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Abstract: The retrieval of nutrient concentration in sugarcane through hyperspectral remote 
sensing is widely known to be affected by canopy architecture. The goal of this research was 
to develop an estimation model that could explain the nitrogen variations in sugarcane with 
combined cultivars. Reflectance spectra were measured over the sugarcane canopy using a 
field spectroradiometer. The models were calibrated by a vegetation index and multiple 
linear regression. The original reflectance was transformed into a First-Derivative Spectrum 
(FDS) and two absorption features. The results indicated that the sensitive spectral 
wavelengths for quantifying nitrogen content existed mainly in the visible, red edge and far 
near-infrared regions of the electromagnetic spectrum. Normalized Differential Index (NDI) 
based on FDS(750/700) and Ratio Spectral Index (RVI) based on FDS(724/700) are best suited 
for characterizing the nitrogen concentration. The modified estimation model, generated by 
the Stepwise Multiple Linear Regression (SMLR) technique from FDS centered at 410, 
426, 720, 754, and 1,216 nm, yielded the highest correlation coefficient value of 0.86 and 
Root Mean Square Error of the Estimate (RMSE) value of 0.033%N (n = 90) with nitrogen 
concentration in sugarcane. The results of this research demonstrated that the estimation 
model developed by SMLR yielded a higher correlation coefficient with nitrogen content 
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than the model computed by narrow vegetation indices. The strong correlation between 
measured and estimated nitrogen concentration indicated that the methods proposed in this 
study could be used for the reliable diagnosis of nitrogen quantity in sugarcane. Finally, the 
success of the field spectroscopy used for estimating the nutrient quality of sugarcane 
allowed an additional experiment using the polar orbiting hyperspectral data for the timely 
determination of crop nutrient status in rangelands without any requirement of prior 
cultivar information.  

Keywords: hyperspectral; imaging spectroscopy; nitrogen concentration; sugarcane; 
canopy architecture; first derivative spectrum; absorption feature 

 

1. Introduction  

Sugarcane (Saccharum spp. hybrid) is one of the most important economic crops in Thailand. It is 
used to produce sugar and to generate power [1]. The precise estimation of the annual sugarcane yield 
is necessary to balance the amount of sugarcane used by these two competing industries and, 
consequently, to establish proper policies regarding its use. Several physical and chemical factors, such 
as nitrogen, cultivars, climate, soil and water availability, influence sugarcane growth [2] and need to 
be considered in any yield estimation model. Nitrogen is one of the most significant macronutrients 
associated with sugarcane yield due to its impact on leaf and stalk growth [3]. Sugarcane accumulates 
most of its nitrogen from the initial growth stages up to canopy closure [4,5]. An adequate nitrogen 
supply will improve the leaf area index and the chlorophyll concentration [6].  

In general, several approaches to measure nutrient status in the plant have been developed and 
evaluated. The most common method is performed in the laboratory using leaf samples collected in the 
field [7]. Non-destructive field measurements of N status have been proposed, e.g., using leaf color 
charts or chlorophyll meters [8,9]. With the availability of remotely sensed data, these measurements 
enable the indirect determination of the amount of nitrogen available to crops on a large spatial scale. 
Such technology has proven to be useful for estimating biochemical parameters [10–15], plant species 
discrimination [16–18] and crop disease monitoring [19,20].  

However, the first method requires more leaf samples from the field, which is a laborious, lengthy 
and destructive process [21]. The second technique is practical only at the leaf level and is limited to 
evaluating plant quality in a large area. In contrast, the estimation of biochemical parameters through 
remotely sensed data could provide a rapid and low-cost solution for diagnosing the spatial variability 
of crop field properties. Satellite images with a spectral resolution broader than 100 nm are not suitable 
for estimating the biophysical and biochemical status of crops due to the associated combinations of 
spectral reflectance [22]. To solve this problem, field spectroscopy or hyperspectral remote sensing 
with narrow spectral bands (<10 nm) over a contiguous range should be considered [22]. In fact, 
previous studies using a predictive approach based on hyperspectral remote sensing mainly focused on 
a single crop species [10,23,24] or one age group [25]. Few studies have attempted to apply 
hyperspectral data to determine the status of sugarcane nutrients at the foliar or canopy level [26–29]. As 
applications of hyperspectral data are in the infancy stage, studies are needed to achieve a better 
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understanding of sugarcane spectral information. Thus, the estimation of the nitrogen characteristics of 
sugarcane with mixed cultivars at the canopy level is a challenge in remote sensing [30]. 

The aim of this study was to develop an estimation model that could explain the nitrogen variations 
in sugarcane. The field spectroscopy data were analyzed to investigate whether they contained 
adequate information for determining the nitrogen concentration in sugarcane with several cultivars. 
Original reflectance was transformed into a first-derivative spectrum (FDS) and two absorption 
features. Narrow vegetation indices and Stepwise Multiple Linear Regression (SMLR) were applied to 
compute the estimation models. Subsequently, the relationships between the measured nitrogen 
concentration and the spectral reflectance were explored. In addition, effects of canopy architecture on 
the spectral signature and the model precision were analyzed. This research will be expanded to 
include an additional experiment using polar orbiting hyperspectral data for the timely determination 
of crop nutrient status without any requirement of prior cultivar information.  

