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Abstract: Segmentation of buildings in urban areas, especially dense urban areas, by using 
remotely sensed images is highly desirable. However, segmentation results obtained by 
using existing algorithms are unsatisfactory because of the unclear boundaries between 
buildings and the shadows cast by neighboring buildings. In this paper, an algorithm is 
proposed that successfully segments buildings from aerial photographs, including 
shadowed buildings in dense urban areas. To handle roofs having rough textures, digital 
numbers (DNs) are quantized into several quantum values. Quantization using several 
interval widths is applied during segmentation, and for each quantization, areas with 
homogeneous values are labeled in an image. Edges determined from the homogeneous 
areas obtained at each quantization are then merged, and frequently observed edges are 
extracted. By using a “rectangular index”, regions whose shapes are close to being 
rectangular are thus selected as buildings. Experimental results show that the proposed 
algorithm generates more practical segmentation results than an existing algorithm does. 
Therefore, the main factors in successful segmentation of shadowed roofs are 
(1) combination of different quantization results, (2) selection of buildings according to the 
rectangular index, and (3) edge completion by the inclusion of non-edge pixels that have a 
high probability of being edges. By utilizing these factors, the proposed algorithm 
optimizes the spatial filtering scale with respect to the size of building roofs in a locality. 
The proposed algorithm is considered to be useful for conducting building segmentation 
for various purposes. 
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1. Introduction 

Three-dimensional (3D) modeling of buildings in urban areas has recently gained widespread 
popularity and has been studied by many researchers. Airborne light detection and ranging (LiDAR) is 
considered useful to provide cloud points having 3D coordinates and to help in delineating building 
boundaries. However, as a result of more than a decade of research, for 3D modeling, it has been found 
to be highly effective to fuse airborne LiDAR data with data from other sources, for example, digital 
maps [1,2] or remotely sensed images [3–6]. Whereas a digital map is costly, aerial photographs and 
satellite images are relatively cheap and widely applicable to many areas. Two-dimensional (2D) 
boundaries of buildings obtained through image classification would aid in creating accurate and 
effective 3D models. 

Classification of remotely sensed images is roughly divided into pixel- and object-based 
approaches. Pixel-based approaches, for example, clustering, the maximum likelihood method, and 
Support Vector Machines (SVM), assign class labels to pixels by calculating the probability that a 
pixel belongs to each class [7]. In contrast, model- or object-based approaches utilize context 
information from neighboring pixels. One of the most well-known, object-based approaches is to use 
mathematical morphological classifiers [8–12], and object-based approaches have been applied to 
segment urban landscapes [13–15]. In general, object-based approaches generate classification results 
with high accuracy, whereas pixel-based approaches often have ‘salt-and-pepper’ noise because they 
assume that the data of each pixel are independent.  

The author's particular interest is in dense urban areas, in which houses and buildings are located 
close to one another and narrow streets are found. The proximity of the buildings causes two problems. 
First, the boundaries between the buildings are unclear, and second, many shadows are cast by other 
buildings in comparison with typical urban areas. In addition, as shown in Figure 1, traditional 
Japanese houses often have undulating slate roofs with a rough texture, and thus the standard deviation 
of their digital number (DN) is large. This rough texture also causes a third problem, which is that 
many erroneous edges are detected during segmentation preprocessing. Owing to these features, 
segmentation results were poor for the area in Figure 1 using an existing algorithm. 

The first and third problems can be regarded as being equivalent: the problem is solved by the 
provision of appropriate edge detection. Canny [16] proposed an edge detection operator that is robust to 
noise, and this operator is widely utilized. Other edge detection operators, based on wavelet [17,18], 
multiscale [19–22], and multiscale with Markov random field [23–26] approaches, have also been 
proposed. Furthermore, algorithms to compensate for the lack of brightness in shadow regions have been 
presented [27–29]. However, the compensated results reported in [30] showed that the boundaries 
between originally shadowed and unshadowed regions remained clear, and that over-compensation is an 
issue yet to be solved. 

