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Abstract: For satellite remote sensing, radiances received at the sensor are not only 
affected by the atmosphere but also by the topographic properties of the terrain surface. As 
a result, atmospheric correction alone does not yield output images that truly reflect terrain 
surface properties, namely surface reflectance (bidirectional reflectance factor, BRF) of 
objects on the earth surface. Following the concept of the radiometric control area  
(RCA)-based path radiance estimation method, we herein propose a statistical approach for 
surface reflectance estimation utilizing DEM data and surface reflectance of selected 
radiometric control areas. An algorithm for identification of shaded samples and a shape 
factor model were also developed in this study. The proposed RCA-based surface 
reflectance estimation method is capable of achieving good reflectance estimates in a 
region where elevation varies from 0 to approximately 600 m above the mean sea level. 
However, further study is recommended in order to extend the application of the proposed 
method to areas with substantial terrain variation. 
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1. Introduction 

Remote sensing images have been widely used for applications of earth surface monitoring such as 
landslide sites identification, land use/land cover (LULC) classification and change detection, crop yield 
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estimation, reservoir and coastal water quality monitoring, etc. Radiometric corrections such as dark 
object subtraction (DOS) are often conducted prior to LULC classification and change detection [1–4]. 
However, radiances received at the sensor are affected by the atmosphere and properties (such as 
reflectance, slope and aspect) of the terrain surface as well. As a result, atmospheric correction alone 
does not yield output images that truly reflect terrain surface properties, namely bidirectional reflectance 
factor (BRF) of objects on earth surface. Although band-ratio images such as the normalized difference 
vegetation index (NDVI) and other vegetation indices have been used to alleviate the topography 
effects [5–8], these images do not directly link to properties of terrain surface and their usefulness for 
further applications are empirically based. Ideally, we need to use features or properties that are reflective 
of earth surface conditions and free of the topographic and atmospheric effects for remote sensing 
applications of earth surface monitoring. One such essential feature in the optical spectral range is the 
BRF which is considered to be the inherent property of any earth surface object. 

Theory and models of radiometric propagation from the sun to the sensor which are essential for 
remote sensing image processing have been well developed. For example, Slater [9] developed an 
optical model which describes the propagation of solar radiances, in both visible and infrared 
wavelength ranges, from the sun to the sensor through different paths. Schott [10] provided theoretical 
derivation of radiances of visible and thermal spectral ranges reaching the sensor. Liang et al. [11] 
developed an atmospheric correction algorithm for Landsat ETM+ images. The algorithm identifies 
surface clusters in bands that are less contaminated by atmospheric particles; then mean reflectance of 
each cluster in both clear and hazy regions within the scene is matched, which allows determination of 
the path radiance. Forster [12] demonstrated an application of calculating reflectances of surface 
objects by taking measurements of atmospheric parameters, diffusive irradiance, and path radiance. 
However, for most remote sensing applications such measurements may not be available, making it 
difficult to estimate reflectances of earth surface features from remote sensing images. 

Since radiances leaving the object surface are affected by the atmosphere and surrounding 
topographic features prior to being received at the sensor, these effects (in the form of path radiance 
and shape factors) must be taken into account in estimation of surface reflectance. Methods of in-scene 
estimation of path radiances have been proposed, with the dark object subtraction (DOS) method being 
most widely applied [13–15]. However, the DOS method tends to overestimate path radiances in 
applications for which the assumptions of near-zero reflectance of the dark objects are not valid [10,16]. 
Switzer et al. [17] developed a covariance matrix method which utilizes the correlation between 
multispectral bands of data simultaneously. The covariance matrix method does not require auxiliary 
data, but operate solely upon the digital numbers of satellite images. Mueller et al. [18] proposed a 
new retrieval method for satellite-based spectrally resolved surface irradiance with emphasis on the 
visible and near-infrared (VIS/NIR) region of the spectrum. 

In contrast to the above in-scene estimation methods, Cheng et al. [16] proposed using in situ 
measurements of surface reflectances from radiometric control areas (RCAs) for improvement in path 
radiance estimation. Viggh et al. [19] proposed an approach using prior spatial and spectral information 
about the surface reflectance for reflectance estimation of remote sensing images. Wen et al. [20] 
developed an algorithm for surface reflectance estimation from Landsat Thematic Mapper (TM) over 
rugged terrain using the bi-directional reflectance distribution function (BRDF) and radiative transfer 
model. Following the concept of RCA-based path radiance estimation method, we propose in this 
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study a statistical approach for surface reflectance estimation utilizing digital elevation model 
(DEM) data. 