2. Materials and Methods 

2.1. Field Experimental Design  

The two study sites are located in the Watthana Nakhon district (plot 1) and Mueang Sakaeo district 
(plot 2), Sakaeo Province, in the eastern region of Thailand (102°15′E, 13°45′N) (Figure 1). Sugarcane 
is the most dominant crop in this area with approximately ten different cultivars. Experimental plots, 
which were 36 m wide and 76 m long with a total area of 0.27 ha were designed based on a 
Randomized Complete Block (RCB) with three replications. The soil textures of the two plots were 
different (loamy sand and loamy clay, respectively). Experimental factors were controlled, including 
sugarcane cultivars, amount of nitrogen fertilizer (74 kg per ha), sowing date (end of March), and 
water supply (Table 1). Based on the RCB design, we assumed that the influences of sunlight, soil 
moisture and temperature were equally distributed. Three sugarcane cultivars with different leaf 
orientations were investigated, namely KK-3 (planophile), K84-200 (erectophile) and LK92-11 
(combined structure). Cultural management followed the local standard practice in sugarcane 
production. Samples collected from plot 1 and plot 2 were randomly separated and pooled into two 
groups for model calibration and model validation. 

Table 1. Characteristics of the experimental plots used in this study. 

 Plot 1 Plot 2 

Location 13.866°N 102.287°E 13.710°N 102.214°E 
Soil texture loamy sand  loamy clay 

Annual precipitation, mm (2010) 1,268.2 1,296.6 
Annual air temperature, °C (2010) 22.91/35.14 (Min/Max) 22.8/34.08 (Min/Max) 

Plot size 36 m × 76 m 36 m × 76 m  

 



Remote Sens. 2012, 4 1654 
 

 

Figure 1. The study area in Sakaeo Province, in the eastern region of Thailand. 

 

2.2. Measurements of Hyperspectral Reflectance  

In December 2010, the canopy spectral reflectance was measured using a Fieldspec® 3 
spectroradiometer (Analytical Spectral Devices, Boulder, CO, USA) [31], with a spectral range of 
400–2,500 nm, and sampling intervals of 1.4 nm between wavelengths of 400 and 1,050 nm and 2 nm 
between wavelengths of 1,050 and 2,500 nm (Table 2). However, the spectral regions between  
1,355–1,450 nm, 1,800–1,950 nm and 2,420–2,500 nm, which are associated with the water absorption, 
were excluded from the analysis [22,32]. Canopy spectral data were collected by pointing a fiber optic 
cable with a 25° Field Of View (FOV) at the nadir position from a height of 1.5 m above the canopy 
(the height of sugarcane is 3–4 m at nine months of age). After nine months, the canopy is fully 
covered without any effect of soil brightness. The ground area observed by the sensor had a diameter 
of approximately 65 cm, which was large enough to cover one canopy tiller without being influenced 
by the surroundings. Spectral measurements were made on a clear sunny day between 10:00 a.m. and 
2:00 p.m. local time (GMT+7) to minimize atmospheric perturbations and Bi-directional Reflectance 
Distribution Function (BRDF) effects [33]. Twenty-five replicate spectral measurements were taken 
for each tiller, which enabled noise reduction by averaging the spectra [34]. Relative reflectance 
spectra were calculated by dividing the leaf radiance by the reference radiance from a spectralon white 
reference panel for each wavelength. Measurements of the hyperspectral reflectance were conducted 
on 10 samples in each subplot, all of which were randomly selected from rows 5, 6, 7, 8 and 9 for a 
total of 90 samples per experimental site (180 in total).  

Table 2. Characteristics of the sensor, wavelength covering and spectral resolution used in this study. 

Sensor Wavelength (nm) Spectral Resolution (nm) Number of Bands

Fieldspec® 3 spectroradiometer 
400–1,050 1.4 465 

1,050–2,500 * 2 560 
* The spectral regions between 1355–1450 nm, 1800–1950 nm and 2420–2500 nm, which are associated 
with the water absorption, were excluded from the analysis. 

Plot 1

Plot 2
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2.3. Determination of Nitrogen Concentration 

The first and second fully expanded leaves from the top of two random shoots for one tiller were 
collected. The midrib was removed from the leaf blade because the presence of the midrib resulted in a 
decreased concentration of nitrogen [35,36]. Four fresh leaves were oven-dried at 75 °C for 24 h and 
then ground up and oven-dried again at 75 °C for 24 h, resulting in a leaf powder. The total nitrogen 
concentration in sugarcane foliar was measured using the Kjeldahl method. The leaf powder was 
digested by 98% sulfuric acid (w/w) at 380 °C until the solution was transparent. Nitrogen was measured 
with a Nitrogen Distillation Apparatus using KjeltecTM 2200 Auto distillation [37] and expressed as both 
milligrams per gram (mg/g) and a percentage of nitrogen.  