In this paper, an algorithm is proposed that segments buildings, including shadowed buildings, in 
dense urban areas from aerial photographs. The data used in this research and the areas under study are 
described in Section 2. The proposed segmentation algorithm is outlined in Section 3, and 
experimental results are reported at the end of this section. The algorithm and the experimental results 
are then discussed in detail in Section 4, and Section 5 concludes the paper. 
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2. Study Area 

Kyoto is the historic capital city of Japan, and still maintains many traditional houses. Areas in 
Kyoto’s hilly Higashiyama ward, which is famous for its numerous old temples and shrines, were 
selected for this study because they are good examples of dense urban areas in Japan to examine 
the performance of the segmentation algorithm. The targeted areas have narrow streets, approximately 
5–6 m in width. Figure 1 shows an example of the buildings in Higashiyama ward. Orthographically 
projected, RGB bands of aerial photographs of these areas with a 25-cm spatial resolution were 
available for this research. The photographs were taken using Ultra CamX (UCX), Vexel. 

Figure 1. Houses in the study area (Higashiyama ward, Kyoto). 

 

3. Segmentation Algorithm 

This paper focuses on an algorithm to segment buildings from aerial photographs of dense urban 
areas. As mentioned above, the segmentation of buildings in dense urban areas has a number of 
difficulties. Here, to distinguish roofs having rough textures, DN intervals are quantized into a number 
of quantum values, following a similar approach to Deng and Manjunath [31]. Quantization using 
several DN interval widths is applied during the segmentation algorithm, and for each quantization, 
areas with homogeneous quantum values are labeled in an image. Edges determined from the 
homogeneous areas obtained at each quantization are subsequently merged, and frequently observed 
edges are extracted. Roofs and buildings are then segmented using these extracted edges. 

The proposed segmentation algorithm consists of the following steps (see Figure 2). The algorithm 
assumes that images consist of 1-byte pixels in each of the three color bands (RGB). 

1 Set the number of DN intervals for quantization Ndisc, the associated interval widths Δdi (i = 1, ···, 
Ndisc), and the number of offsets Noff. The offset width Δoffi is defined as Δoffi = Δdi/Noff, and Noff 
quantized images are generated at a given value of Δdi by applying the different offsets. For 
example, with Δdi = 40 and Noff = 5, Δoffi is 40/5 = 8, and the offsets are {0, 8, 16, 24, 32}. With 
offset = 0, DNs are quantized into the intervals [0, 39], [40, 79], [80, 119], [120, 159], [160, 199], 
[200, 239], and [240, 255], and all pixels having a DN within an interval are assigned the same 

20 m 
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quantum value.  
2 Taking each quantized image in turn, regions are extracted and labeled by examining both the four 

neighboring pixels surrounding a given pixel and all other connecting pixels having the same 
quantum value. Large regions are removed, and then small regions are merged with neighboring 
larger regions, if such larger regions exist; otherwise, the small regions are removed. Finally, the 
edges of any remaining regions are extracted. 

3 All edges of the Noff quantized images at a given value of Δdi are merged, and the number of edge 
detections within each pixel is counted. 

4 A pixel whose edge count is greater than or equal to a threshold Tcount1 is preserved as an edge. 
Moreover, a pixel whose edge count is smaller than Tcount1, but greater than or equal to Tcount2, is 
added to an edge group if the pixel is connected to preserved edge pixels. Finally, a non-edge pixel 
is changed into an edge if linear alignments of edges pixels are found either side of it. 

5 Segmented regions are generated using the edges found in each quantization. To perform 
segmentation, a “rectangular index” is calculated as follows (see Figure 3). 
(1)  By using the 2D coordinates of the edges in a region, a main axis and sub-axis are determined, 

where the sub-axis is orthogonal to the main axis. 
(2)  The region is then projected onto the main axis, and the maximum, V1,max, and minimum, 

V1,min, coordinate values along the main axis are obtained. In the same manner, the maximum, 
V2,max, and minimum, V2,min, coordinate values along the sub-axis are obtained. A rectangular 
area is calculated by using the formula Srect = (V1, max − V1, min + 1) * (V2, max − V2, min + 1). 

(3)  The rectangular index idx is defined as the ratio between the actual area of the region Sactual 
and Srect,  

idx = Sactual / Srect.       (1) 
Therefore, idx ranges from 0 to 1, and a region whose rectangular index is close to 1 has a 
shape similar to a rectangle. 

