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Abstract: Individual tree species identification is important for urban forest inventory
and ecology management. Recent advances in remote sensing technologies facilitate more
detailed estimation of individual urban tree characteristics. This study presents an approach
to improve the classification of individual tree species via longitudinal profiles from very
high spatial resolution airborne imagery. The longitudinal profiles represent the side view
tree shape, which play a very important role in individual tree species on-site identification.
Decision tree classification was employed to conduct the final classification result. Using
this profile approach, six major species (Maple, Ash, Birch, Oak, Spruce, Pine) of trees on
the York University (Ontario, Canada) campus were successfully identified. Two decision
trees were constructed, one knowledge-based and one derived from gain ratio criteria. The
classification accuracy achieved were 84% and 86%, respectively.
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1. Introduction

In recent years, researchers have become more aware of the importance of detailed land characteristics
in urban systems [1]. Trees comprise a critical component of urban ecosystems and directly impact
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human habitations. Individual trees each exert significant influence over their environment; a tree’s
roots may affect underground utility systems; branches may affect surrounding power lines, and certain
species of flowering trees when in bloom may cause serious allergies in local inhabitants. In addition,
depending on species, a tree may serve as home for a variety of animals and insects which in turn exert
significant ecological influence and may represent a source of potential hazard for residents. Accurate
tree species classification is therefore an essential component to urban studies, city forest inventories,
ecology management, and other urban planning applications.

Traditionally, identification of tree species is conducted through photogrammetric assessment of
aerial photographs by an interpreter. This technique relies heavily on the breadth of the interpreter’s
experience in applying spatial discrimination criteria [2,3] and is therefore more likely to be qualitative
in nature. The classification is then used to identify tree species. Classification uses the features of
the objects, sometimes also known as criteria [4] or descriptor [5]. The ideal features should present the
highest separability of the targeted objects, which means they have the highest within-class similarity and
minimum overlap inter-class. The commonly used features are spectral signatures, texture, vegetation
indices (VI) and shape information etc. It can be generally divided into two approaches: the pixel-based
and the object-based. The former uses pixel-based features to determine the similarity, while the latter
requires segmentation first and uses the grouped pixels to generate features.

The spectral signature is the most commonly used feature. A compilation of articles of commonly
used procedures, issues and applications for spectral signature comparison can be found in [6]. Leckie [7]
extended the spectral signature algorithm to eight and ten band CASI imagery to facilitate classification
of old growth conifer sites along the west coast of Canada. Erikson [8] used empirically radiometric and
morphologic developed parameters to classify the four common species in Sweden. Larsen [9] obtained
an individual 3-dimensional tree map using image geometry and contrast to identify each tree through
comparison to a set of known species. However, the accuracy of spectral signature classification remains
relatively low, normally less than 50% due to the high variation within-class and the high similarity
inter-class. VI can be considered as an extension of spectral signature. The difference is the VI is
normally dedicated to special parameters through its “formula”. VI usually serves as a filter before or
as additional information in classification. In [10], the VI and spectral features were put together for
inversion and NDVI was reported contributing around 50% to the model.

Texture is considered as key visual criteria when extracting information from imagery for vegetation
and forestry applications [4]. In [11], four main texture approaches were identified: statistical,
geometrical, model-based and signal processing. According to [12], the most popular texture approach
is the statistical approach, which considers local spatial or spectral variability. However, different
criteria have been used for variety of studies. In [13,14], grey-level occurrence matrix (GLOM) and
grey-level co-occurrence matrix (GLCM) were introduced to recognize patterns. In [15], the standard
deviation, entropy, run lengths and “fractal” roughness were investigated for their separability for urban
derelict lands. In [4], the first and second order variance and homogeneity were found to be effective
in distinguishing the forest age class from IKONOS imagery. In [16], texture metrics mean Euclidean
distance, variance and mean were used to capture the disturbance severity across a windstorm damaged
vegetation structure from IKONOS imagery. In [17], GLCM homogeneity, dissimilarity and entropy
were cooperated within an object with other object-based information to identify the crops from ASTER
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imagery. In [11], a total of 12 features, mean, variance, entropy, correlation, contrast and second moment
of GLOM and GLCM were used to extract the structural attribute of Eucalyptus plantation forest from
IKONOS imagery. Texture features are rarely used by themselves. They are more commonly used as
additional information combined with the spectral signature. It normally provides an extra dimension of
measurements and improves the classification by 5%–15% compared to spectral only cases.