2.4. Spectral Transformations 

2.4.1. First-Derivative Transformation  

FDS was calculated and used as a variable in the estimation model. FDS is commonly used to 
enhance absorption features that might be masked by interfering background absorptions and canopy 
background effects [38]. A derivative was taken to determine the slope of the spectrum (rate of change 
of reflectance with wavelength). This technique is useful for reducing the effects of multiple scattering 
of radiation due to sample geometry and surface roughness [39]. FDS can be derived by Equation (1). 

λλλ Δ−= + /)( )()1( jj RRFDS  (1)

where the FDS is the first-derivative transformation at a wavelength i midpoint between wavebands j 
and j + 1. Rλ(j) is the reflectance at the j waveband, Rλ(j + 1) is the reflectance at the j + 1 waveband and 
Δλ is the difference in wavelength between j and j + 1. 

2.4.2. Calculation of Absorption Features  

Nitrogen exhibits absorption features in the visible, near-infrared and shortwave-infrared regions [23]. 
The continuum-removed reflectance R′(λi) is obtained by dividing the reflectance value R(λi) of each 
waveband i in the absorption feature by the reflectance level of the continuum line (convex hull) Rc(λi) 
at the corresponding wavelength i: 
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The first and last spectral data values are on the hull; therefore, the first and last values of the 
continuum-removed spectrum are equal to 1. The output curves have values between 0 and 1, where 
the absorption pits are enhanced. In this study, only three regions of the wavelength were used, 
including R420–R530, R550–R750 and R1116–R1284, which are known as the pigment and water 
content absorption zones. Two variables proposed in [40,41] were used as variables in this study:  

(i) Continuum-Removed Derivative Reflectance (CRDR) was calculated by applying a  
first-derivative transformation to the continuum-removed reflectance spectrum R′. 
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(ii) The band depth (BD) was calculated by subtracting the continuum-removed reflectance at 
wavelength i from 1: 

ii RBD λλ '1)( −=  (4) 

2.5. Univariate Approach: Narrow Vegetation Indices  

Narrow vegetation indices were computed from all possible two-wavelength combinations 
involving the 1,025 wavelengths using FDS, CRDR and BD. These 1,025 discrete bands allowed a 
calculation of N*N (1,050,625 indices). The two most widely used vegetation indices in estimating 
agricultural and ecological variables are the Ratio Spectral Index (RSI) and the Normalized 
Differential Index (NDI) [15,32,42–44]. Equations (5) and (6) are the equations used to calculate the 
vegetation index. Relationships between the vegetation index and the N-determinant value were 
investigated in this step. 

RSI = λ1/λ2 (5) 

NDI = (λ1 − λ2)/(λ1 + λ2) (6) 

where λ1: FDS, CRDR and BD between 400–2,500 nm., and λ2: FDS, CRDR and BD between  
400–2,500 nm.  

2.6. Multivariate Approach: Stepwise Multiple Linear Regression  

SMLR was used to estimate the nitrogen concentration in sugarcane from the measured reflectance 
spectra. The idea was to identify the spectral wavebands that provide the best correlation with different 
chemical compounds present in the leaf or canopy [22,23,41,45,46]. The estimation models were 
calculated based on three independent variables: FDS, CRDR and BD. A SMLR starts with no 
predictors (wavelength) in the regression equation. At each step, it adds the most statistically 
significant wavelength (wavelength with the highest or lowest p-value) [33]. p-values to enter and 
remove wavelengths were set at 0.01 and 0.02, respectively. The maximum number of selected 
wavelengths was fixed at five to avoid an over fitting problem. The multicollinearity of variables was 
tested using a variance inflation factor (VIF) that must be lower than three [33].  

2.7. Model Validation  

Two approaches were adopted to evaluate the predictive accuracy: validation by (1) an independent 
data set and (2) a 10-fold cross technique. Performances of the estimation models were summarized 
and reported in terms of the coefficient of determination (R2), the Root Mean Square Error of the 
Estimate (RMSE) and the Relative Error (RE), as illustrated by Equations (7) and (8) [47].  
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where ŷi and yi are the estimated and measured crop variables, respectively, and n is the number of 
samples. The RMSE provides an estimate of the modeling error and is expressed in original 
measurement units.  

3. Results and Discussion 

3.1. Variations in Nitrogen Concentration and Hyperspectral Canopy Reflectance 

3.1.1. Variations in Nitrogen Concentration 

Table 3 shows the number of samples used and the statistics associated with the nitrogen 
concentration measured in the laboratory. We tested the hypothesis that the mean nitrogen 
concentrations in sugarcane between the three cultivars were significantly different, viz. the null 
hypothesis Ho: µ1 = µ2 = µ3 and the alternate hypothesis Ha: µ1≠ µ2 ≠ µ3, where μ1, μ2, and μ3 are 
the mean observed nitrogen concentrations for LK92-11, KK-3 and K84-200, respectively. The results 
of the one-way analysis of variance (ANOVA) indicated that the means of the observed nitrogen 
concentration between the three cultivars were significantly different (P < 0.00001). A post-hoc 
Scheffe test was used to check for any significant difference between the nitrogen concentrations of 
cultivars. The overall result from these tests was that the mean nitrogen concentrations were 
significantly different between all cultivars (P < 0.00001).  

