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Abstract: Landsat can be used to map tropical forest cover at 15–60 m resolution, which is 
helpful for detecting small but important perturbations in increasingly fragmented forests. 
However, among the remaining Landsat satellites, Landsat-5 no longer has global coverage 
and, since 2003, a mechanical fault in the Scan-Line Corrector (SLC-Off) of the Landsat-7 
satellite resulted in a 22–25% data loss in each image. Such issues challenge the use of 
Landsat for wall-to-wall mapping of tropical forests, and encourage the use of alternative, 
spatially coarser imagery such as MODIS. Here, we describe and test an alternative method 
of post-classification compositing of Landsat images for mapping over 20.5 million 
hectares of peat swamp forest in the biodiversity hotspot of Sundaland. In order to reduce 
missing data to levels comparable to those prior to the SLC-Off error, we found that, for a 
combination of Landsat-5 images and SLC-off Landsat-7 images used to create a 2005 
composite, 86% of the 58 scenes required one or two images, while 14% required three or 
more images. For a 2010 composite made using only SLC-Off Landsat-7 images, 64% of 
the scenes required one or two images and 36% required four or more images.  
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Missing-data levels due to cloud cover and shadows in the pre SLC-Off composites (7.8% 
and 10.3% for 1990 and 2000 enhanced GeoCover mosaics) are comparable to the post 
SLC-Off composites (8.2% and 8.3% in the 2005 and 2010 composites). The area-weighted 
producer’s accuracy for our 2000, 2005 and 2010 composites were 77%, 85% and 86% 
respectively. Overall, these results show that missing-data levels, classification accuracy, and 
geographic coverage of Landsat composites are comparable across a 20-year period despite 
the SLC-Off error since 2003. Correspondingly, Landsat still provides an appreciable 
utility for monitoring tropical forests, particularly in Sundaland’s rapidly disappearing peat 
swamp forests. 

Keywords: satellite imagery; Landsat; SLC-Off; South East Asia 
 

1. Introduction 

Peat swamp forests are of tremendous conservation importance because of their high levels of 
species endemism [1], as well as their ability to store huge volumes of carbon as organic peat below 
ground [2,3]. These ecosystems are disappearing rapidly due to forest conversion and fires, which have 
contributed significantly to global carbon emissions [4,5]. At current deforestation rates, peat swamp 
forests in Southeast Asia may disappear by 2030 [6]. Conservation planners urgently require reliable 
and up-to-date spatial baselines for such threatened ecosystems [7]. Satellite imagery arguably 
provides the best means to map and monitor large swathes of tropical forests [8]. Most remote sensing 
studies mapping peat swamp forests across Southeast Asia have favored the use of 250-m MODIS 
imagery [6,9–13]. However, we argue that, with proper treatment, finer-scale Landsat imagery can 
provide an alternative perspective on this highly fragmented forest type. 

With global coverage, medium spatial resolution (30–80 m), and the largest historical archive of 
regularly-acquired, freely available space-based Earth observations [14], Landsat imagery has proven an 
invaluable resource for monitoring tropical forests [15–18]. Unfortunately, several issues with Landsat 
may discourage their use for contemporary tropical forest monitoring [14]. First, from the outset, Landsat 
has been blighted by persistent cloud cover at tropical latitudes [19], more so than other optical sensors 
because of its 16–18 day revisit period. In Central Sumatra, Nezry et al. [20] calculated the probability of 
acquiring either a Landsat MSS, Landsat TM or SPOT-HRV image with <70% cloud cover in a given 
year at only 26%. Second, the Landsat-5 satellite, one of two remaining in service, no longer has global 
coverage due to an insufficient number and distribution of ground receiving stations [14]. Third, the 
Landsat-7 satellite sensor suffered a hardware failure in its scan line corrector (SLC) in 2003, resulting in 
the loss of ~22–25% data in each scene [21–23]. The missing areas due to the SLC-Off error appear as 
parallel stripes of no-data values on either side of an unaffected 22-km swath in the centre of the scene 
(Figure 1(a,b)), where the stripes range from one 30-m pixel near the scene centre to fourteen 30-m 
pixels (i.e., 420 m) near the scene edge (Figure 1(d)) [21,22,24]. 
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MODIS estimates [6,18,25]. It is highly plausible that the SLC-Off issue is a major factor in the 
decision to use MODIS rather than Landsat for large-area mapping. 