(4)  If idx is lower than a given threshold, the region is removed because a strong likelihood exists 
that the region does not correspond to a building. 

6 Regions obtained in the Ndisc images are sorted according to their rectangular index.  
7 Regions with high rectangular index are selected as buildings, as long as no part of the region 

overlaps with regions already selected. The unselected regions are next considered, and a region is 
examined if both its overlap area with previously selected regions and the ratio between this area 
and the region’s total area are less than or equal to given thresholds. If idx for the portion of the 
region without overlap is greater than or equal to a further threshold, that portion is added to the 
group of regions nominated as buildings. Finally, any holes in the buildings are filled. 

Some of the steps require more detail. In Step 4, if a target pixel is not an edge pixel, then the 
numbers of edge pixels in neighborhoods around the target pixel are counted. Figure 4 illustrates the 
filters used for finding edge pixels in the top-to-bottom, left-to-right, upper-left-to-lower-right, and 
lower-left-to-upper-right directions. By designating edge pixels as having a value of 1 and non-edge 
pixels as 0, a score is calculated by multiplying the filter components by each pixel’s value. The target 
pixel is labeled as an edge pixel, if the following conditions are satisfied when applying any filter: 

(1)  The local scores in Figure 4(a,b) are greater than or equal to Tcount3. 
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(2)  The total score of all (7 × 7 pixels) components is greater than or equal to Tcount4. 

The second condition prevents mislabeling of non-edge pixels near the corners of the rectangles. 
The above search is repeated a maximum four times using four different filters. 

Figure 2. Flowchart of the proposed segmentation algorithm. 
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Figure 3. Calculation of the rectangular index. 
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Finally, calculation of the rectangular index in Step 5 should be clarified. In the algorithm, the main 
and sub axes are not determined by principal component analysis (PCA). (The reason for not using 
PCA is discussed in Section 4). Instead, a pair of edges whose distance is within a certain range 
(dedge_min, dedge_max) is selected, and the angles of the lines connecting the edges are voted. The angle 
achieving the maximum voting score is selected as the direction of the main axis. The sub-axis is then 
determined from the requirement that it must be orthogonal to the main axis. 

4. Results 

In the experiment, the parameters required by the proposed algorithm were set to the values shown 
in the right-hand column of Table 1. The optimal values of the parameters may depend on the study 
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area, and they were set empirically through manual checking of the segmented results. Figure 5 shows 
the result of each step of the algorithm flowchart in Figure 2. Specifically, the results are shown of 
labeling using the quantized images, edge detection, segmentation, and selection of regions. Three 
study areas were selected to examine the performance of the proposed algorithm: Study Area 1, in 
which low-rise buildings are predominant; Study Area 2, in which relatively large gable-roof and  
hip-roof buildings are located; and Study Area 3, in which a mixture of high-rise and low-rise 
buildings coexist. Figures 6–8 present the building segmentation results of Study Areas 1, 2, and 3, 
respectively. Each image has an area of 1,000 × 1,000 pixels, which is equivalent to 250 m × 250 m. 
To examine segmentation performance, the commercial segmentation software, ENVI EX  
(Version 4.8) [32], was used for comparison. The software segments regions using gradient map and 
watershed algorithm [33]. The “feature extraction” function in this software requires the setting of two 
parameters, “Scale Level” and “Merge Level”, and from an empirical examination, these parameters 
were set to 50 and 80, respectively. Figures 6–8 thus include the results generated using the proposed 
algorithm and those using ENVI EX. 

Table 1. Experimental parameter values. 