Despite that the shape of a tree has long been recognised as significant in identifying tree species,
shape information is rarely used information in multi-spectral imagery classification [2]. This is due
to the fact that most botanist’s shape reorganizations are based on the side view of a tree. In most
of the Remote Sensing forest study, only a portion of the tree tops are visible in the imagery, which
makes the reproduce of the tree shape difficult. The shape information that can be used in imagery
classification is 2D top view shape. The classification mainly depends on the experiences of the imagery
interpreters. On the other hand, when shape information is relatively easy to obtain, such as in LiDAR
data, shape has been recognized as the primary classification parameters. Brandtberg [5] used the convex
and concave contour to describe the shady side curvatures. Based on the development of the Planar shape
recognizing [17], the “shape space” had been reported as a potential of the classification improvement
in [18], which the planar shape represented by the angle function was explored. Shape information
is proved to be useful in term of improving classification result on top of conventional spectral and
texture information.

Segmentation of individual trees has been an ongoing research field for years [8]. A variety of
approaches exist with an objective towards auto-locating of trees and individual crown boundary. It
is commonly achieved from the analysis of high resolution spatial imagery [19]. The popular methods
are, but not limited to, the template matching approaches [20–22] , the valley following approach [23,24],
the local-maxima [25], texture grouping [26], the use of morphological operators [27], and joining of
convex edges [28]. Since the segmentation is not the focus of this study, an automatic processing was
tested using the watershed approach proposed by [29] for a potential of large size image processing.
Even the overall segmentation accuracy was over 80%, the main errors occurred when a few trees group
together. For these grouped trees, a manual detailed segmentation of collected ground validation data
is necessary to enhance the accuracy. This type of manual delineation accounts for less than 10% of
trees validated.

This study proposes a new classification feature derived from directional profiles for surmounting
challenges associated with applying tree species classification schemes in urban settings. It was inspired
by the unique growing conditions of urban trees;

(1) A main error resulting from using forest classification schemes as a proxy to urban individual
tree classification is the miscounting of the number of trees covered by the shadows of neighbouring
buildings. In a forest setting, man-made structures are rarely present and shadows of neighbouring trees
normally do not cover the entirety of surrounding trees. In this study, in order to accurately identify
urban tree species on an individual basis, a scheme is made prior to segmentation to recover undetected
tree masked by building shadows;

(2) Urban trees are much more isolated than forest trees, making it easier to define their
boundaries. Urban trees typically experience less competition for resources than their forest counterparts.
Consequently, urban trees are not as constrained and are more likely to grow to the capacity of their
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genetically determined shape and size. In contrast to forest scenarios, high resolution spatial imagery
within the urban setting is capable of capturing entire single trees instead of just tree tops or canopies.
Shape information for urban trees is therefore very specific and useful in the identification of individual
tree species. In this study, new vegetation parameters based on longitudinal profiles of tree crowns,
which derived from shape information of trees, were developed and supplied to construct a new decision
tree to uniquely distinguish species.

Trees growing on Keele campus of York University (Toronto, ON) can be considered as typical,
temporal climate urban trees and are used as test cases for this study.