Despite its limitations, Landsat imagery has attractive qualities in the context of monitoring 
regional changes to forest habitat and biodiversity [26–30]. Its relatively high spatial resolution 
discriminates intact, disturbed, and regenerating forests in heterogeneous landscapes more accurately 
than coarser imagery [18,31,32], and better detects smaller forest fragments as well as smaller-scale 
perturbations important for conservation planning (e.g., illegal roads, logging roads [32,33]). As such, 
given its long historical record (1970s–present, depending on location), Landsat is well-positioned to 
track changes to habitat quality at decadal intervals—an important point considering the accruement of 
‘extinction momentum’ with declines in habitat integrity and connectivity [34]. Such qualities are 
particularly attractive for monitoring peat-forest loss in Sundaland. Therein, highly biodiverse peat 
swamp forests [1] have been reduced to less than half their original extent [6], and are increasingly 
being fragmented. In effect, peat swamp forest fragments are assuming higher conservation priority in 
proportion to their rapidly shrinking and fragmented distribution, and thus require spatial monitoring 
that is both geographically extensive and fine-grained. 

Compositing of Landsat images provides a means of addressing data gaps related to sensor error 
(SLC-Off) and cloud cover [10,14,23,35,36]. By combining multiple images for each scene, areas 
missing in one image can be ‘filled’ with valid values of coincident images of a similar acquisition 
date. The exact position of the stripes of missing-data varies between Landsat images, ranging from no 
overlap to almost complete overlap in SLC-Off error (Figure 1). This variation in position also 
accounts for variation in the number of images needed to reduce missing data in each scene to 
generally acceptable levels. Figure 1 illustrates that, in the absence of cloud cover, 2 to 4 images per 
scene may be sufficient to reduce missing-data areas to nil. Further, while the SLC-Off missing-data 
areas are greatest at scene edges, there is also a 30-km wide swath at the edge that overlaps the 
adjacent scene (Figure 1(a,d)), allowing the missing data in the swath to be more easily reduced when 
compositing scenes into a regional mosaic. Wulder et al. [14,23] provide a synopsis of common 
compositing methods used for Landsat, which may entail complex spatio-statistical interpolations and 
normalizations to composite spectral values, yet they cannot overcome seasonal spectral discrepancies 
within a scene composed of images from different seasons. Where land-cover change is rapid—as it is 
in the case of peat swamp forest loss—there is also a risk that the spectral composite may inadvertently 
incorporate such changes [37]. Simpler approaches to compositing have a corresponding appeal. 

Here, we describe and test a method of post-classification compositing of Landsat imagery to 
facilitate multi-decadal monitoring of peat swamp forest cover in Sundaland. Specifically, we classify, 
composite, and mosaic 238 Landsat images over 58 scenes for 2005 and 2010, and compare the 
classification accuracy and missing-data extent of these products to our classified 1990 and 2000 
GeoCover products composited with an additional 22 and 18 Landsat images, respectively. We 
illustrate the effect of image compositing using three test scenes, and quantify the missing-data areas 
owing to SLC-Off and cloud cover separately in these scenes. Finally, we make comparisons between 
Landsat- and a MODIS-derived classification of peat swamp forest cover to illustrate differences 
having implications for biodiversity monitoring. 
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2. Study Area 

The study area of Sundaland is defined as the original extent (i.e., prior to anthropogenic land-cover 
change) of peat swamp forest in Peninsular Malaysia, Sumatra, and Borneo. This extent spans some 
20.3 million hectares and 58 Landsat scenes (Figure 2). The study area contains one of the world’s 
greatest concentrations of peat swamp forests, which in turn host high levels of biodiversity and 
endemism [1] and store huge volumes of below-ground carbon—55 Gt alone for Indonesia [2,3,5]. 
Since 1990 an accelerating ascent of oil-palm plantations has driven widespread conversion of peat 
swamp forests, particularly in Sumatra, where only 28% of original peat-forest cover remains [6]. 

Figure 2. (a) Map showing the study area and number of images used per scene in the 
2005 composite (n = 105 images). (b) Map showing the study area and number of images 
used per scene in the 2010 composite (n = 133 images). Red areas indicate original peat 
swamp forest extent. 

 

 



Remote Sens. 2012, 4                            
 

2600

3. Methods 

Our methods are summarized as follows. First, to delimit the study area, a map of original peat 
swamp forest extent was made based on soil and vegetation maps. Second, 268 Landsat images and 24 
tiles for the GeoCover products covering the study area in Sundaland were classified for four time 
stamps circa 1990, 2000, 2005 and 2010. Third, contemporaneous classified images were composited 
to yield regional peat swamp forest cover maps for each time stamp. Fourth, an independent reference 
dataset was compiled, and the accuracy and coverage of the regional composite mosaic maps were 
assessed against it. To study the effect of compositing on the reduction of missing-data areas due to 
cloud/shadow and the SLC-Off issue separately, the percent decline in missing-data area was measured 
for three scenes of the 2010 mosaic. These scenes were selected based on similar proportion of study 
area per scene and to be from the same general region of the study area. To compare the minimum 
patch size observed using our Landsat mosaics and a comparable MODIS mosaic, we extracted 
patches of primary peat swamp cover from our 2000 Landsat mosaic and the 2000 MODIS mosaic of 
Miettinen et al. [11] and compare their patch-size frequency distributions. 