Table 3. Descriptive statistics of the nitrogen concentration measured in the laboratory. 

Data Set Sample Min (%N) Max (%N) Mean (%N) Std Deviation (%N) 
Calibration 90 1.142 1.483 1.313 0.098 
Validation 90 1.148 1.457 1.319 0.084 

Pooled  180 1.142 1.483 1.316 0.091 
By Cultivar 

LK92-11 60 1.251 1.415 1.333 0.046 
KK-3 60 1.275 1.483 1.395 0.062 

K84-200 60 1.142 1.322 1.221 0.051 

3.1.2. Hyperspectral Canopy Reflectance 

The canopy spectral reflectance values of the three cultivars, shown in Figure 2(a), were averaged. 
The mean spectra (n = 60) between K84-200 and KK-3 are obviously discriminated, while the 
difference is subtle between LK92-11 and K84-200. Moreover, the spectral reflectance of the 
erectophile canopy (K84-200) is lower than that of the planophile canopy (KK-3). The highest 
variations occur in the near-infrared (650–700 nm) and shortwave-infrared regions, which are mainly 
absorbed by the water (1,300–1,400 nm). An averaged FDS is illustrated in Figure 2(b). This figure 
clearly displays the variations in the magnitude and position of the absorption features between the 
three cultivars. 
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Figure 2. Comparison of the mean canopy reflectance spectra of sugarcane (N = 60 for 
each cultivar) between the three different cultivars: (a) original reflectance; and (b) first 
derivative spectrum.  

 

3.2. Relationships between the Nitrogen Concentration and Narrow Vegetation Index  

The correlation coefficients between all possible wavelength pairs with R2 ≥ 0.6 are displayed in a 
correlation plot (Figure 3). The highest correlation regions between the NDI and RVI based on the 
FDS and the nitrogen concentration were highlighted in the range of 630–750 nm, i.e., the near-infrared 
and red edge regions. Wavelengths between 675 and 750 nm in the CRDR also constitute the sensitive 
band for determining the nitrogen status. Table 4 illustrates the model accuracy estimated by the NDI 
and the RVI, using the combined cultivar data set. The predictive performance of the NDI was slightly 
higher than that of the RVI. In this experiment, the NDI based on the FDS(750/700) and the RVI based on 
the FDS(724/700) yielded the highest accuracy, with R2 values of 0.73 and 0.78, RMSEcv values of 0.044 
and 0.043% N and RE values of 3.34 and 3.27%N for the validation data set and the pooled data set, 
respectively. The regression equations are Y = 0.37x + 1.39 and Y = 0.14x + 1.04. 

b 

a LK92-11
KK-3 
K84-200 

LK92-11
KK-3 
K84-200 
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Figure 3. Contour plots showing the regions with high correlation coefficients (R2 ≥ 0.6) 
between narrow vegetation index value and nitrogen concentration (n = 90) calculated from 
all possible combination wavelengths: (a) Normalized Differential Index (NDI) based on 
First-Derivative Spectrum (FDS); (b) NDI based on Continuum-Removed Derivative 
Reflectance (CRDR); (c) Ratio Spectral Index (RVI) based on FDS; and (d) RVI based on 
CRDR. 

 

Table 4. Performances of narrow vegetation indices calculated from different independent 
variables for estimating nitrogen concentration in sugarcane with the combined cultivars. 

VI Variable 
λ1/λ2 
(nm) 

Calibration Data Set 
(N = 90) 

Validation Data Set 
(N = 90) 

Pooled Data Set  
(N = 180) 

R2
c RMSEc R2

v RMSEv R2
cv RMSEcv 

NDI 
FDS 750/700 0.82 0.041 0.73 0.044 0.78 0.043 

CRDR 748/690 0.82 0.041 0.73 0.043 0.78 0.043 
BD 748/680 0.81 0.042 0.70 0.047 0.76 0.045 

RVI 
FDS 724/700 0.80 0.043 0.73 0.044 0.78 0.043 

CRDR 748/630 0.83 0.041 0.73 0.044 0.78 0.043 
BD 748/670 0.82 0.042 0.70 0.048 0.76 0.045 

λ: Selected wavelength in nm; RMSEc, RMSEv and RMSEcv: root mean square error of calibration, 
validation and relative cross-validation with a 10-fold cross technique, respectively, expressed as %N; R2

cv: 
relative cross-validated coefficient of determination with a 10-fold cross technique; fit between estimated 
and observed values at the 0.01 level was considered highly significant. 