Process Parameters Value Used 

Quantization and edge 
detection 

Number of quantizations Ndisc 3 
Quantization interval widths Δdi (i = 1, ... , Ndisc) 40, 30, 20 
Number of offsets Noff 5 
Edge count T count1 and T count2 5 and 3 
Minimum and maximum areas 50 and 30,000 pixels 
Minimum score for edge completion using filters 
shown in Figure 4, T count3 and T count4 

2 and 8 

Segmentation and 
calculation of 
rectangular index 

Minimum rectangular index 0.45 
Minimum and maximum distance between edges 
for rectangular index calculation, dedge_min, dedge_max 

5 and 20 pixels 

Minimum valid length of rectangle 8 pixels 

Selection regions 
according to 
rectangular index 

Maximum ratio of overlapping area to original area 
for selecting areas overlapping with previously 
selected areas 

0.2 

Minimum area for selecting areas overlapping with 
previously selected areas (same for Step (1)) 

50 pixels 

To reduce the computation time, the labeling and edge detection was implemented in 50 × 50 pixel 
windows. These window images were extracted from each 1,000 × 1,000 pixel image as follows. First, 
the line and pixel positions of the upper left corner of the window were set to (0, 0), (0, 50), (0, 100), 
..., (0, 950), (50, 0), ..., and (950, 950). After this, the positions were set to (25, 25), (25, 75), ..., 
(25, 925), (75, 25), ..., and (925, 925). The edges detected in all of the windows were then merged. 
Similarly, segmentation and the selection of regions were implemented in a 500 × 500 pixel window, 
and the results again merged. Finally, regions close to the boundaries of the window were put through 
the selection process a second time such that calculation errors ensuing from the merging of  
small-window results were almost completely negated. 
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Figure 5. (a) aerial photograph, (b) labeling from quantization using three different 
interval widths, (c) edge detection, (d) segmentation, and (e) final segmentation result. The 
left, central, and right images in (b), (c), and (d) were generated with Δd = 40, 30, and 20, 
respectively. A square over (a) indicates the area represented in (b). 
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Figure 6. Comparison of building segmentation results in Study Area 1, in which low-rise 
buildings are predominant: (upper) aerial photograph, (lower left) segmentation result 
using the proposed algorithm, and (lower row) segmentation results using ENVI EX. 
Parameter values of “Scale Level” and “Merge Level” in ENVI EX were set to 50 and 80, 
respectively. 
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Figure 7. Comparison of building segmentation results in Study Area 2, in which relatively 
large gable-roof and hip-roof buildings are located. See Figure 6 for a description of  
each panel. 
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Figure 8. Comparison of building segmentation results in Study Area 3, in which  
a mixture of high- and low-rise buildings coexist. See Figure 6 for a description of  
each panel. 
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In the experiment, three interval widths, Δdi = 40, 30, and 20, were selected for quantization. 
Although an attempt was made to complete unclear boundaries by using the filters in Figure 4, a large 
number of shadowed or roughly textured roofs were still not segmented correctly. Therefore, the edges 
detected using the three interval widths were merged and the filters in Figure 4 were then applied to 
complete the edges. Explicitly, three types of edges were used: edges detected with Δdi = 40, edges 
detected with Δdi = 20, and the combination of edges detected with Δdi = 40, 30, and 20. The effect of 
this merging of results is discussed in Section 4.1. 

Segmentation results were assessed in terms of shadowing and building types. Shadowing was split 
into three categories: unshadowed (less than or equal to 10% of the roof area was covered by shadow), 

50 m 
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partially-shadowed (greater than 10%, but less than or equal to 50%, shadowing), and  
mostly-shadowed (greater than 50% shadowing) buildings. The buildings whose entire areas were 
included in Study Area 1 were classified into flat-, gable-, hip-, and slant-roof buildings. Reference 
buildings were manually identified. 

Assessment was conducted on an entire-building basis. This meant that in the case of gable- and 
hip-roof buildings, assessment was independent of whether each roof was successfully segmented. 
Segmentation performance was also split into five categories: (1) a building is segmented from other 
buildings, and the error between the segmented and actual areas is within 10%; (2) a building is 
segmented from other buildings, and the error between the segmented and actual areas is greater than 
10% and less than or equal to 50%; (3) a building is merged with one or more other buildings; (4) a 
building is merged with a road; and (5) the error between the segmented and actual area exceeds 50%. 
Therefore, a lower category number represents better segmentation performance.  

Figure 9 shows the validation of the segmentation results for all buildings. Figures 10–12 then show 
the validation of the segmentation results for unshadowed, partially-shadowed, and mostly-shadowed 
buildings, respectively. Accuracy for validation was obtained by computing the ratio of total 
segmented area to area of reference building. 

