and the resulting RMSE was equal to 1.836 m or 3.06 pixels in the 

LCM. From Figures 15a–d, we found that, with proper parameter selections and the initial registration 

errors, our proposed algorithm can achieve a higher registration accuracy than those from the 

normalized cross correlation method. For example, our algorithm obtained registration errors of 1.718 
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(2.86 pixels) m for 0.75 and Δ 1, 1.671 (2.79 pixels) m for 0.75 and Δ 1, or 1.702 

(2.84 pixels) m for 0.75 and Δ 1°. 
Based on the experimental results shown in Figure 13a–d and Figure 15a–d, we conclude that our 

proposed algorithm achieves higher classification and registration accuracy as the value of  increases, 

if the initial registration error is sufficiently small (e.g., for Δ 1, Δ 1, Δ 0, and Δ 1). 

However, if the initial registration error increases beyond a certain point, our algorithm is more likely 

to terminate in one of the local optima as the value of  increases. Hence, if images have a high degree 

of misalignment, a low value of  should be chosen. However, if images are pre-aligned with any 

simple registration process, a higher value of  is preferable. In fact, most available remote sensing 

images nowadays are pre-registered to a map coordinate system with a limited degree of accuracy. As 

a result, the misalignment in image datasets should be limited, and in the practical use of our proposed 

algorithm, we recommended a high value of . 

Figure 15. The effect of the initial registration errors on the residual registration error of 

our proposed algorithm in Example 2.  

(a) (b) 

(c) (d) 

6. Conclusion 

In this paper, we propose a joint image registration and land cover mapping algorithm based on a 

Markov random field model. By combining image registration and classification into a single process, 

the classification performance of our proposed algorithm is not affected by the registration errors  

in image datasets, whereas the performance of traditional image classification algorithms can be 

significantly degraded due to registration errors. 
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In our work, the algorithm assumes that observed remote sensing images are derived from a hidden 

land cover map and captured with an unknown misalignment. Two adjacent pixels of the land cover 

map are more likely to belong to the same land cover class than different classes. By integrating this 

fact into the model, a large number of misclassified pixels, which often appear as isolated pixels, are 

removed from the resulting land cover map. Since the map parameter vector relating the different 

images is unknown, we employ the expectation-maximization procedure to simultaneously estimate 

the map parameters and use mean field theory to approximate the posterior probability. 

We performed an experimental study using one simulated dataset, and one real remote sensing 

dataset of 2.4 m QUICKBIRD multispectral and 0.6 m QUICKBIRD panchromatic images. Our 

results show that, for the first data set, our algorithm can successfully classify image pairs and align 

them in different initial registration errors with proper selection of the Markov random field parameter. 

In fact, if the Markov random field parameter is chosen properly, our algorithm can classify  

mis-registered image pairs with a similar accuracy to the situation where images are perfectly aligned. 

For the real remote sensing dataset, we focused the investigation on the robustness of our algorithm to 

the initial alignment of image pairs. The study revealed that our algorithm is less sensitive to the  

initial alignment when the value of the Markov random field parameter is small since the  

expectation-maximization algorithm tends to converge faster. 

One major limitation of our proposed algorithm is that the expectation-maximization algorithm 

employed in our algorithm tends to be trapped in local optima if the initial misalignment is large. 

Hence, in the future, we plan to investigate how to incorporate a different variation of the  

expectation-maximization algorithm that can escape from local optima in order to make our algorithm 

more robust. Another limitation of our algorithm is its sensitivity to the Markov random field 

parameter selection. To address this problem, we plan to investigate how to automatically tune the 

Markov random field parameter so that the joint image registration and classification can be performed 

without the initial Markov random field parameter section. 
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