> 0.80 
0.70-0.80 
0.60-0.70 
< 0.60 

R2 

a b 

c d 

> 0.80 
0.70-0.80 
0.60-0.70 
< 0.60 

R2 

> 0.80 
0.70-0.80 
0.60-0.70 
< 0.60 

R2 
> 0.80 
0.70-0.80 
0.60-0.70 
< 0.60 
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The scatter plots in Figure 4 illustrate the comparison between the measured and estimated nitrogen 
concentration determined by four models. We found that the region of 510–540 nm and 700–800 nm 
are the sensitive regions for characterizing the nitrogen status. Table 5 shows the capability of narrow 
vegetation indices to estimate the nitrogen concentration in sugarcane with the separated cultivars. 
Partitioning data into the individual cultivars can improve the model precision. The proposed model 
can mostly explain the nitrogen variation of KK-3, with an accuracy of approximately 90%. 
Wavelengths between 700 and 750 nm are best suited for predicting nitrogen quality. Selected 
wavelengths and regression equations are summarized in Table 6. 

Figure 4. Measured versus estimated nitrogen concentration in sugarcane with combined 
cultivars, using narrow vegetation indices (n = 90): (a) NDI (FDS750, FDS700); (b) NDI 
(CRDR748, CRDR700); (c) RVI (FDS724, FDS700); and (d) RVI (CRDR748, CRDR630). 

 

  Validation: R2
V = 0.73; RMSEV = 0.044   Validation: R2

V = 0.73; RMSEV = 0.044 

c d

Y = -0.09x + 1.15Y = 0.14x + 1.04 

Measured canopy nitrogen Measured canopy nitrogen 

Calibration data set 
Validation data set 

1:1 

Y = 0.37x + 1.39
Validation: R2

V = 0.73; RMSEV = 0.044 

a 

Measured canopy nitrogen 

Calibration data set 
Validation data set 

1:1 
Calibration data set
Validation data set

1:1

b

Y = 0.26x + 1.38

Validation: R2
V = 0.74; RMSEV = 0.043

Calibration data set
Validation data set

1:1

Measured canopy nitrogen 
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Table 5. Performances of narrow vegetation indices calculated from different independent 
variables for estimating nitrogen concentration in sugarcane with the separated cultivar. 

VI Variable 
LK92-11 (N = 60) KK-3 (N = 60) K84-200 (N = 60) 

λ1 λ2 R2
v λ1 λ2 R2

v λ1 λ2 R2
v 

NDI 
FDS 748 728 0.81 718 710 0.91 712 706 0.80 

CRDR 570 748 0.80 736 712 0.90 712 700 0.79 
BD 748 584 0.78 716 710 0.92 746 680 0.75 

RVI 
FDS 748 728 0.79 718 710 0.90 724 692 0.82 

CRDR 748 510 0.78 712 574 0.91 712 700 0.82 
BD 748 586 0.78 716 710 0.91 712 678 0.76 

λ: Selected wavelength in nm; R2
v: root mean square error of calibration, validation; fit between 

estimated and observed values at the 0.01 level was considered highly significant.  

Table 6. List of regression models developed by the vegetation indices using the different data sets. 