3.1. Original Peat Swamp Forest Cover Map 

We define the study area as the original extent of peat swamp forest cover prior to anthropogenic 
land-use change. We estimated this area based on historical soil maps, vegetation maps, topographical 
data and satellite imagery. To account for peat swamp areas cleared prior to 1990, we initially defined the 
original extent of peat swamp forest as that of peat soil areas according to historical soil maps [38–43]. 
As peat swamp forests are by definition found on permanently-inundated soils of at least half a meter 
in depth and with a loss of mass on ignition greater than 65–75% [44–47], a soil class apparent in soil 
maps, our initial delimitation of original extent was plausible. As a soil map for Brunei was not available, 
we used a Brunei vegetation map [48] to approximate original peat swamp forest cover extent therein.  

Despite the fact that permanently inundated peat soils of depths >0.5 m are only known to support 
peat swamp forest [45,47,49–52], our initial estimate alone may still overestimate original peat swamp 
forest extent. We therefore refined this initial estimate by excluding from it all non-peat-swamp-forest 
primary vegetation types (e.g., freshwater’ swamp, mangrove and dipterocarp forests) delimited in 
historic vegetation maps [48,49,53–55] or visually identified in Landsat TM false-color composites 
(RGB 247) of the 1990 Landsat GeoCover product [56]. It was noted that vegetation maps, particularly 
those created using a combination of aerial photographs and ground truthing, appeared to have a higher 
accuracy than the soil maps when compared with our visual interpretations of the 1990 GeoCover 
product. We therefore assumed that a primary non-peat swamp forest vegetation type located on peat 
soil according to the soil maps was most probably an error in the soil map. Finally, given the 
requirement of flat topography for peat swamp forest, we similarly excluded from the initial estimate 
all areas with relatively closely packed contour lines which were indicative of hilly terrain according to 
SRTM data [57]. The final estimated extent of original peat swamp forest is shown in Figure 2.  
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3.2. Satellite Imagery 

In total, 268 Landsat images and 24 GeoCover tiles for circa 1990, 2000, 2005 and 2010 were 
downloaded, classified, and composited into regional mosaics spanning the 58 scenes of the study area. 
All images in the Landsat GeoCover dataset [56] from January 1985 till December 2010 were 
considered. We accepted all images having mostly cloud free views of peat swamp forest areas, 
regardless of the overall cloud cover of the image, which occasionally reached 90%. Figure 2a and 2b 
illustrates the number of images used per scene for the 2005 and 2010 composites.  

At the time of analysis (December 2010), only a limited number of Landsat images for 1990 and 
2000 were publicly available. Therefore, we used the 1990 and 2000 Landsat GeoCover products [56] 
(12 mosaicked tiles of multiple composited Landsat images) for these years. The documentation for 
these GeoCover mosaics did not specify the number of images composited per scene. We therefore 
estimate this by counting the images per scene used in the 2005 mosaic, for those scenes for which no 
SLC-Off images were included (n = 32 scenes). To these 1990 and 2000 mosaics we added 22 and 18 
further images respectively to fill data gaps due to cloud and shadow. The range of image acquisition 
years in the final, composited mosaics are 1989–1991, 1999–2001, 2004–2006 and 2009–2010. 

3.3. Image Classification 

We adopted a maximum-likelihood supervised classification approach to classify individual, images 
into five land covers (Table 1 and Figure 3): primary peat swamp forest, disturbed/re-growth peat 
swamp forests, agriculture mosaic, bare earth/urban areas/burn scars, and missing data (includes water, 
cloud shadow, and SLC-Off errors). The categories used were based on a review of previous studies [58], 
field visits in Peninsular Malaysia and visual study of satellite images over all the years of interest. 

Table 1. Description of land cover types used in our classification. 

Land Cover Type Description 

Primary peat 
swamp forest  

Undisturbed peat swamp forest and old re-growth peat swamp forest with little or no disturbance due 
to logging, conversion or fire. Old re-growth includes some previously logged peat swamp forest that 
has regenerated and cannot be distinguished from undisturbed peat swamp forest. 