2. Study Area and Data 

An area of approximately 750 km2 in northern Taiwan was chosen for this study (Figure 1). Terrain 
elevation in the area varies from 64 m to 2,284 m above the mean sea level. It encompasses different 
landcover types including forest, bare land, orchard plantations, suburban built-up, and water body 
(reservoir pools and rivers). The reservoir pool stretches roughly in the east-west direction near the 
northwestern corner of the study area. A major river and its tributaries flow from south to north across 
the center of the study area before entering the reservoir pool. Apart from a relatively small portion in 
the most northwestern corner in which a suburban township exists, most of the study area is dominated 
by forest landcover. There are also a few orchard plantations and bare land parcels scattered over the 
study area. 

A set of Formosat-II multispectral images (including blue band: 450–520 nm, green band:  
520–600 nm, red band: 630–690 nm, and near infrared band: 760–900 nm, with 8 m spatial resolution) 
of the study area acquired at 01:57 GMT (9:57 a.m. local time) on December 11, 2008 was collected 
(Figure 1(a)). The sun angle and view angles were 54.925° and 14.086° respectively, while azimuth 
angles of the satellite and the sun were 325.004° and 148.641°, respectively. DEM data of the study 
area (see Figure 1(b)) with a 40-m spatial resolution were also collected and used for topographic 
effect modeling. Elevation error of the 40-m DEM data has a mean of approximately 1 meter and 
standard deviation of 4 to 8 meters in mountainous region [21]. 

Figure 1. (a) Formosat-II image of the study area. (b) Digital elevation model (DEM 
image of the study area. Two subregions A and B (also seen in figure in Section 4.3) of 
different degrees of terrain variation were selected for assessment of reflectance estimation 
by the proposed approach. 

 
(a)                         (b) 

3. Methodology 

3.1. At-Sensor Radiance Modeling 

For a target of Lambertian surface, the at-sensor solar radiance of spectral wavelength λ, i.e., Lsλ, 
can be expressed by [10,16] 
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where 
),( φθ = the zenith and azimuth angles of the target-sun directions, respectively, 

λpL = path radiance, 

λoE = exoatmospheric solar irradiance with respect to spectral wavelength λ, 

λdE = downwelled irradiance, 

λdr = diffuse reflectance of the Lambertian surface, 

λτ1 = transmittance along the sun-target direction, 

λτ2 = transmittance along the target-sensor direction, 

F = shape factor due to obstruction of terrain slope or adjacent objects, 
iσ = incidence angle of the solar irradiance at the target. 

Radiances reaching the sensor are recorded and linearly converted to digital numbers (DNs) by the 
following equation using the band-specific gain and offset parameters of the sensor: 
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Thus, the equation of radiometric propagation (Equation (1)) can be rewritten as 
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The dependence of DNpλ, rdλ, k1λ, and k2λ on the wavelength λ, which can be considered as the 
central wavelength of a spectral band, indicates that these parameters are band-specific. For  
Formosat-II images used in this study, values of the offset parameter were zero for all spectral bands 
whereas values of the gain parameter were 0.3441, 0.3561, 0.2553 and 0.3062 (W·μm−1·m−2·sr−1) for 
the blue, green, red and near infrared bands, respectively. For local remote sensing applications which 
do not cover extensively wide study areas, the exoatmospheric solar irradiance, downwelled irradiance, 
path radiance, and atmospheric transmittances can all be assumed to be spatially homogeneous. In 
other words, DNpλ, k1λ and k2λ all can be viewed as constants for all ground samples. On the other 
hand, F and cosσi represent the topographic characteristics of individual ground samples and are the 
sources of topographic effects. 

Cheng et al. [16] proposed a radiometric control areas (RCAs) approach for path radiance 
estimation. In their study, a radiometric control area is a horizontal and unobstructed area with 
spatially homogeneous and temporally stationary land surface condition. By considering only ground 
samples in radiometric control areas, the at-sensor radiance can be expressed as a linear regression 
function of surface reflectance with intercept being the path radiance. Thus, using in situ 
measurements of surface reflectance in the radiometric control areas, path radiance of the study area 
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can be estimated by solving the linear equation. The idea of using ground samples in radiometric 
control areas is to eliminate the topographic effects in Equations (1) and (3). In this study we adopt a 
similar concept of radiometric control areas for estimation of surface reflectance.  