Data set VI Variablewavelength Regression Model R2
v 

Combined 
cultivars 

NDI 
FDS750,700 Y = 0.37x + 1.39 0.73 

CRDR748,690 Y = 0.26x + 1.38 0.73 
BD748,680 Y = 9.64× + 10.77 0.70 

RVI 
FDS724,700 Y = 0.14x + 1.04 0.73 

CRDR748,630 Y = −0.09x + 1.15 0.73 
BD748,670 Y = 18.79x + 1.12 0.70 

Separated cultivar 
- LK92-11 

NDI 
FDS748,728 Y = 0.95x + 1.71 0.79 

CRDR570,748 Y = 0.11x + 1.12 0.80 
BD748,584 Y = 4.58x + 5.72 0.78 

RVI 
FDS748,728 Y = 0.93x + 0.93 0.79 

CRDR748,510 Y = 0.24x + 1.21 0.78 
BD748,586 Y = 9.05x + 1.14 0.78 

Separated cultivar 
- KK-3 

NDI 
FDS718,710 Y = 1.59x + 1.09 0.91 

CRDR736,712 Y = 0.44x + 1.39 0.90 
BD716,710 Y = 4.18x + 1.73 0.92 

RVI 
FDS718,710 Y = 0.53x + 0.61 0.90 

CRDR712,574 Y = 0.61x + 2.05 0.91 
BD716,710 Y = 2.45x − 0.7 0.91 

Separated cultivar 
- K84-200 

NDI 
FDS712,706 Y = 1.45x + 1.18 0.80 

CRDR712,700 Y = 0.75x + 1.23 0.79 
BD746,680 Y = 3.47x + 4.59 0.75 

RVI 
FDS724,692 Y = 0.08x + 1.07 0.82 

CRDR712,700 Y = 0.39x + 0.84 0.82 
BD712,678 Y = 0.63x + 0.86 0.76 

3.3. Relationships between the Nitrogen Concentration and Spectral Wavelength Determined by a 
SMLR Technique 

The number of selected spectral wavelengths, used to estimate the nitrogen concentration by 
SMLR, ranges from two to five. Using the FDS as an independent variable, SMLR selected five 
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sensitive wavelengths, centered at the visible, red edge and far near-infrared regions of the 
electromagnetic spectrum. The best model yielded R2 values of 0.80 and 0.86, RMSE values of 0.038 
and 0.033%N and RE values of 2.88 and 2.50%N validated by an independent data set and a pooled 
data set, respectively. The regression equation is Y = 212.76x1 − 471.9x2 − 31.98x3 + 133.78x4 − 
115.86x5 + 1.4. The selected wavelengths for each data set are summarized in Table 7. The CRDR and 
BD variables cannot be used to improve the model precision for determining the nitrogen 
concentration compared with the FDS. Relationships between the measured and estimated nitrogen 
concentration were determined from the combined and separated cultivar data sets and are depicted in 
Figure 5(a,b). However, the predictive models developed by a SMLR technique exhibited a higher 
accuracy than those developed based on the narrow vegetation indices, as indicated by the higher R2 
and lower RMSE associated with the former. 

Figure 5. Measured versus estimated sugarcane nitrogen concentration of combined 
cultivars; the model was developed by a Stepwise Multiple Linear Regression (SMLR) 
approach with two independent variables (n = 90): (a) FDS; (b) Band Depth (BD). 

 
Table 7. Performance of stepwise multiple linear regression in estimating the nitrogen 
concentration in sugarcane with combined cultivar. 

Variable Wavelength (nm) 
Calibration Data 

set (N = 90) 
Validation Data 

set (N = 90) 
Pooled Data Set 

(N = 180) 
R2

c RMSEc R2
v RMSEv R2

cv RMSEcv 
FDS 410, 430, 720, 754,1216 0.90 0.030 0.80 0.038 0.86 0.033 

CRDR 748, 1158, 1184, 1216, 1276 0.89 0.033 0.64 0.053 0.78 0.043 
BD 748, 1262 0.83 0.040 0.70 0.047 0.77 0.044 

λ: Selected wavelength in nm; RMSEc, RMSEv and RMSEcv: root mean square error of calibration, 
validation and relative cross-validation with a 10-fold cross technique, respectively, expressed as %N; 
R2

cv: relative cross-validated coefficient of determination with a 10-fold cross technique; fit between 
estimated and observed values at the 0.01 level was considered highly significant.  

Table 8 summarizes the performance of SMLR in estimating the nitrogen concentration of 
separated cultivars using the different independent variables, including FDS, CRDR and BD. The 
sensitive wavelengths were shifted from the shortwave to the middle-infrared region. The proposed 

Validation: R2
V = 0.80; RMSEV = 0.038 

a
Calibration data set 

Validation data set 

1:1 

Measured canopy nitrogen (%N) 

Y = 212.76x1 – 471.9x2 – 31.98x3
+ 133.78x4 – 115.86x5 + 1.4 

Validation: R2
V = 0.70; RMSEV = 0.047 

b

Y = 25.26x1 – 3.7x2 + 1.19 

Calibration data set

Validation data set

1:1

Measured canopy nitrogen (%N) 
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model can mostly explain the nitrogen variations of KK-3 (94%), LK92-11 (86%) and K84-200 (80%). 
Partitioning of data into cultivar could increase the estimation capability of the method applied in this 
research. The selected wavelengths and regression equations used are listed in Table 9. 

Table 8. Selected wavelengths and coefficients of determination between the observed 
nitrogen concentration and the spectral reflectance of separated cultivar. 

Variable 
LK92-11 (N = 60) KK-3 (N = 60) K84-200 (N = 60) 

Wavelength (nm) R2
cv Wavelength (nm) R2

cv Wavelength (nm) R2
cv 

FDS 
670, 754, 1,266,  

1,494, 2,313 
0.86 

750, 1,104, 1,572, 
1,586, 2,153 

0.93 
552, 1,032, 1,284, 

1,604, 2,359 
0.80 

CRDR 656, 704, 1,266 0.79 598, 674, 740, 1,228 0.92 678, 746, 1,128 0.80 
BD 684, 748, 1,228 0.82 552, 736 0.92 746 0.78 
R2

cv: relative cross-validated coefficient of determination with a 10-fold cross technique; fit between 
estimated and observed values at the 0.01 level was considered highly significant.  

Table 9. List of regression models developed by SMLR from the different data sets.  

