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Abstract: Conventional spectral-based classification methods have significant limitations 

in the digital classification of urban land-use and land-cover classes from high-resolution 

remotely sensed data because of the lack of consideration given to the spatial properties of 

images. To recognize the complex distribution of urban features in high-resolution image 

data, texture information consisting of a group of pixels should be considered. Lacunarity 

is an index used to characterize different texture appearances. It is often reported that the 

land-use and land-cover in urban areas can be effectively classified using the lacunarity 

index with high-resolution images. However, the applicability of the maximum-likelihood 

approach for hybrid analysis has not been reported. A more effective approach that 

employs the original spectral data and lacunarity index can be expected to improve the 

accuracy of the classification. A new classification procedure referred to as “gradable 

classification method” is proposed in this study. This method improves the classification 

accuracy in incremental steps. The proposed classification approach integrates several 

classification maps created from original images and lacunarity maps, which consist of 

lacnarity values, to create a new classification map. The results of this study confirm the 

suitability of the gradable classification approach, which produced a higher overall 

accuracy (68%) and kappa coefficient (0.64) than those (65% and 0.60, respectively) 

obtained with the maximum-likelihood approach. 

Keywords: lacunarity; land-use and land-cover classification; gradable classification; 

aerial photograph; maximum-likelihood classification 
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1. Introduction 

Previous studies have empirically demonstrated the difficulty in classifying urban area using  

high-resolution images [1,2]. Conventional spectral-based image analysis methods are normally 

considered ineffective for classifying the land-use and land-cover of urban areas using high-resolution 

images because of their failure to consider the spatial information of images [3–5]. Urban features 

consist of various spectrally different materials (e.g., trees, bare land, grass, plastic, concrete, and 

metals) that are typically concentrated within a small area [6]. As the spatial resolution of remotely 

sensed data increases, the level of detail that can be detected from objects and features in urban areas 

also increases. Thus, the spectral response of urban areas is more complex in high-resolution images. 

This complexity is one of the main limitations of urban land-use and land-cover classification in  

high-resolution images [7–9]. Furthermore, the shadows of some objects and the geographical features 

present in images reduce the accuracy of land-use and land-cover classification [10]. To identify the 

complex distributions of urban features and to assess the effects of shadows in high-resolution images, 

texture information consisting of a group of pixels must be considered. 

Numerous spatial analyses, such as texture-based approaches, have been studied and developed to 

improve the classification of high-resolution images [11–14]. The lacunarity index is one of the indices 

that show spatial structure characteristics. The concept of lacunarity was originally developed by 

Mandelbrot [15] to describe a property of fractals. Several other algorithms for computing lacunarity 

were subsequently developed [16–21]. Lacunarity represents the distribution of gap sizes: Low-lacunarity 

geometric objects are homogeneous, whereas high-lacunarity objects are heterogeneous [20,21]. 

Classification methods using the lacunarity index categorize land-use and land-cover with a high 

degree of accuracy [7,8]. Furthermore, Malhi and Román-Cuesta [22] classified the features of forests 

based on a shadow’s distribution by using the lacunarity index. Thus, we believe that lacunarity is an 

appropriate index for classifying urban areas when considering the complexity and effects of shadows 

in high-resolution image data. 

The use of maximum-likelihood classification (MLC) in conjunction with digital numbers 

representing the spectral response on the original image and the lacunarity index improves the accuracy 

of land-use and land-cover classification in the high-resolution images of urban areas [7,8,23]. Myint 

and Lam [7] reported that the hybrid method, which applies digital numbers and lacunarity in MLC, is 

37% more accurate than spectral-based analysis. However, the applicability of the MLC method in the 

hybrid classification approach has not been explored. By effectively utilizing spectral information and 

the lacunarity index, a more precise classification should be possible. In this paper, a new classification 

procedure, hereafter referred to as the gradable classification method (GCM), is introduced and three 

gradable classification options are proposed. The GCM compares the results of conventional 

classification approaches and reclassifies to improve the classification accuracy. The accuracy levels of 

these classification methods are compared, and the applicability of each method is discussed. 