2. High Spatial Resolution Imagery and Ground Data Collection

2.1. Airborne High Resolution Spatial Imagery

The main Image used for this analysis is 6 cm by 6 cm high spatial resolution multi-spectral airborne
imagery taken by Air Sensing Inc. on 1 August 2007 in sunny, clear conditions. The data was supplied
by the York University Map Library in its raw format. The image comprises four spectral bands: Blue
(460 nm), Green (570 nm), Red (670 nm) and NIR (800 nm). The image was captured at the flight
height of 1282 feet. The image covers York University (Ontario, Canada) Keele campus, which is shown
in Figure 1.

Figure 1. True colour high spatial resolution image of York University, Toronto,
Ontario, Canada.
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2.2. Ground Data Collections

A total of 213 trees on campus were documented using camera and measuring tape. The physical
parameters, such as tree heights and crown sizes were measured or interpreted from images. They were
identified using tree guide books [30–32] or by consulting with field experts. There are a wide variety of
tree species available on the York Campus. The six popular and important species selected are Maple,
Ash, Birch, Oak, Spruce and Pine shown in Figure 2. The documented trees were 32 Maples (Acer
rubrum, Acer platanoides), 30 Ash (Fraxinus pennsylvanica), 14 Birch (Betula lenta), 26 Oak (Quercus
rubra), 15 Spruce (Picea abies) and 25 Pine (Pinus banksiana, Pinus resinosa and Pinus sylvestris).
The rest were the trees belonging to other species, which were not classified.

Figure 2. Top left to right: Maple, Ash, and Birch; bottom left to right: Oak, Spruce,
and Pine.

3. Methodology

3.1. Shadow Tree Recovery

The main cause of missing out trees covered by shadows casted from nearby buildings from the
imagery was the conventional usage of the Normalized Differential Vegetation Index (NDVI), which is
shown in Equation (1). Most segmentation and classification approaches use NDVI to separate vegetation
and non-vegetation surface as the pre-processing mask. For forest trees with dense canopy, this shows
positive results. Forest trees are normally not fully covered by other trees’ shadow. In fact, only a
portion of tree top is captured by imagery. However, as discussed in Section 1, the isolated trees in
urban environment can cause a complete failure due to the shadow of nearby buildings. Since the
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shadow blocks the direct illumination, the light sources for the shadowed area are the nearby surrounding
scattering. The NIR band is most significantly affected, which leads to a much lower value of NDVI.
Any segmentation or classification methods using NDVI to classify the vegetation and non-vegetation
surfaces would therefore give a false result.

NDV I = (NIR−R)/(NIR +R) (1)

where NIR and R represents the Near-infrared and Red reflectance, respectively.

The threshold value for NDVI was determined experimentally. In this study, NDVI < 0.2 is used
to classify the non-vegetation surface. The NDVI of 0.2 was selected as a trade-off between separating
the trees from the background non-vegetation surface and preserving as much shaded trees as possible.
However, all trees within a building shadow suffered some level of crown loss in this step. In urban
cases, whole or partial trees are missed due to this inappropriate classification, as shown in Figure 3(b).
Figure 3 is a subset of the campus image, which within the ellipse circled area had over 15 ash trees. The
NDVI mask had missed half of the ash trees due to the shadow of the nearby Ross Building. Keep in
mind that in forest applications, the shadow from nearby objects other than trees rarely exists. To solve
this issue, a ratio version of the green radiance index is used: Greenness Index (GI) [33], which can be
expressed as:

GI = G/(G+B +R) (2)

where B, G and R represents the Blue, Green and Red reflectance, respectively.

Figure 3. From left to right (a) the true color original image with location indication;
(b) the NDVI filtering image; (c) the GI filtering image; (d) the NDVI+GI merged image
with smoothing and shape filtering.