Disturbed/re-
growth peat swamp 
forest 

Peat swamp forest that has been disturbed by logging and fire. Visible as open canopy peat swamp 
forest with a visibly different texture and reflectance than primary peat swamp forest. This class 
includes re-growth peat swamp forest which does not have the same reflectance and texture as 
undisturbed primary peat swamp forest or old re-growth peat swamp forest. 

Agriculture mosaic 

Comprises all non-peat swamp forest land use types except burn scars/bare earth/urban areas. This a 
heterogeneous class made up mostly of large scale industrial plantations of oil palm and acacia and 
small holder plantations. Some of the other land use types in this class are open areas with ferns/low 
shrubs and young regrowth forest. 

Burn scars/bare 
earth/urban areas 

Urban areas and bare earth. This includes bare earth caused by recently burnt areas. 

Missing data SLC-Off areas, clouds, shadows caused by clouds in the image and open water. 
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3.4. Map Compositing 

Subsequent to classification, we used a two-step method in ArcMap (Version 9.3) to composite 
images for 1990, 2000, 2005 and 2010 (Figure 4). First, the land-cover classes in the classified images 
were assigned the following numerical values, in descending order of disturbance level: 4: primary 
peat swamp forest, 3: plantation/re-growth, 2: agriculture mosaic, 1: bare earth/urban areas/burn scars, 
0: water/cloud shadows/clouds and missing data. For a given scene in 1990, 2000, 2005 and 2010 
separately, resultant images were then composited into a single image whereby a given pixel adopted 
the highest numerical value (and thus corresponding land-cover class) of all coincident pixels. In this 
way, data gaps in one image due to cloud cover or the SLC-Off errors were filled with data from other 
cotemporaneous images, where present. As our compositing method uses a ‘maximum’ mosaic 
operator (i.e., output cell value of the overlapping areas will be the maximum value of the overlapping 
cells), it prioritizes a ‘forest’ classification over all potential land cover. It therefore partially overlooks 
the deforestation that occurred between the earliest and latest acquisition dates of the images of a given 
scene for a given mosaic year, and similarly conservatively estimates forest loss between mosaic years.  

Post-classification processing of the composited images was carried out using the majority filter 
tool in ArcGIS (Version 9.3) using a 3 × 3 kernel This tool serves to reduce ‘speckle’, e.g., isolated 
pixels of a given class that are probably cases of classification error. 

3.5. Accuracy Assessment 

Classification accuracy for the composite-image mosaics of 2000, 2005 and 2010 were estimated on 
a per pixel basis using reference datasets of 662, 741, and 841 randomly generated points for each 
mosaic, respectively. The points from these reference datasets were randomly sampled in those areas 
within the original extent of peat swamp forest (defined in Section 3.1) and covered by very high 
spatial resolution satellite imagery available in Google Earth (e.g., Quickbird, IKONOS) for one of the 
following periods: 1999–2001, 2004–2006, and 2009–2010 (Figure 5). Independent reference datasets 
were used for each composite-image mosaic as there was limited overlap in historic imagery available 
in Google Earth. As high spatial resolution images for ~1990 were not available in Google Earth, we 
could not assess the accuracy of the 1990 composite mosaic. However, we expect its accuracy to be 
comparable to that of later mosaics, given that it was produced with the same data and methods. 
Similar methods have been used by Miettinen et al. [60] for estimating the accuracy of classifications 
of plantations on peatlands. In the confusion matrixes of Tables 2–4 we weighted overall classification 
accuracies based on the proportion of total area accounted for by each land-cover class. This was done 
to account for the fact that certain land covers have greater proportional areas in the composites. This 
approach for accuracy assessment is commonly applied to remote sensing products whose land-cover 
classes have widely varying areas [61]. 

The land cover of the reference points were visually interpreted in Google Earth as being either peat 
swamp forests, disturbed/re-growth peat swamp forest, agriculture mosaic, burnt/bare/urban, or 
undetermined. Points labeled as ‘undetermined’ were those for which the land cover could not be 
determined due to missing data caused by cloud cover, cloud shadows or the SLC-Off error in either 
the reference imagery or the composite mosaics. These points were excluded from the accuracy 
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assessment. Thus, although 1,000 reference points were originally sampled for each 2000, 2005, and 
2010 mosaics separately, differences in the number of undetermined points for each resulted in slight 
differences in the number of points used to assess classification accuracies. Tables 2–4 present the 
results of the comparison of the composite mosaics and the reference data. 

Figure 5. Areas used for accuracy assessment of the 2000, 2005 and 2010 composites. 

 

Table 2. Confusion matrix for 2000 peat swamp forest-cover composite in Sundaland. 