2. Data and Study Area 

An aerial photo with a 0.3 m spatial resolution was used to identify urban land-use and land-cover 

categories. The image contains three bands: visible red, visible green, and visible blue. The image was 
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acquired over Gifu City, Gifu Prefecture, Japan on 5 October 2000. The location of the study site is 

shown in Figure 1. A subset of the aerial photography data (4,000 pixels × 4,000 pixels), which 

contains parts of Gifu City, Kagamihara City, and Seki City, is shown in Figure 2. The original 

resolution of the aerial photograph was degraded to 1.5 m before beginning the analysis to minimize 

the analysis time. Gifu City, Kagamihara City, and Seki City offer conditions appropriate for 

examining the applicability of lacunarity approaches for the identification of complex land-use and 

land-cover features. There are various land-uses (i.e., agriculture, commercial, residential, barren land, 

and grass) and land-covers (i.e., water body and woodland) in this study area. This area was also 

selected for the case study because it includes vegetated and non-vegetated agricultural areas. This 

variety of land-uses and land-covers is adequate assessing the effectiveness of the classification 

approaches examined in this study. The area also includes mountains (Gongen Mountains and Kita 

Mountains). The effectiveness of the lacunarity analysis and gradable approaches for mountainous 

areas were addressed in this study. The aerial photography was classified into eight categories: Active 

Agriculture (A-1), Inactive Agriculture (A-2), Barren Land (B), Commercial Land (C), Grass (G) 

Residential Land (R), Water Body (WA), and Woodland (WO). Here, we recognize urban forest and 

mountains for trekking as “woodland (WO)”. 

Figure 1. Study area of this study. 
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Figure 2. Aerial photography used in this study. 

3. Methodology 

Gradable classification approaches using the brightness values of the original and lacunarity index 

images are proposed for the classification of land-use and land-cover with high-resolution aerial 

photographs. The approaches compare different classified-maps in incremental steps to improve the 

classification accuracy. To assess the applicability of the gradable approaches, we examined the 

following six types of techniques: 

Approach (S): Classification based on spectral response imaging 

Approach (L): Classification based on lacunarity imaging 

Approach (SL): Classification based on both spectral response and lacunarity imaging 

Approach (G1): Gradable classification applying results of both the (S) and (SL) approaches 

Approach (G2): Gradable classification applying results of both the (L) and (SL) approaches 

Approach (G3): Gradable classification applying results of the (S), (L), and (SL) approaches 

The details of each classification approach (S, L, SL, G13) are provided below. 

3.1. Basic Information of the S, L and SL Classification Approaches 

In the (S), (L), and (SL) approaches, land-use and land-cover were classified by MLC. A supervised 

classification approach with MLC was employed to identify the classes in the (S), (L), and (SL) 

approaches. For these classifications (S, L, and SL), we employed the software program GRASS, 
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which offers supervised classification using MLC with multiple-bands. For the supervised 

classification approach, three to five training data per category were used in previous studies [7,8]. 

However, the classification results obtained from additional training sets are expected to be better from 

a statistical point of view. Thus, we extracted 10 training samples, each measuring 5 × 5 pixels, from 

each class (i.e., the number of training data points was 80). These training data were carefully 

extracted from an aerial photo by visual inspection. To extract the training samples, we used two 

reference data: (1) A classified map using the unsupervised classification algorithm and (2) Land Use 

Fragmented Mesh Data. The unsupervised classification algorithm automatically classified the aerial 

photo used in this study into the same categories by using MLC technique. The mesh data consisted of 

a land-use and land-cover map published by Japan’s Ministry of Transport and Tourism. These mesh 

data were compiled between 1997 and 2006 with a 10 m spatial resolution. To be consistent with all of 

the approaches used in urban image analysis and to compare the classification accuracies, we used the 

same training points for the supervised classification approach among the six classifications. Figure 3 

shows an example of some of the land-use and land-cover classes. The lacunarity approach used in this 

study is discussed in detail below. 

Figure 3. Sample images of four land-use and land-cover classes displayed in the blue band. 

 

3.2. Lacunarity Probability Method (L) 

3.2.1. Concept of Lacunarity 

The concept of lacunarity was introduced by Mandelbrot [15] to describe the distribution of gap 

sizes in a fractal sequence. Several other algorithms have been developed for the computation of 

lacunarity [16–21]. Geometric objects appear to be more lacunar if they contain a wide range of gap 

sizes. As a result, lacunarity can be considered to be a measure of the “gappiness” or “hole-iness” of a 

geometric structure. Plotnick et al. [24] emphasized the concept and utilization of lacunarity for the 

characterization of spatial features. Lacunarity methods for urban analysis and many other applications 

in geospatial research have been reported by a number of researchers [7,8,20,21,25,26]. Lacunarity can 

be used with both gray-scale data and binary images [27]. Voss [18] proposed a lacunarity probability 

approach using gray-scale images to estimate the lacunarity value of an image. Myint and Lam [7,8] 

insisted that the lacunarity approach involving gray-scale images extracts land-use and land-cover 

more accurately than that involving binary images. Thus, in this study, we applied the lacunarity 

probability approach using gray-scale images. 