Data set Variable Regression Model R2
v 

Combined 
cultivars 

FDS Y = 212.76x1 − 471.9x2 − 31.98x3 + 133.78x 4 − 115.86x5 + 1.4 0.80 
CRDR Y = 55.77x1 + 19.0x2 + 61.92x3 − 73.5x 4 − 34.25x5 + 1.26 0.64 

BD Y = 25.26x1 – 3.7x2 + 1.19 0.70 
Separated 
cultivar - 
LK92-11 

FDS Y = 520.59x1 + 14.794x2 − 97.004x3 + 95.08x 4 − 63.49x5 + 1.347 0.86 
CRDR Y = 33.04x1 − 18.84x2 − 32.51x3 + 1.72 0.79 

BD Y = −0.47x1 + 17.86x2 – 0.7845x3 + 1.62 0.82 

Separated 
cultivar-KK-3 

FDS Y = 67.4x1 − 24.64x2 − 136.2x3 − 168.34x4 − 42.007x 5 + 1.4153 0.93 
CRDR Y = −14.27x1 − 105.25x2 + 23.31x3 + 8.84x4 + 1.004 0.92 

BD Y = −3.31x1 + 2.26x2 + 1.17 0.92 
Separated 

cultivar - K84-
200 

FDS Y = −194.8x1 + 138.92x2 – 94.52x3 − 213.97x 4 − 22.31x5 + 1.29 0.80 
CRDR Y = −64.57x1 + 25.36x2 + 6.34x3 + 28.04x4 + 1.08 0.80 

BD Y = 7.86x1 + 1.12 0.78 

3.4. Discussion   

3.4.1. Utility of the Methods Used in this Study in Estimating the Nitrogen Concentration 

Results from this research indicate that field spectroscopy data contains adequate information for 
determining the nitrogen concentration in sugarcane with combined cultivars. The univariate method 
has illustrated that the red edge region contains the sensitive wavelengths for explaining the nitrogen 
variations in sugarcane canopy. This region has been shown to be insensitive to atmospheric and 
background effects [11], and to be related to chlorophyll [14]. Since, there is a positive strong 
relationship between nitrogen concentration and chlorophyll [48]. The proposed models using FDS, 
CRDR and BD as independent variables could explain between 70% and 83% the variation of nitrogen 
concentration in standing sugarcane canopies. The model RMSE values range from 0.048–0.043%N. 
The modified estimation model, generated by a SMLR technique using FDS, yields the highest 
correlation coefficient value of 0.86 and a RMSE value of 0.033 with sugarcane canopy nitrogen 
concentration. The estimation model developed by SMLR yields a higher correlation coefficient with 
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nitrogen content as compared to the model computed by narrow vegetation indices. This is because the 
two-wavelength index uses only a limited amount of the spectral information. These results are 
consistent with those of previous studies [10,33]. In addition, we found that the estimation models 
developed from the FDS exhibited a higher correlation with the observed nitrogen concentration 
than those generated from the CRDR and BD. This conclusion agrees with the results of previous 
studies [26].  

3.4.2. Wavelength Selection  

The estimation model with the highest predictive accuracy was developed by SMLR technique. The 
selected wavelengths, including the spectral bands centered at 410, 430, 720, 754 and 1216 nm, were 
used to predict the nutrient quality in sugarcane. Wavelengths in the visible region (λ = 410 nm and 
430 nm), selected for nitrogen concentration estimation, are related to pigment absorption [22]. Several 
publications have shown a strong correlation between the concentration of nitrogen and chlorophyll a 
and b [10,22,23,26,43]. Nitrogen is directly related to the photosynthetic process. A strong relationship 
between chlorophyll absorption bands and nitrogen concentration is therefore expected [10]. Two 
wavelengths in the shorter region of the red edge (λ = 720 nm) and in the longer region of the red edge  
(λ = 754 nm), selected by the estimation model, are in agreement with the known nitrogen absorption  
bands [22]. The wavelength centered at 720 nm is the critical point on the red-edge around which there 
is the maximum change in the slope of the reflectance spectra per unit. It is also considered as the 
sensitive band to the temporal variations in crop growth, vegetation stress, and chlorophyll & nitrogen 
status of plants [42,43,49]. Whereas the wavelength centered at 754 nm is sensitive to the variations of 
chlorophyll and nitrogen. The last wavelength in the Far Near-Infrared Region (FNIR) (λ = 1,216 nm), 
is selected as an estimator and is sensitive to plant moisture. The most rapid change falls into the 
spectra with a change in wavelength in FNIR [50,51]. The wavelength 1,216 nm, which yields the high 
correlation with the N status, is in disagreement with [26] who found that wavelengths between  
1,300–1,350 nm were strongly related to the leaf nitrogen concentration in sugarcane.  

3.4.3. Effects of Plant Morphology and Structure on the Spectral Response  

The structure of the plant canopy has a significant bearing on its spectral signature [43]. The leaf 
orientation of the KK-3, K84-200 and LK92-11 cultivar, which were tested in this study, exhibits the 
planar, erect and mixed structures, respectively. The proposed estimation models in this study could 
explain most of the nitrogen variations (>90%) in planophile canopy (KK-3). On the other hand, the 
model precision was quite low in the mixed structures, ~80–86% (LK92-11), and in the erectophile 
structure, ~78–80% (K84-200). Thenkabail et al. [43] concluded that the planophile structure (30 
degrees) contributes to a significantly greater reflectance in the near infrared and to a greater 
absorption in the red when compared with the erectophile structure (65 degree). This summary is 
consistent with the measured reflectance spectra used in this study, as shown in Figure 2(a). Usually, 
the Leaf Area Index (LAI) value of planophile structures is higher than that of mixed and erectophiles, 
which results in the difference of the density of light radiation reaching the mature leaves down the 
stalk [52]. LAI, therefore, directly influences the spectral profile of sugarcane canopy. In addition, 
effects from soil brightness on the reflectance spectra of planophile structures are lower than those of 



Remote Sens. 2012, 4 1665 
 

 

other structures. The canopy structure should be taken into consideration when mapping crop nutrient 
status in rangelands with combined cultivars. This recommendation is consistent with that of the 
previous study [10].  