3.2. Identification of Shaded Ground Samples 

Although in general the at-sensor radiance can be expressed by Equation (1), there are situations in 
which solar irradiance cannot reach the target ground sample and should be dropped from Equation (1). 
As depicted in Figure 2(a), the target ground sample is located at the leeside of the solar irradiance  
(σi > 90°, cosσi < 0) and thus receives no incoming solar radiance. Whereas in Figure 2(b), incoming 
solar radiation is obstructed by surrounding objects and cannot be received at the target ground sample.  

Figure 2. Sun/shade occurrences: (a) Irradiance not reaching the target object; (b) Solar 
irradiance blocked by surrounding obstacles. 

 

 

Under either situation, digital numbers of these ground samples (hereinafter referred to as the 
shaded ground samples) should be expressed by the following equation: 

FkrDNDN dps λλλλ 2+=  (6) 

The shaded ground samples can be identified using DEM data and sun angle of the satellite image. A 
straightforward algorithm as demonstrated in Figure 3 was used in this study for calculation of cosσi of 
individual ground samples. From the DEM data, we first calculated the normal vector oV of the target 
ground sample using the four normal vectors ( 4,,1, K=iU i ) determined by the target ground sample 
and its surrounding ground samples, i.e., 
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The normal vector in the target-sun direction, i.e., sV , is then determined by considering the latitude 

and longitude of the study area and the image acquisition time. Thus, cosσi can be easily obtained by 

soi VV ⋅=σcos  (8) 

(b) Solar irradiance blocked 
by surrounding obstacles. 

(a) Solar irradiance not 
reaching the target object. 

°> 90iσ  

Target object 



Remote Sensing 2012, 4              
 

 

939

Similar to utilization of RCA samples by Cheng et al. [16], shaded ground samples eliminate the 
second term in the right-hand-side of Equation (3) and play a crucial role in this study. 

Figure 3. An illustrative sketch for calculation of iσcos . 

 

3.3. Modeling of the Shape Factor F 

The shape factor F in Equation (6) represents the proportion of the total downwelled radiance that 
can reach the target ground sample. If the downwelled radiance is homogeneous over the entire sky 
dome above the target sample, then the shape factor F represents the ratio of the solid angle subtended 
at the target ground sample by the downwelled-radiance-contributing sky dome to the solid angle of a 
hemisphere, i.e., 2π. Thus, it can be obtained by calculating the downwelled-radiance-receiving solid 
angle using DEM data. However, in reality the downwelled radiance may not be homogeneous at all 
time and thus the shape factor not only depends on the downwelled-radiance-receiving solid angle but 
also spatial variation of the downwelled radiance. Since spatial variation of the downwelled radiance is 
essentially random due to inhomogeneous distribution of atmospheric particles, the shape factor F can 
therefore be treated as a random variable. Thus, in this study we adopt a statistical approach for 
estimation of sample-specific shape factor F by taking into account the ground-sample-specific 
topographic characteristics. 

For convenience of subsequent explanation, we first define the following notations which will be 
used later. Consider a group of p × p ground samples with the target ground sample located at the 
center. The size of this sample group (p × p) is carefully chosen such that its coverage is large enough 
to account for the solar radiation obstruction by surrounding objects, as illustrated in Figure 2(b). Let X 
be a vector consisting of the shape factor F associated to the target ground sample and elevation 
differences ( ii dEE =− 0 ) between the target sample and its neighboring samples, i.e: 

i
jE : Elevation of the pixel at the i-th row and j-th column. 
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Vector partitions in the above equation are self-explaining with X1 = F and X2 represents and elevation 
differences (di, i=1, 2, …, p2−1). Elevations of the target ground sample and its surrounding samples in 
the sample group are represented by an elevation matrix Elev which can be expressed by the following 
equation: 
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In this study the value of p was set to 41 so that all neighboring samples that may contribute to the 
shape factor are included in the 41 × 41 sample group. With a pixel size of 8-meter for Formosat-II 
multispectral images, a 41 × 41 sample group encompasses an area centered at the target sample and 
extending at least 160 meters outward in all directions.  