Remote Sens. 2012, 4                            

 

 

1549 

Allain and Cloitre [19] presented an algorithm to calculate lacunarity using what they refer to as a 

“gliding box”, which was employed in this study, using the programming language Ruby. This gliding 

box is placed over the upper left corner of an image window called the “moving window”. This 

window moves through the entire area of the image. The lacunarity is calculated for the group of pixels 

that falls within each window. The algorithm assigns a lacunarity value to the center of the window as 

it moves through the image. Thus, we obtain a map-assigned lacunarity value in pixels. In this paper, 

the map is referred to as a “lacunarity map”. The spatial arrangement of the points determines the 

parameter P(m,L), which is the probability that there are m intensity points (= digital numbers) within 

an L-sized box that is centered about an arbitrary point in an image. Thus, we have 

           (1)  

Suppose that the total number of points in the image is M. If one overlays the image with boxes of size 

L, then the number of boxes with m points within the box is (M/m)P(m,L). Thus, we can calculate the 

first moment M(L) and second moment M
2
(L) of this distribution as follows: 

              (2)  

and 

                (3)  

Lacunarity can be computed from the same probability distribution P(m,L). Thus, lacunarity Λ (L) is 

defined as 

      
             

     
 (4)  

3.2.2. Determination of the Window and Box Sizes 

It is often reported that classification accuracy increases with the decreasing size of the box  

(L = 2–3) used in the lacunarity calculation [7,8,22,28]. Thus, we applied a 2 × 2 box size in this study. 

However, the appropriate window size also depends on the geographical features of the study site and 

image resolution. Thus, we examined the supervised classification by the gray-scale lacunarity approach 

using different local window sizes (i.e., 5 × 5, 11 × 11, 17 × 17, 23 × 23, 29 × 29, and 35 × 35) and 

assessed the accuracy of the results to determine the optimal window size.  

The optimal window size was determined based on the overall accuracy and kappa coefficient of 

each classified map obtained using each window size. The overall accuracy and kappa coefficient for 

each classification result are shown in Figure 4. The classification result obtained using a 29 × 29 

window provided the highest overall accuracy and kappa coefficient in the lacunarity approaches. Thus, 

in this study, we used an optimal window size of 29 × 29 for the classification of the land-use and 

land-cover using the lacunarity method. 

3.3. Gradable Classification Method 

In this study, we proposed “gradable classification approaches (G1-3)” as new classification 

approaches for the identification of land-use and land-cover. The gradable approach classifies land-use 

and land-cover using the classification results of (S), (L), and (SL). Lacunarity should be calculated 
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using an appropriate window size. The optimal window size was determined based on the accuracy of 

the classification result that was applied using the lacunarity approach with different window sizes. 

Land-use and land-cover were classified by using three lacunarity maps (termed L), original RGB 

images (termed S) and combinations of both of them (termed SL). A supervised classification 

approach using MLC with 80 training data was employed to identify the classes in (S), (L), and (SL). 

Figure 4. Accuracy of the classification results using each moving window size. 

 

3.3.1. Concept of the Gradable Classification Method 

The details of the gradable classification technique are provided below. Suppose that two classified 

maps (maps A and B) are divided into “k” categories. Each classified map was classified with a 

different index (e.g., the digital number of the original image and the lacunarity index). First, we 

created two error matrices for maps A and B using the same training data (Tables 1 and 2). The 

number of training data per category is the same. In this example, the number of training datasets for 

each attribute is assumed to be 100. 

The gradable method classifies land-use and land-cover using the index for gradable classification 

(IGC), which is explained below. For instance, one pixel was classified as category α (1 ≤ α ≤ k) in 

map (A).  In contrast, the same pixel was classified as category β (1 ≤ β ≤ k) in map (B). In this 

situation, the IGC value for the error matrices of maps A and B can be calculated using the following 

formula, respectively:  

             
        

            
 (5)  
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 ββ    βα

            
 (6)  

In the gradable classification approach, the category of the classification map with the higher IGC 

value is applied to the pixel’s attribute. 

Table 1. Error matrix for classification map A. 

Reference Data 

Category Category 1 ‥ Category k Row Total 

Category 1 A 11 ・・ A 1k A Row Total 1 

： ：  ： ： 

Category k A k1 ‥ A kk A Row Total k 

Column Total 100 100 100   

Table 2. Error matrix for classification map B. 