3.4.4. Performance Comparison of Proposed Models with Previous Models 

Most of the previous publications developed models for estimating the nitrogen variations in paddy 
rice, wheat, cotton or grass, but only in a few cases in sugarcane [26,28]. The previous experiments 
estimating the nitrogen concentration from hyperspectral data were conducted at the leaf level. In 
vegetation canopies, near-infrared reflectance is much higher than that for the single leaves. As most of 
the radiation at near-infrared wavelengths passes through the single leaves, the multiple leaf layers of a 
canopy have an additive effect on the reflectance [53]. Part of the radiation transmitted by the first leaf 
layer is reflected back onto subsequent layers [54]. At the canopy level, there are several factors that 
influence the spectral reflectance, e.g., wind, the solar azimuth angle, light intensity, and canopy 
architecture [26]. In this paper, the estimation model was developed from the reflectance spectra 
measured over the sugarcane canopy. Therefore, it is not reasonable to apply the regression equation, 
published in previous studies, to the data used in this study. Table 10 shows the estimation models to 
estimate sugarcane nitrogen concentration from field spectroscopy. Based on the results in this study, 
the performance of the estimation models was more stable and reliable than in previous studies, 
because of the higher correlation, lower estimation error and the higher number of samples used.  

Table 10. The estimation models for estimating nitrogen concentration in sugarcane from 
field spectroscopy compared with previous publications (unit: % nitrogen). 

Spectral 
Parameter 

Regression Equation Validation No. of 
Samples 

Study 
Level 

Reference 

R2 RMSE 
RVI (FDS741, 

FDS1323) 
Y = −0.237x + 0.587 0.74 0.084 25 Leaf [26] 

RVI (R740, 
R720) 

Y = 0.73x + 0.753 0.81 0.103 37 Leaf [28] 

NDI (FDS750, 
FDS700) 

Y = 0.37x + 1.39 0.78 0.043 90 Canopy This paper 

RVI (FDS724, 
FDS700) 

Y = 0.14x + 1.04 0.78 0.043 90 Canopy This paper 

FDS (410, 430, 
720, 754,1216) * 

Y = 212.76x1 – 471.9x2 – 
31.98x3 + 133.78x 4 – 

115.86x5 + 1.4 

 0.86 0.033 90 Canopy This paper 

* developed by SMLR technique. 

4. Conclusions  

The optimal goal of this paper was to develop an estimation model that could explain the nitrogen 
variations in sugarcane with combined cultivars. Reflectance spectra were measured over the 
sugarcane canopy. Derivative spectra and absorption features were used as independent variables in 
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univariate and multivariate approaches. The most important conclusions that could be drawn from this 
study are as follows: 

(i) Stepwise multiple linear regression could explain the nitrogen variations in sugarcane canopy 
better than a narrow vegetation index. This technique utilizes more than two wavelengths from the 
entire spectral region (400–2,500 nm) to estimate the dependent variable.  

(ii) First Derivative Spectrum (FDS) showed a better relationship with canopy nitrogen concentration 
than Continuum-Removed Derivative Reflectance (CRDR) and Band Depth (BD) when the 
models were developed with multivariate approaches and validated with a combined cultivar data 
set. 

(iii) It was concluded that a First Derivative Spectrum (FDS) has potential when used to estimate the 
nitrogen content in sugarcane with combined cultivars at the maturity stage (9–12 months). 

(iv) Visible, red edge and far near-infrared regions contain more information on canopy nitrogen 
concentration of combined sugarcane cultivars compared to other parts of the electromagnetic 
spectrum. 

(v) Canopy architecture directly influences the spectral response and the predictive precision. Canopy 
structure, therefore, should be taken into consideration when mapping sugarcane nutrient quality 
in rangelands with combined cultivars. 

(vi) In the case of a known cultivar, partitioning the data into cultivars could increase the estimation 
capability of the method applied in this research.  

(vii) The modified estimation model, generated by SMLR technique from FDS centered at 410, 426, 
720, 754, and 1,216 nm, yields the highest correlation coefficient value of 0.86 and RMSE value 
of 0.033%N (n = 90) with nitrogen concentration in sugarcane. This result is much better than 
those of the previous studies.  

Overall, since the field spectroscopy data used in this study was measured over the sugarcane 
canopy under natural atmospheric conditions, the success of field spectroscopy used for estimating 
nutrient quality in sugarcane allows an additional experiment using the polar orbiting hyperspectral 
data for the timely determination of crop nutrient status in rangelands without any requirement of the 
prior cultivar information.  
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