Reference Dataset 

Landsat Classified  

Composite 

Primary Peat 

Swamp 

Forest 

Disturbed/Regrowth 

Peat Swamp Forest 

Agriculture 

Mosaic 

Burn Scars/ 

Bare Earth/ 

Urban 

Areas 

Total 
User’s 

Accuracy 

Primary peat swamp forest 247 6 32 1 286 86% 

Disturbed/regrowth peat swamp forest 25 85 48 2 160 53% 

Agriculture mosaic 19 6 126 0 151 83% 

Burn scars/bare earth/urban areas 2 0 19 44 65 68% 

Total 293 97 225 47 

Producer’s Accuracy 84% 88% 56% 94% 

Proportion of Land Cover 50% 20% 20% 10% 

Weighted Overall Accuracy = 77% 
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Table 3. Confusion matrix for 2005 peat swamp forest-cover composite in Sundaland. 

Reference Dataset 

Landsat Classified Composite 
Primary peat 

swamp forest 

Disturbed/regrowth 

peat swamp forest 

Agriculture  

mosaic 

Burn scars/ 

bare earth/ 

urban 

areas 

Total 
User’s  

Accuracy 

Primary peat swamp forest 181 13 11 0 205 88% 

Disturbed/regrowth peat swamp forest 8 86 51 2 147 59% 

Agriculture mosaic 10 4 286 1 301 95% 

Burn scars/bare earth/urban areas 9 1 13 65 88 74% 

Total 208 104 361 68 741 

Producer’s Accuracy 87% 83% 79% 96% 

Proportion of Land Cover 45% 19% 27% 9% 

Weighted Overall Accuracy = 85% 

Table 4. Confusion matrix for 2010 peat swamp forest-cover composite in Sundaland. 

Reference Dataset 

Landsat Classified Composite 
Primary peat 

swamp forest 

Disturbed/regrowth 

peat swamp forest 

Agriculture 

mosaic 

Burn scars/ 

bare earth/ 

urban areas 

Total 
user’s 

accuracy 

Primary peat swamp forest 252 12 55 1 320 79% 

Disturbed/regrowth peat swamp forest 3 87 63 0 153 57% 

Agriculture mosaic 2 0 303 1 306 99% 

Burn scars/bare earth/urban areas 2 1 3 56 62 90% 

Total 259 100 424 58 

Producer’s Accuracy 97% 87% 71% 97% 

Proportion of Land Cover 45% 14% 34% 6% 

Weighted Overall Accuracy = 86% 

3.6. Missing Data 

To examine the effect of our image-compositing method on reducing SLC-Off errors and cloud 
cover, we selected three scenes from the 2010 mosaic which utilized 2, 4 and 6 images (126/060, 
127/059 and 124/060). The scenes chosen had similar proportions of study area and were selected to be 
in the same region (i.e., east coast of Sumatra) of the study area. We compared the extent of missing 
data due to SLC-Off and cloud cover separately in the original images and after compositing.  

4. Results 

4.1. Images Needed Per Composite Scene 

The total number of Landsat images required per scene for the 2005 and 2010 composite mosaics 
was higher for 2010 mosaic (105 and 133 images, respectively). On average, 1.8 and 2.3 images per 
scene were required for the 2005 and 2010 composite mosaics respectively to reduce missing data to a 
level comparable to that of the enhanced 1990 and 2000 mosaics (Figure 6; see Section 4.2). For the 
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2005 composite made using a combination of Landsat-5 and SLC-off Landsat-7 images (45 and 60 
images, respectively), 86% of the scenes required one or two images, while 14% of the scenes required 
three or more images. In the 2010 composite made using only SLC-Off Landsat-7 images, 64% of the 
scenes required one or two images and 36% of the scenes required three or more images. The principal 
reason for this shift in number of images needed per scene, was the availability of 45 Landsat-5 images 
in the 2005 composite mosaic, while none were available for the 2010 composite mosaic at the time of 
this study (December 2010). 

Figure 6. The number of images composited per scene for 2005 and 2010 composite 
mosaics. Note the high proportion of scenes requiring three or fewer images. Also note the 
decreasing proportion of scenes requiring only a single image between 2005 and 2010. 
This indicates that even though areas of peat swamp forest cover of interest occupy smaller 
proportions of scenes in 2010 and would potentially require fewer images to be mapped, 
this is offset by additional missing area due to the SLC-Off error.  

 
It is notable that, for the 2010 composite mosaic, the fourteen scenes that required only one image 

had relatively little remaining peat swamp cover. Indeed, there was a significant positive correlation 
(Pearson’s r = 0.43; p < 0.001; n = 58 scenes) between the area of remaining peat swamp forest in a 
given scene and the number of images required of the composite of that scene, notwithstanding spatial 
variation in cloud cover. This is in keeping with our argument that SLC-Off Landsat imagery retains a 
utility for monitoring the smaller, fragmented patches of South East Asian peat swamp forests.  