Reference Data 

Category Category 1 ‥ Category k Row Total 

Category 1 B 11 ‥ B 1k B Row Total 1 

： ：  ： ： 

Category k B k1 ‥ B kk B Row Total k 

Column Total 100 100 100   

3.3.2. Example Showing the Gradable Classification Calculations 

In this paper, we explain how to calculate the IGC value with an example. Suppose that classified 

maps A and B are created in an identical manner using the (S) and (L) approaches, respectively. These 

maps are classified into three categories: forest, urban, and water. Tables 3 and 4 are the error matrices 

for classified maps A and B, respectively. 

Table 3. Example of error matrix for classification A. 

Reference Data 

Category Forest Urban Water Row Total 

Forest 5 3 1 9 

Urban 2 6 3 11 

Water 3 1 6 10 

Column Total 10 10 10   
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Table 4. Example of error matrix for classification B. 

Reference Data 

Category Forest Urban Water Row Total 

Forest 7 2 3 12 

Urban 1 6 0 7 

Water 2 3 7 12 

Column Total 10 10 10   

Assume that the pixels for the same coordinates are classified as forest and urban in maps A and B, 

respectively. Gradable classification determines the pixel category by the following calculation: 

             
   

 
     (7)  

             
   

 
     (8)  

From the result of the calculation, IGC(Map A) < IGC(Map B); thus, this pixel is categorized as urban. In 

this study, three options of the gradable classification approach were examined (G1, G2, and G3). G1 

applies the results of spectral classification (S) and a hybrid of the spectral and lacunarity (SL) 

methods. The results of the lacunarity method (L) and hybrid approach (SL) were used in G2. G3 

employs the results of (G1) and (L). The classification result of (SL) was used in all of the gradable 

classifications (G1, G2, and G3) because the accuracy of this result was the highest among the 

classification results obtained using the (S), (L), and (SL) approaches. 

3.4. Accuracy Assessment for the Land-Use and Land-Cover Classifications 

In this study, the kappa coefficient [29] and overall accuracy [30] were applied using an error 

matrix to assess the accuracy of the classifications. The kappa coefficient is an index of the 

coincidence rate that does not depend on chance. As this value increases, the accuracy of the 

classifications also increases. To assess the accuracy of the classifications, 200 sample points were 

extracted from each category using a random sampling technique. The randomly identified sample 

points were displayed on the original aerial photograph by visual inspecting the aerial photographs. In 

this step, we used two categorized maps as references: (1) a classified map using the unsupervised 

classification algorithm and (2) Land Use Fragmented Mesh Data. To be consistent with all of the 

approaches in the urban image analysis and to compare of the classification accuracies, we used the 

same sample points to assess the accuracy among the six classifications. 

The flow chart of this study is shown in Figure 5.  
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Figure 5. Flow chart of this study. 

 

4. Results and Discussion 

The output maps of the six approaches (i.e., classification techniques S, L, SL, G1, G2, and G3) are 

shown in Figure 6. From the classified maps, it is confirmed that there are different features among 

these classification approaches. Approach S recognizes land-use/land-cover on a micro scale. Thus, 

approach S can even identify very small objects. In contrasts, approach L perceives land-use/land-

cover by considering the spatial features of the objects. Thus, the classification map of approach L 
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shows regional land-use/land-cover. One of the main disadvantages of approach L is that the 

classification accuracy around boundaries between different land-use/land-cover is low because of the 

characteristics of L. The results of approaches SL and G2 show features similar to those of L. 

Approaches G1 and G3 show the features of both S and L. Figures 6-(4) and (6) confirm that 

approaches G1 and G3 discern small objects by considering the spatial features of land-use/land-cover. 

Moreover, approaches G1 and G3 discern the boundaries between different land-uses/land-covers (i.e., 

a boundary between residential and woodland). 

The results showed that the gradable approach using several classified maps (the results of SL, S 

and/or L) improves the accuracy of classification when identifying land-use and land-cover with  

high-resolution image data in urban areas. The classification accuracy of approaches (S), (L), (SL), 

(G1), (G2), and (G3) are shown in Table 5. 

Table 5. Classification accuracy produced by the (S), (L), (SL), (G1), (G2), and (G3) approaches. 