Figure 3(c) shows the performance of the GI for the same area. It was clear that for the NDVI missed
trees, GI had recovered.
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Using ratio to create vegetation index is a simple but effective approach that Gitelson and Merzlyak
used to successfully retrieve leaf chlorophyll content [34]. GI is the green percentage of the pixel, which
represents the greenness of the objects. If the object is green, then the GI is at least greater than 0.33.
Since shadow covered trees are still more visually greenish, it can be detected by GI. As a result, for the
trees that NDVI missed due to the shadows, GI gives a chance to recover them. Also due to the fact the
living vegetation has a relatively low reflectance value in the visible ranges, it is much lower and less
sensitive to GI than arbitrary green objects. Therefore, GI should be kept as low as possible.

However, GI also has its limitations. First of all, it may also detect the artificial green objects, such as
green roof, pipes, etc. Second, it would miss the non-green leaf trees, such as Red Maple. Figure 3(c) is
also a good sample to illustrate these weaknesses. For the green squared area, the green pipes on top of
the roof were picked up, while the NDVI result did not have this error. For the red squared area, the GI
missed the red maple due to leaf colour, while the NDVI result easily picked them up.

Therefore, a few filtering and smoothing approaches were used in separating the green artificial
objects from the tree pixels and merged with the NDVI output. Figure 3(d) is the final processed
segmentation image. This process can be summarized as three steps: (1) Filtering small segments less
than 20 pixels (0.72 m2) on both NDVI and GI images. This step removed any detected small objects not
likely to be a tree due to the size, which significantly filtered out the background grass and other small
non-tree vegetation objects; (2) Merge NDVI and GI images; (3) Smooth the merged image, mainly the
edge and filling the gaps within the segments. This output segmentation image is used as filter in the next
step, shape signature collection. Therefore, it is very important to keep the tree crown completeness.

3.2. Classification

Since urban trees have a much more complete tree top view, whole tree shape information is available
and can be potentially important. In this study, longitudinal profiles (further referred to as profile) of the
tree crown tops were also investigated. These profiles were obtained from the following procedures. As
shown in Figure 4, a red maple tree was used to demonstrate the procedure step by step. Step A: obtain
the profile of the crown by recording all the values along the direction of the Sun Azimuth angle from a
segmented tree. Step B: cut off the edges (drop all zero value pixels) and convert the end to end section
to tree perimeter using image scale and spatial resolution. The first a few pixels may have been impacted
by the nearby tree shadows. A first derivation of the raw curve was calculated and the first high peak
was eliminated. This step was later proved to significantly improve the robustness of the algorithm. This
study was inspired by some pioneer work done by Fourier et al. [2], which was mainly limited by the
low spatial resolution of the image at that time. The longitudinal profiles of the different tree species in
NIR band are summarized and shown in Figure 5.

The outlines of these plots are determined by the geometry of the illumination and viewing condition,
and the tree shape. Therefore, it is essential to determine the effect of geometry of the illumination
condition, especially Solar Zenith Angle (SZA) [35]. In this study, the SZA were determined by two
different approaches, direct retrieval from the dataset and calculated from the field measurements, such
as street-lamp height and its shadow distance. It was 50◦ ± 3◦. From Figure 5, there is one common
feature through out all species. There is always, some more obvious than others, a turning point to
separate the profile into two portions. The first portion is generally higher than the second in value,
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which represents the sunlit and shadowed tree crown surfaces of the same tree. From simple geometry
calculation, it is easy to find that SZA directly impacts on the location of this turning point, which in
theory, an approximation of the tangent line of the incoming ray of the tree crown surface. It can be
approximated by the Equation (3):

da = dm× 1− cos(SZA)

2
(3)

where da is the distance away from the beginning of the profile, dm is the diameter of the tree.

Figure 4. The illustrated procedure of obtaining longitudinal profile of a tree crown.

This estimation has a pretty good agreement with the observations, which provided a possibility of
correcting all the images obtained from different SZA to a normalized value range. However, this is not
the focus of this study. Within one image, the SZA is assumed to be the same for the entire image and
any variations caused by the SZA are ignored.