As mentioned, the exact number of images composited into a given scene of the 1990 or 2000 
mosaics is unknown. Therefore, we estimated the number of images per scene for these mosaics by 
considering the subset of 32 scenes of the 2005 composite mosaic composed using only of Landsat-5 
imagery (i.e., lacking the SLC-Off error). For these 32 scenes, only 1 scene needed 2 images; all other 
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scenes needed only a single image to attain missing-data areas to levels similar to those of the 
enhanced GeoCover 1990 and 2000 mosaics. 

4.2. Extent of Missing Data 

For the enhanced 1990 and 2000 composite mosaics, 7.8% and 10.3% of the study area (i.e., 
original extent of peat swamp forest cover) had missing information due to cloud cover and shadows. 
In comparison, for the 2005 and 2010 composite mosaics incorporating Landsat-7 SLC-Off images, 
8.2% and 8.3% of the study area had missing information due to cloud, shadow, and the SLC-Off 
error. As such, the extent of missing data is effectively similar across the four composite mosaics, in 
spite of the SLC-Off problem inherent to Landsat-7 imagery since 2003. 

Figure 7. Graphical illustration of missing-data reduction per image when compositing 
images and adjacent scenes (a) two, (b) four and (c) six Landsat-7 SLC-Off images of the 
2010 composite mosaic, plus images of adjacent scenes (corresponding spatial illustrations 
of these scenes are given in Figure 8 and in the appendix). Percentages reported are with 
respect to the study area, not the entire scene. The scene path/rows for panes (a), (b) and 
(c) are 126/060, 127/059, and 124/060, respectively.  

 

The rate of missing-data reduction per image composited is highly non-linear and exhibits 
differences for missing-data due to cloud cover versus that due to the SLC-Off error (Figure 7(a–c), 
Figure 8). Generally, missing-data areas due to cloud cover are reduced much faster per image 
composited than missing-data areas due to the SLC-Off error. Correspondingly, while cloud cover in a 
given scene may decline to ~10% of the study area when only two images are composited, three or 
four images may generally be required to reduce the total missing-data area to this level (Figure 7, 
Figure 8). Put differently, most of the initial reduction in missing-data area is relatively large and 
largely due to declines in cloud cover, and thereafter most reductions will be relatively moderate and 
largely due to declines in the SLC-error area. Our observations indicate that once a composite scene 
includes 3 or 4 images and thus attains ~≥90% coverage of its study area, the additional absolute 
reduction in missing data upon the inclusion of adjacent, partially overlapping images is relatively 
moderate, although not insignificant. However, where a regional mosaic of composite scenes is 
ultimately desired, such gains in spatial coverage are effectively ‘free’ and therefore worth pursuing. 
Efficiencies in terms of cumulative missing-data reduction per images composited may conceivably be 
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increased across multiple scenes if adjacent images were included in a given composite at the 
approximate point at which the rate of total-error reduction were expected to flatten a priori (e.g., after 
compositing the 3rd image in Figure 7(b) or 5th image in Figure 7(c)).  

Figure 8. Spatial illustration of missing-data reduction per image when compositing four 
Landsat-7 SLC-Off images for scene 127/059 of the 2010 composite mosaic. Percentages 
reported are with respect to the study area, not the entire scene. The mapped area corresponds 
to Figure 7(b). Equivalent figures corresponding to Figure 7(a,c) are given in the Appendix. 
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4.3. Error Estimation 

The area-weighted overall accuracy of the 2000, 2005 and 2010 composite mosaics ranged from 
77% to 86% (Tables 2–4). The producer’s accuracy was generally high for all land-cover classes, 
ranging from 79 to 96% for the 2005 mosaic and 71–97% for the 2010 mosaic. For the 2000 mosaic a 
low producer’s accuracy of 56% for the agriculture mosaic class was observed, and probably 
attributable to the appreciable heterogeneity of the land-use types inherent to this land-cover class. 
With the exception of the disturbed/regrowth peat swamp forest class, all classes had user’s accuracy 
ranging from 68 to 86% for 2000, 74 to 88% for 2005 and 79 to 99% for the 2010 mosaic. The 
disturbed/re-growth peat swamp forest class had lower user’s accuracies of 53–59%, possibly due to: 
(1) the chronological difference in acquisition years of Landsat imagery (2009–2010) and Quickbird 
imagery (2011); (2) seasonal variation in fire activity [62]; (3) inter-annual variation in agricultural 
clearing and fallowing, being cyclic practices widespread in the region; and (4) the transient nature of 
this land-cover class, which is frequently converted to agriculture mosaic (on this latter point, see in 
Tables 2–4 the majority of commission errors due to mis-classification of the agriculture mosaic class 
as disturbed/regrowth peat swamp forest as well as a drop in the proportion of disturbed/regrowth peat 
swamp forest class and corresponding increase in the agriculture mosaic class). 