 Classification Approaches 

 (S)  (L)  (SL)  (G1)  (G2)  (G3) 

Category 
Pro 

Acc 

Use 

Acc 
  

Pro 

Acc 

Use 

Acc 
  

Pro 

Acc 

Use 

Acc 
  

Pro 

Acc 

Use 

Acc 
  

Pro 

Acc 

Use 

Acc 
  

Pro 

Acc 

Use 

Acc 

A-1 54 39  53 63  65 71  64 71  58 73  57 73 

A-2 44 56  55 59  67 67  77 60  68 62  76 59 

B 54 50  23 96  28 95  38 60  28 95  36 71 

C 64 77  36 44  36 55  66 71  37 57  68 74 

G 59 75  63 53  65 62  79 70  62 59  78 67 

R 26 34  99 45  100 43  52 49  99 47  57 54 

WA 61 47  65 76  68 95  78 80  74 82  83 72 

WO 38 33  82 87  91 83  91 83  92 81  92 81 

                  

Over Acc  50   59   65   68   64   68 

Kappa Co   0.43     0.54     0.60     0.63     0.59     0.64 

(S) Classification with per-pixel value; (L) classification by the lacunarity index; (SL) hybrid classification using both per pixel value and 

lacunarity; (G1) gradable method obtained using the results of (SL) and (S); (G2) gradable method obtained using the results of (SL) and (L); 

(G3) gradable method obtained using the results of (SL), (S), and (L) methods. Pro Acc = producers accuracy; Use Acc = users accuracy; Ovr 

Acc = overall accuracy; Kappa Co = Kappa coefficient. 

Among the six approaches (i.e., methods S, L, SL, G1, G2, and G3), classification technique (G3) 

displayed the highest overall accuracy and kappa coefficient (overall accuracy = 68%, kappa 

coefficient = 0.64). Also, the (G1) approach displayed the second-highest accuracy (overall accuracy = 

68%, kappa coefficient = 0.63). As mentioned earlier, the spectral response from different land-cover 

features consisting of urban environments typically exhibits a spatial complexity in high-resolution 

images. Thus, to identify urban land-use and land-cover classes, we must consider the spatial 

arrangements of neighborhood features and objects that have textures and patterns, as well as 

individual pixel values [23]. From this perspective, it was determined that gradable classification is an 

approach that identifies land-use and land-cover by considering per-pixel spectral data and textural 

information effectively. 

The classification approach (G2) produced an overall accuracy of 64% and a kappa coefficient of 

0.59. These accuracies are slightly lower than those of approach (SL), which exhibits an overall 
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accuracy of 65% and a kappa coefficient of 0.60. These results confirm that the combination of images 

used in the gradable approach is an important factor for classifying land-use and land-cover with high 

accuracy. An appropriate combination of the applied classification maps should be discussed and 

surveyed in the future. The output maps from conventional per-pixel image-classification techniques 

(S), lacunarity approach (L), combination method (SL), and three types of gradable classification 

methods (G1, G2, and G3) are shown in Figure 6. 

Figure 6. Output maps: (a) S; traditional spectral approach, (b) L; Lacunarity gray-scale 

approach, (c) SL; combination of spectral approach and lacunarity technique, (d) G1; 

gradable method using the results of the SL and S, (e) G2; gradable method using the 

results of SL and L, (f) G3; gradable method using the results of SL, S and L. (Note: The 

same class colors are used.) 
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As mentioned earlier, we used the same training samples for the supervised classification and the 

same number of random points for the accuracy assessment. 

The features of each classification result are discussed below. The conventional per-pixel 

classification (S) identified a part of the mountain’s shadow area WA because the pixel values of the 

river and the shadow of the mountains were similar. In the lacunarity approach (L), the areas shadowed 

by mountains were accurately classified as woodlands. However, approaches (L) and (G2) 

misrepresented an A-1 area as R, and the features of the lacunarity classification were also observed in 

the SL approach. In contrast, G1 and G3 considerably improved these incorrect classifications. 

5. Conclusion 

In this study, a new concept, referred to as gradable method, for land-use/land-cover classification 

was proposed. This approach shows an overall accuracy that is 4% higher than that of the conventional 

hybrid method by using digital numbers and lacunarity in this case. The classification approaches 

recognize small objects by considering the spatial features of land-use/land-cover. This study also 

confirmed that the proposed methods improve the boundary problem, which is characterized by the 

fact that the classification accuracy of the lacunarity approach tends to be low because of lacunarity’s 

characteristics. Based on the above discussion, it can be safely concluded that the gradable approach 

can be employed to effectively improve land-use/land-cover classification. From this point of view, the 

method is expected to improve classification accuracy by using another combination of indices  

(i.e., Haralick texture parameters [13]). It is also anticipated that using indices that exhibit different 

features (i.e., spectral responses and structures) will be better in compensating for their disadvantages 

in gradable approaches. Moreover, the combination of indices should be changed based on the location 

and aims of future studies. Furthermore, it should be noted that the selection of the local moving 

window and gliding box sizes (issue of scale) plays an important role in determining the accuracy of 

characterizing spatial features for land-use and land-cover classification. Thus, future studies should 

focus on a more in-depth evaluation of window sizes and gliding box sizes and their effects on 

different types of land-use and land-cover classification.  
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