Back to Figure 5, these profiles represent a few key features of the trees at a fixed SZA, such as
the general outlines of the tree shape, the smoothness of the leaves surface etc. To quantify profiles
geometrics, linear best fit, second order polynomial and modified free-form curve approximation were
calculated from the profiles in this study. Characterizing free-form curves, such as Bezier curves,
B-spline curves are classic problem in geometric design. Numerous methods have been proposed in
the past decades [36–39]. One of the popular approaches is to sample the given curve as a sequence of
points and approximate the distance between the points. An important goal for this approach is to reduce
the number of the control points that are used. In this study, since the curves are much simpler and
known and predictable regulations, a modified approach adapting the concept of forming triangles in the
Vectorization [40] was used. Instead of assigning multi-nodes, only one inter-curve node was used, and
minimizing the linear fit of the both sides of the triangle, which is illustrated in Figure 6. Two parameters
were calculated the normal distance (d) from the node to the baseline, which is the link of the two end
points and the position (p) given as the ratio of the two segments of a and b, which can be expressed as:
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p =
a

b
(4)

If the curve is flat, close to a linear fit, the d value is fairly low and p value is negative. If the curve is
irregular, the d value is dramatic increased and the p is close to 1. If the curve is left skewed, the p value
is less than 1 while the right skewed curve will result a greater than 1 value.

Figure 5. The longitudinal profiles of the six different species.

In this study, a knowledge-based decision tree was constructed. Decision tree classification is
considered a fairly robust and reliable approach [41]. All available parameters, including spectral
information, texture information, tree size and height, and geometry of profiles were taken into
consideration. However, only the most effective ones were used in the end. The selection of the tree
nodes were based on the following criteria: (1) try to pick at least one feature from each category;
(2) only the most effective ones were used, which have clearly distinguished features than others; (3) try
to minimize the number of the decision tree nodes used.
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Figure 6. (Top): the linear and second order polynomial fit; (Bottom): the single node
triangles in the Vectorization of the profiles.

All spectral bands were included as candidates. Due to the atmospheric absorption, the visible bands
suffered significant signal strength loss. Only the NIR band was selected. Figure 7 shows the mean, upper
and lower values of each species. The NIR at value of 160 and 150 was used to separate the conifer and
deciduous with Oak exception. Any value between 150 and 160 are subject to further evaluation. The
GRI (Equation (5)) [33] had shown the most effective in separate Conifer and deciduous trees amount
the vegetation indices, mainly competing with NDVI. The NIR and GRI combination can identify the
strong featured conifer and deciduous trees. The spectral and VI information was used as the first level
of screening:

GRI = (G−R)/(G+R) (5)

Figure 7. The NIR (Left) and GRI (Right) mean and maximum/minimum boundaries for
six tree species.
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It is not too difficult to separate deciduous from the conifers. However, it could be quite challenge to
distinguish the Pine and Spruce. A combination conditions of “left skewed” (0 < p < 1/3) and “high d

value” (d > 100) was used in this study. An interesting left skewed peak was noticed from the Spruce
but not in Pine.

To separate the four deciduous tree species, the “left skewed” criteria was first used (0 < p < 1/2).
The “left skewed” mainly separates the Maple/Birch and Ash/Oak groups. In this study, the Ash are
mainly young trees, as such they share a highly complex crown structure with the Oaks. The next
criteria examined was “if the curve is flat” (d < 25). The Maple has low d value due to their big
leaves and mature. The Ash have a low d due to their young age and relative smaller size. This
separation is confirmed also by looking at the linear regression R2. The Maple broad leaf generates
a much smoother surface than the Ash; therefore, its R2 is over 0.8. Ash would hardly exceed 0.7. All
four species can be separated at this stage, however, the result can be ensured by further examining the
second order polynomial fit regression coefficient. The final “knowledge-based” decision tree is shown in
Figure 8. There is an external terminator (iteration counter) to settle the rare cases, which the same node
has been visited twice. This only can happen for “highly spectrally mixed” cases, which is most likely
caused by the Oak inter-class variety. Therefore, these special cases were signed to Oak to keep no
“undecided” cases.