5. Discussion 

By 2013, the Landsat Data Continuity Mission intends to launch a new satellite with improved 
spatial coverage and revisit periods [14]. It is therefore prudent to explore the utility of existing 
Landsat imagery for monitoring long-term changes to peat swamp forest area and biodiversity. We 
have demonstrated a method of compositing classified Landsat images into an accurate regional 
mosaic that fully utilizes images blighted by cloud cover and SLC-off errors and which produces 
estimates that are comparable over time. Further, our approach carries certain advantages compared to 
other, largely pre-classification approaches to Landsat-image composition [14,23,36], namely 
methodological simplicity and the elimination of the combination of reflectance values of image 
segments acquired in differing seasons within a given scene. 

Most remote-sensing studies that have conducted large-scale mapping of South East Asian peat 
swamp forests have favored the use of MODIS imagery [6,10–13], no doubt in part due to its relatively 
cloud-free views and in part due its lack SLC-Off type errors. This preponderance of MODIS-based 
studies has naturally informed estimates of peat swamp biodiversity decline. For example, both  
Koh et al. [58] and Giam et al. [63] employ forest matrix-calibrated species-area models utilizing 
estimates of changes in peat swamp forest cover derived from MODIS classifications to estimate bird 
and fish species extinctions within Sundaland. 

While moderate-resolution imagery such as MODIS is useful for establishing regional trends in 
forest-cover change, Landsat still has utility for monitoring regional forest trends where forests are 
highly biodiverse and increasingly fragmented and thus where further perturbations (e.g., logging roads) 
carry increasingly high biodiversity costs. Observe, for example in Figure 9 how our Landsat composite 
mosaic of 2000 detects logging roads, appearing as straight narrow lines crisscrossing the primary peat 
swamp forest on the mainland. Next, observe in Figure 9 how initial perturbations to peat swamp 
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forest on the island’s south east coast whereas a comparable MODIS classification of 2000 [11] does 
not, and how these perturbed areas appear ‘suddenly’ cleared by 2010 in a later MODIS classification. 
Lastly, observe in Figure 10 the markedly large proportion of total peat swamp forest area accounted for 
by smaller fragments across the study region, and how our Landsat composite mosaic of 2000 captures a 
greater number of these up to approximately 2000 ha compared to the MODIS classification of 2000 
(NB. Here all figures concerning the MODIS classifications pertain to study area defined in Section 3.1).  

Figure 9. Comparison of the 2000 and 2010 Landsat mosaics with the corresponding 
MODIS mosaics of 2000 and 2010 created by Miettinen et al. [11], Northern Riau 
Province, Sumatra, Indonesia. 

 

Many of the smallest of these fragments were probably detected only by the Landsat composite 
given the coarser resolution of the MODIS sensor—indeed, the 2000 Landsat composite mosaic 
detected 652,476 ha of peat swamp forest over 526,700 patches between 0.36 ha (or 4 contiguous 
Landsat pixels) and 6.25 ha (or one MODIS pixel). While such diminutive patches constitute only a 
fraction (7.3%) of the total peat swamp forest area estimated by the 2000 Landsat composite mosaic, 
fragments of moderate dimensions are still of importance, e.g., patches ≤ 25 ha (or 4 contiguous MODIS 
pixels) account for 14% of the total peat swamp forest area observed in the 2000 Landsat composite 
mosaic. Probably more important, however, is the fragmentation that moderate-resolution classifications 
may overlook. For example, whereas the 2000 MODIS classification observes ~50% of its total peat 
swamp forest area amongst 46 patches of between 14,231 ha and 188,360 ha (25th and 75th area 
quartiles), when clipped to the extent of these 46 patches, our 2000 Landsat composite mosaic detected 
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873 peat swamp forest patches ≥25 ha within the same area, 512 of which were ≥50 ha, 297 of which 
were ≥100 ha, 86 of which were ≥1,000 ha, and 49 of which were ≥10,000 ha. Considering therefore 
on the one hand, the centrality of estimates of forest area and fragmentation to models of biodiversity 
decline such as those of Koh et al. and [58] and Giam et al. [63] and, and on the other hand, the 
demonstrated potential of Landsat composite mosaics to regionally monitor fragmented forests of high 
conservation value, we contend that such mosaics represent an attractive and reliable basis for regional 
conservation prioritization and estimation of peat swamp forest biodiversity declines. 