Spatial variations of the shape factor X1 and elevation difference X2 within the study area can be 
considered as two random fields with their mean vectors and covariance matrices defined as 

)( 11 XE=μ , )( 22 XE=μ , ),(Cov 1111 XX=Σ , ),(Cov 2222 XX=Σ (11) 

[ ]),(Cov),(Cov],[Cov
11212112 2 −

==Σ=Σ
p
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[ ])(),(Cor)(),(Cor)( 1111 22 −−
= pp dVardFdVardFFVar L  (12) 

The shape factor F varies with locations and is considered as a random variable with a constant 
expectation μ1. For target samples with larger elevation differences between the target sample and its 
neighboring samples, i.e., ),,,( 1212 2 −=′

pdddX L , we can expect more significant obstruction effect and 

lower values of the shape factor. From the fundamental theorem of estimation theory [22], the best 
linear estimator (in terms of minimum mean-squared errors) of F, given the elevation differences X2 
associated to the target ground sample, is the conditional expectation of F given by the following 
equation: 

)()|(ˆ
22

1
22121221 μμ −ΣΣ+=== − xxXXEF  (13) 

Substituting Equation (12) into Equation (13), it yields 
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1

22 μ−Σ− x  (14) 

Readers are reminded that x2 and μ2 in Equations (13) and (14) are vectors representing a realization 
and the expectation of X2, respectively. 
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The mean vector and covariance matrix (i.e., μ2 and Σ22) of X2 in Equation (14) can be obtained by 
calculating the sample mean and sample covariance of X2 using DEM data of a total of 388,000 ground 
samples within the study area. With the very large number of ground samples, estimates of μ2 and Σ22 

can be expected to be nearly unbiased and with very small variance, even though X2 is likely to exhibit 
spatial dependence. As for )1,,1()( 2 −= pidVar i K  in Equation (14), they represent the diagonal 

elements of Σ22 and thus are readily available once Σ22 has been obtained.  
Considering Lambertian targets and isotropic diffuse irradiance, surface reflectance of the target 

ground sample rdλ represents the inherent property of land surface and is independent of the shape 
factor F and the elevation differences of neighboring samples )1,,1( 2 −= pidi K . Thus, if only shaded 

ground samples are considered, we have 
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Using the property of variance of product of independent random variables [23], we have 
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In the above equations DNshade indicates digital numbers of shaded ground samples and Kλ is an 
unknown constant since it is completely determined by distribution parameters of F and rdλ. Thus, 
substituting Equation (16a) into Equation (14), it yields 
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Shaded ground samples account for approximately one sixth of the total number of ground samples 
in the study area. With this very large sample size and also based on the asymptotic distributional 
properties of the sample correlation coefficients [24], ),(Cor i

shade
s dDN λ  )1,,1( 2 −= pi K  can be estimated 

with near zero bias and very small variance. Thus, for every ground sample the sample-specific *
λD  

value can be easily calculated using Equation (18). It is also worthy to note that although *
λD  and Kλ in 

Equation (17) are band-specific, the shape factor estimate F̂  is not band-dependent, as can be seen 
from Equation (14). The band-dependency will be eliminated by calculation of the product term *

λD Kλ . 

3.4. Estimation of Surface Reflectance Using RCA Samples 

Substituting Equation (17) into Equations (3) and (6), we have  
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and 
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Suppose that a total of n ground samples from radiometric control areas with in situ measurements 
of surface reflectance are available. Digital numbers of these samples satisfy Equation (19) and can be 
expressed by the following matrix equation: 
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where superscript RCAi indicates attributes of RCA samples. For example, iRCA
sDN λ  represents the 

band-specific digital number of the i-th RCA sample.  
In the above matrix equation, digital numbers and surface reflectances of RCA samples are known 

and cosσi and *
λD  can be calculated using Equation (8) and Equation (18), respectively. Thus, 

KkkkDN p λλλλ μ 2121  and ,, can all be solved by the least-square multiple regression technique.  

In previous sections we have demonstrated that values of λλλλλ μ KkkkDN p 2121  and ,, can be 

considered as constants for all ground samples for applications that do not cover extensively wide 
areas. Therefore, estimation of band-specific surface reflectances of non-RCA samples can be achieved 
by solving Equation (19) and Equation (20) for non-shaded and shaded ground samples, respectively.  

4. Results and Discussion 

4.1. Calculation of cosσi 

The topographic effect of cosσi calculated using Equation (8) is shown in Figure 4(a). In order to 
demonstrate the feasibility of using Equation (8) for modeling the topographic effect, we also rescaled 
grey levels of Formosat-II color image of the study area (see Figure 4(b)) and compared shaded areas 
in both figures. It can be observed that shaded areas in both images are largely consistent. Such results 
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indicate the potential of characterizing the topographic effect by Equations (7) and (8), although more 
rigorous assessment, especially with respect to DEM accuracy, may be required.  