Figure 8. The knowledge-based decision tree constructed.

The decision tree can also be constructed base on statistical analysis of the dataset. One of the
approaches was based on the “gain criterion”, which originated from Hunts information theory [42].
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This mathematical decision tree construction was also conducted in this study as comparison. The results
were obtained using the commercial software C5.0 [43,44] under the license of York University Earth
Observation Laboratory.

4. Results and Discussions

Out of the overall 200 trees observed on the ground, 142 trees belonged to the 6 selected species. It
was first to generate a “knowledge-based” decision tree by randomly picking 50% of the data (70 trees
total were picked due to the round up in numbers in different species).This random picking had been
repeated a few times, and no significant variation was found. All 142 trees were then analysed by this
“knowledge-based” decision tree to generate classification result, which is shown in Table 1. The overall
accuracy (OA) was 84.5% and the Cohen’s Kappa Coefficient is 80.6%.

Table 1. Classification result using knowledge-based tree.

Species Maple Ash Spruce P ine Oak Birch

Maple 29 1 0 0 0 2
Ash 3 25 0 0 1 1

Spruce 0 0 10 3 0 2
Pine 0 0 4 20 1 0
Oak 1 0 0 0 24 1
Birch 0 0 2 0 0 12

OA = 84.5%

To compare the result, commercial decision tree software C5.0 was used to generate its trees and
classification results. Since C5.0 requires training data, the 142 trees used in the “knowledge-based”
tree classification were then divided approximately equally into two groups. One group (70 trees) was
used as training while the other (72 trees) was used as validation. To better demonstrate the differences
contributions of different information. Different information compounds were used and different results
were generated.

First of all, only the 4 bands spectral signature approach was used for classification. Results are shown
in Table 2. The features used were Blue band (100%), NIR band (100%), Green band (50%) and Red
Band (32%). Percentage indicated which level and how many times this feature was used. 100% means
it was used in first level, all the candidates go through this node. The overall accuracy (OA) was 48.6 %
and the Cohen’s Kappa Coefficient is 35.7%.

Table 2. The C5.0 decision classification results with 4-band spectral information only.

Species Maple Ash Spruce P ine Oak Birch

Maple 10 3 0 0 0 3
Ash 1 11 0 0 3 0

Spruce 3 3 2 0 0 0
Pine 0 2 0 10 1 0
Oak 6 5 0 0 1 1
Birch 3 0 2 0 1 1

OA = 48.6%
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Next, the vegetation indices and texture information was added to the band signatures approach.
Results are shown in Table 3. The feature used were NDVI (100%), Blue band texture (60%), size (57%)
and GRI (37%). The overall accuracy (OA) was 75.0% and the Cohen’s Kappa Coefficient is 68.7%.

Table 3. The C5.0 decision tree classification result with spectral, VI and Texture
information.

Species Maple Ash Spruce P ine Oak Birch

Maple 13 2 0 0 0 1
Ash 0 12 0 0 3 0

Spruce 1 1 6 0 0 0
Pine 0 1 1 10 1 0
Oak 1 1 0 0 9 2
Birch 1 0 1 0 1 4

OA = 75.0%

Last, the profile derived indices were added to the data, which makes it a combination of profile,
vegetation indices, textures and band signatures. The results are shown in Table 4. The features used
were d (100%), p (100%), NDVI (88%), GRI (55%) and linear R2 (27%). The overall accuracy (OA)
was 86.1% and the Cohen’s Kappa Coefficient is 82.6%.

Table 4. The C5.0 decision tree classification results with all information (Spectral, texture,
profiles etc.) together.