Figure 10. Distribution of area of peat swamp forest patches in Sundaland, 2000, as 
observed by the MODIS classification of Miettinen et al. [13] and the Landssat 
classification of the present study. (NB. We discuss here our composite mosaic of 2000 
rather than that of 2010 in order to avoid biases due (i) any ‘artificial’ fragmentation of 
peat swamp forest patches due to the compositing of SLC-off images, and (ii) the presence 
of mature oil-palm plantations misclassified as peat swamp forest in 2010). 

 
Note: Abbreviation ‘PSF’ means peat swamp forest. Gradations on the x-axis are log10 scaled with 4 minor gradations per major 

gradation, but labels report actual frequencies. Frequencies are shown for 100-ha cohorts for polygons between 0.36 ha (or 4 contiguous 

Landsat pixels) and 10,000 ha, where the lower limit minimizes the influence of Landsat classification ‘speckle’ and the upper limit is 

for the sake of presentation. Both histograms (a) and (b) pertain to the Sundaland study area delimited according to Section 3.1. 

Miettinen et al. [13] define peat swamp forest similarly to us as forest growing on peat soil, including perturbed forests whose structural 

characteristics (e.g., height, canopy closure, etc) resemble primary forest. Also, our peat swamp forest classification accuracy is similar 

to that of Miettinen et al. [13], reported in Miettinen et al. (Table 2 in [11]). The peat swamp forest class of Miettinen et al. [13] is 

possibly more spatially confined than ours, as Miettinen et al. [11] observe ‘lowland forest’ adjacent to their peat swamp forest polygons 

where we observe only peat swamp forest.  

As mentioned, our estimates of peat swamp forest cover are conservative, as our compositing 
algorithm prioritizes peat swamp forest over alternative land covers wherever there is discrepancy 

P
S
F
 
P
o
l
y
g
o
n
 
A
r
e
a
 
(
h
a
)

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

P
S
F
 
P
o
l
y
g
o
n
 
A
r
e
a
 
(
h
a
)

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

(b) Landsat(a) MODIS

Frequency

1
,
0
0
0
,
0
0
0

1
0
0
,
0
0
0

1
0
,
0
0
0

1
,
0
0
0

1
0
0

1
0

0 1
,
0
0
0
,
0
0
0

1
0
0
,
0
0
0

1
0
,
0
0
0

1
,
0
0
0

1
0
0

1
0

0



Remote Sens. 2012, 4                            
 

2613

amongst pixels of input classified images. Correspondingly, for a given nominal year, the estimated 
peat swamp forest cover is probably slightly greater than reality. Similarly, the extent of 
deforestation/degradation between nominal years is probably slightly less than reality. Our particular 
prioritization served to minimize the confounding effects oil-palm plantation misclassified as forest 
regrowth, but was otherwise arbitrary, and alternative decision rules would doubtlessly elevate the 
footprint of non-peat swamp forest cover in a similar manner. Future research should explore the 
sensitivity of our estimates to alternative decision rules.  

6. Conclusion 

Our results show that despite ~25% of lost data due to the SLC-off error in Landsat-7 imagery, 
85% of the scenes mapped using solely SLC-Off Landsat images in our 2010 and 2005 composite 
mosaics of Sundaland required only one-to-three images to reduce the extent of missing data to levels 
comparable to those of the 1990 and 2000 composite mosaics, at ~8–10%. The apparent ease with 
which the 2005 and 2010 composite mosaics were rendered comparable to earlier composite mosaics 
owed in large part to the fact that only a fraction of a given scene was of interest, namely the original 
extent of peat swamp forest, effectively reducing the cloud-free area required per image. As such, 
while multi-decadal time-series Landsat mosaics may not be appropriate for tropical forest monitoring 
for all contexts [18], we believe that they are both appropriate and feasible for monitoring the 
fragmented and dispersed areas of Sundaland’s peat swamp forests.  
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Appendix 

Figure A1. Spatial illustration of missing-data reduction per image when compositing two 
Landsat-7 SLC-Off images for scene 126/060 of the 2010 composite mosaic. Percentages 
reported are with respect to the study area, not the entire scene. The mapped area corresponds 
to Figure 7(a). 
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Figure A2. Spatial illustration of missing-data reduction per image when compositing six 
Landsat-7 SLC-Off images for scene 124/060 of the 2010 composite mosaic. Percentages 
reported are with respect to the study area, not the entire scene. The mapped area 
corresponds to Figure 7(c).  
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