Figure 4. Images showing topographic effects. (a) cosσi image. (b) Transformed grey 
level of Formosat-II color image. Numbers of scale bars represent values of cosσi and 
transformed grey level (between 0 and 1). Negative values of cosσi and extremely high 
values of grey level represent shaded ground samples.  

   
 

4.2. Correlation Map of Shaded Ground Samples 

As was explained in Section 3.3, the correlation coefficients between digital numbers of shaded 
ground samples (DNshade) and elevation differences of neighboring samples ( 1,,1, 2 −= pidi K ) can be 
estimated with near zero bias and very small variance. These correlation coefficients ),(Cor i

shade
s dDN λ  

)1,,1( 2 −= pi K correspond to a group of pp ×  (p=41) ground samples centered at the target sample, 
and can be arranged as the following correlation matrix P [24], 
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where )1,,0(),(Cor 2 −== pidDN i
shade
si Kλρ . We shall refer to the correlation matrix Pλ as the correlation 

map since it characterizes the spatial pattern of the correlation between digital numbers of shaded 
samples and elevation differences of neighboring samples. Figure 5 demonstrates the estimated 
correlation maps of different spectral bands. 

The correlation maps show a pattern nearly symmetric to the direction of incoming solar radiation 
for all spectral bands. Digital numbers (or corresponding radiances) of the shaded ground samples are 
contributed by the downwelled radiance from portion of the sky dome above the target sample. 
Downwelled radiances are the results of atmospheric scattering, most importantly the Rayleigh and 
Mie scatterings, whose effects are symmetric to the direction of solar irradiance. The symmetric 
pattern of the correlation map correctly reflects the characteristics of atmospheric scattering. The 
correlation map also shows that positive and negative correlation coefficients are associated with the 

(a) (b) 
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samples falling in front of and in the back of  the target sample (with respect to the target sample and 
the direction of solar irradiance), respectively. Such a pattern is also consistent with the topographic 
effects on radiance received at the target ground as explained below. 

Figure 5. Correlation map Pλ calculated from satellite images of different spectral bands. 
(a) Blue. (b) Green. (c) Red. Numbers of the scale bar represent values of the correlation 
coefficient.  

 

As shown in Figure 6, obstacle samples behind the target sample (with reference to the direction of 
incoming radiation) obstruct direct solar irradiance to the shaded target sample. The higher these 
obstacles (i.e., higher di values), the less downwelled radiance (smaller digital numbers) received at the 
target sample. Thus, for shaded ground samples DNshade and elevation differences of neighboring 
obstacle samples ( 1,,1, 2 −= pidi K ) are negatively correlated. In contrast, solar irradiances reaching 

the obstacle samples which situate in front of the target sample may be reflected to the target sample. 
The higher the obstacle samples (i.e., higher di values), the more reflected radiance (larger digital 
numbers) received at the target sample. Thus, DNshade and elevation differences of neighboring 
obstacle samples ( 1,,1, 2 −= pidi K ) are positively correlated. 

Figure 5 also shows that correlation coefficients are lowest (at or near zero) for neighboring samples 
located in the direction perpendicular to the incoming solar radiation. This is explained by the fact that 
both the Rayleigh and Mie scattering effects are minimum in the direction perpendicular to the 
incoming solar radiation. 
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Figure 6. Illustration of the topographic effects of the forward and backward samples on 
radiance (or digital number) received at the target sample. 

 

4.3. Assessing Estimates of Surface Reflectance 

Prior to calculation of surface reflectances using Equations (19) and (20), band-dependent values of 
KkkkDN p λλλλ μ 2121  and ,, must be calculated by solving Equation (21). In this study in situ reflectance 

measurements from a set of 150 RCA samples which scattered over the entire study area were 
collected using a multispectral radiometer. Band-dependent reflectances of these RCA samples were 
then used to calculate band-dependent constants KkkkDN p λλλλ μ 2121  and ,,  (see Table 1) by solving 

Equation (21).  
Among these constants, values of DNpλ represent the band-specific path radiances which in 

principle decrease with increasing wavelength λ of solar radiation since the effect of atmospheric 
scattering (mainly including the Rayleigh scattering and the Mie scattering) reduces with increasing 
wavelength of solar radiation. Table 1 shows that band-dependent DNpλ values estimated by the 
method proposed in this study are consistent with effect of atmospheric scattering. Cheng et al. [15] 
used the same set of Formosat II images for path radiance estimation using the dark object subtraction 
(DOS) method and AERONET measurements of molecule and aerosol optical depths (AODs) (see 
Table 2). The DOS method tends to overestimate the path radiance if the selected dark objects are not 
near-zero reflectors, especially in mountainous areas [10,15]. The proposed method seems to yield 
more reasonable results than the commonly used DOS method with their path radiance estimates closer 
to path radiances calculated using AERONET measurements. 