Species Maple Ash Spruce P ine Oak Birch

Maple 14 1 0 0 0 1
Ash 0 14 0 0 1 0

Spruce 0 1 7 0 0 0
Pine 0 1 0 12 0 0
Oak 0 1 0 0 11 1
Birch 1 0 2 0 0 4

OA = 86.1%

The normal distance (d), position ratio (p) and linear R2 are mainly derived from the profile
information. NDVI and GRI are also important and selected in Table 4 as expected. It was surprising that
the texture was completely ignored in the C5.0 decision tree. The benefits of introducing profile-based
information are obvious. The classification result improved on every species comparing to Table 3, which
includes all information except profiles. Table 3 delivers a decent 75% total accuracy. It shows the similar
trend of classification selected as the “knowledge-based” tree, which tries to keep away from directly
using spectral bands. The features were vegetation index (NDVI and GRI), the physical parameter (size)
and spatial information (texture). This strongly agrees with the initial motivation and inspiration of this
study. For uncalibrated imagery with nearby building shadow issues, spectral information is the least
reliable. The information that are independent of spectral information will minimize the negative impact
and will be expected to improve classification.
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5. Summary and Conclusions

As the results shown in Section 4, the longitudinal profiles have been proved to be valuable additional
information to improve the individual tree species classification when using very high spatial resolution
airborne imagery. For both designed and C5.0 generated decision trees, the accuracy of overall
classification results involving profiles were at 84.5% and 86.1%, which are much better than trees
generated from non-profile included cases (75% or less). The longitudinal profiles approach is typically
suitable for high spatial resolution imagery in the urban environment. It was clear that the shapes of
trees are strong signatures of tree species recognition. In urban environment, trees tend to grow into
their natural shape due to low competition. Trees are more isolated and have clear boundaries. The end
to end longitudinal profiles are not as difficult to obtain as in forestry cases. The profile information
can directly represent tree shape, which is a more favourable side view. It is not affected by the nearby
building shadow, which brings more robustness to the spectral signature issues. It also can quickly
estimate the level of the tree crown variation, which is highly correlated with texture and leaf size and
shapes without spectral variation problems. These features are very important for non-calibrated high
spatial resolution imagery without calibrations.

In this study, one important improvement is the separation of Pine and Spruce, which directly results
from including profile information in the classification. The Pine and Spruce have similar spectra
and both have needle leaves, which can be a challenge for spectral classification, but the high spatial
resolution profile can capture the needle orientation and branch differences to improve the classification.
For other species, Maple was the most stable specie that can be estimated at a reasonable accuracy
(62.5% or higher), followed by Ash. In this study, most Maple and Ash trees on the ground are in
the similar growth stage. Most Maple were mature and healthy, therefore, it was expected to have a
reasonable retrieval accuracy. On the other hand, Ash were young, healthy but suffer significantly from
the shadow issue. Once the GI was implemented to reduce the segmentation error, profile information
can strongly compensate the spectral differences caused by the shadow.

In forestry cases, trees are subjected to high competition with neighbour trees. Airborne imagery
normally can only see the top of crowns, which is the focus of the current shape recognition studies. The
competitive growing condition dramatically changes the outline of the trees, increasing the difficulty of
effectively using the shape information in classification.

Due to the volume of the ground data, limited validations were conducted. The profile can not get
away from the biggest challenge in species classification using remote sensing data, the variability
in the properties derived from remote sensing data between trees with the same species caused by
various factors (within class variability), and the inter-class similarity. It should be applied with the
other information together to maximize the classification accuracy. Coefficients reassessment and
“knowledge-based” tree modification may be needed if applying this method to a new study area. The
results were more of a demonstration of the potential of using longitudinal profiles in classification.
More validation work is needed in the future studies. The end to end profiles are specifically designed
for urban tree cases in this study. However, it is still potentially possible to apply it in forestry study,
which would use top portion only. It means partial profile to reconstruct the side view tree shape is
valuable in the future investigation.
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