Table 1. Band-dependent constants (DNpλ, k1λ, k2λμ1 and k2λK) for calculation of surface reflectance. 

 Blue Band Green Band Red Band 
DNpλ 59 19 8 
k1λ 346.011 358.119 279.024 

k2λμ1 269.372 333.391 544.729  
k2λK 47.662 36.112 28.326 
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Table 2. Comparison of path radiances (DNpλ) estimated by different methods. 

Methods Blue Band Green Band Red Band 
This study 59 19 8 

DOS 69 36 26 
AERONET 29 19 13 

Note: Path radiances of the DOS and AERONET methods were estimated by Cheng et al. [16]. 

Since the study area encompasses an area of 750 km2 with different land cover conditions, it is 
difficult to conduct extensive in situ measurements of surface reflectance and validate estimates of 
surface reflectance by the proposed method. Thus, in this study we selected two subregions which 
represent moderate and high degree of terrain variation in our study area and visually compared their 
corresponding true color satellite images and color reflectance images. As demonstrated in Figure 7, 
color reflectance image (using blue, green and red colors for reflectances of the blue, green and red 
bands) and the true color satellite image of the subregion A (moderate terrain variation with elevation 
varies from 0 to approximately 600 m above the mean sea level) are very similar, indicating good 
estimates of surface reflectance in this region. Differences in reflectances of the water body, vegetation, 
built-up, and bared soils are well preserved in the color reflectance image. It can also be observed that 
shaded areas are present in the east and southeast corner of the true color satellite image of subregion 
A, whereas such shade effect has largely diminished in the color reflectance image since surface 
reflectances only depend on landcover types and are not affected by the topographic condition. 

True color satellite image of the subregion B which is an area with high mountains and substantial 
terrain variation (elevation varies from approximately 200 to 2000 m) shows significant topographic 
effect with visually apparent shaded areas. Although the topographic effect has also been largely 
eliminated in the color reflectance image of subregion B, the reflectance image still shows different 
levels of reflectance for the shaded (in purple color) and non-shaded (in green color) areas. Such 
results may arise from the unaccounted shade effect of very high mountains in subregion B. In our 
study an elevation matrix (Equation (10)) of 41×41 sample group is adopted and calculation of the 
shape factor considers only neighboring samples within the 160-m range of the target sample. High 
mountains not within the 160-m range may also block solar irradiance and cast shade on the target 
sample and such effect has not been considered in our analysis. It also indicates that elevation matrices 
of larger size may need to be used for areas of more significant terrain variation. Further study on 
determining the size of the elevation matrix and the correlation map with respect to the degree of 
elevation change (or terrain variation), i.e., variable size of elevation matrix, may help to improve 
reflectance estimation in areas with substantial terrain variation. It is also important to mention that the 
proposed method requires in situ reflectance measurements and DEM data. Thus, for areas without 
DEM data or for historical remote sensing data with no in situ reflectance values, application of the 
proposed method cannot be implemented.  
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Figure 7. Comparison of the true color satellite images (left) and the color reflectance 
images (right) of the study area and its two subregions.  

 

  

  

  

5. Conclusions 

This study is an extension of the RCA-based path radiance estimation algorithm for surface 
reflectance estimation using digital numbers and surface reflectance of selected radiometric control 
areas. A few concluding remarks are drawn as follows: 

(1) A shaded sample identification algorithm using DEM data is proposed in this study.  
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(2) The correlation maps demonstrate a pattern that not only is consistent with the atmospheric 
scattering effect but also characterizes the effect of neighboring samples on radiance received at the 
target sample. Such result is an indication that the proposed shape factor model (Equation (14)) is 
physically reasonable. 

(3) The proposed RCA-based surface reflectance estimation method is capable of achieving good 
reflectance estimates in a region where elevation varies from 0 to approximately 600 m above the 
mean sea level. Further study on variable size of the elevation matrix with respect to the degree of 
terrain variation is recommended in order to extend application of the proposed method to areas 
with substantial terrain variation.  
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