Figure 9. Verification of segmentation results for all buildings in Study Area 1. 
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Figure 10. Verification of segmentation results for unshadowed (less than 10%) buildings 
in Study Area 1. 
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Figure 11. Verification of segmentation results for partially-shadowed (10% to 50%) 
buildings in Study Area 1. 
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Figure 12. Verification of segmentation results for mostly-shadowed buildings in  
Study Area 1. 
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5. Discussions 

5.1. Effect of Quantization and Edge Completion 

The proposed algorithm merges regions segmented using the edges detected with different DN 
interval widths, Δdi. This quantization is a type of spatial filtering, and the process is similar to that of 
smoothing with different spatial scales and merging the results. However, unlike traditional popular 
smoothing filters, here the edges are preserved and, importantly, the scale of spatial filtering is 
optimized with respect to the size of building roofs in a locality. In the algorithm, regions with a high 
rectangular index are selected from the regions generated at each quantization. Figure 5 demonstrates 
that this selection procedure optimizes the local spatial scale for smoothing.  

The proposed algorithm attempts to extract regions whose shape is close to being rectangular 
through the rectangular index calculated from a region’s edges. However, for roughly textured roofs or 
in dense urban areas where building boundaries are often unclear, successful detection of complete 
edges is nontrivial. Failure to delineate boundaries in such circumstances reduces the accuracy of 
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building segmentation. As shown in Figure 13, the quantization of DNs and the combination of results 
for several interval widths in the proposed algorithm help to distinguish these roughly-textured roofs 
and unclear boundaries. Unsuccessful segmentation results, for example, where a building and road are 
merged, may have a lower rectangular index. Such results are excluded because the algorithm selects 
only those regions with a high rectangular index. 

In addition to these factors, edge completion also contributes to the improvement of segmentation 
accuracy. Edges are completed by including those pixels that have high probability of being in an edge 
because they have neighboring edges pixels. Figure 14 shows that edge completion by using filters 
prevented shadowed roofs and buildings being merged with roads. 

In ENVI EX, any of a number of edge operators can be used as a gradient operator [33]. To 
examine the edge detection performance, the Canny filter, which is a traditional powerful filter, was 
applied. The result of edges detected using the Canny is not included in this paper, but it was difficult 
to successfully extract edges of boundaries of partially-shadowed and mostly-shadowed buildings. In 
addition, the Canny extracted many edges from rough texture of roofs, which may lower the 
performance of the roof or building segmentation. Compared with this result, both quantization and 
edge completion of the proposed algorithm help in extracting more edges of building boundaries and 
less edges of roof texture. 

Figure 15 shows the effect of another edge completion. As mentioned in Section 3, three types of 
edges were used in the algorithm: edges detected with Δdi = 40, edges detected with Δdi = 20, and the 
combination of edges detected with Δdi = 40, 30, and 20. Figure 15(d) shows that the combined edges 
are effective to segment shadowed buildings. However, segmentation using the combined edges was 
found to typically extract smaller regions compared with segmentation using a single interval width. 
Therefore, selection among regions segmented using edges found with both single and combined 
interval widths can generate reasonable results. 

Consequentially, as shown in Figures 9 to 12, the proposed algorithm produces higher accuracy 
segmentation than the existing algorithm. In particular, in the cases of partially- and mostly-shadowed 
buildings, the proposed algorithm performs much better than the existing algorithm. As shown in 
Figures 11 and 12, in cases of partially-shadowed (10% to 50%) buildings and mostly-shadowed 
buildings, the ratios of Category 1 (the error between the segmented and actual areas was within 10%) 
obtained by using the proposed algorithm were 12% and 24% higher than the ones obtained by using 
ENVI EX, respectively. Low gable-roof buildings in a dense urban area have a high likelihood of 
being partially- or mostly-shadowed. However, it has been demonstrated that the proposed algorithm 
can accurately segment highly shadowed buildings. 
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Figure 13. Comparison of building segmentation results: (left) aerial photograph, (middle) 
segmentation results using the proposed algorithm, and (right) segmentation results using 
ENVI EX. (a) and (b) Results for Study Area 1, (c) results for Study Area 2, and (d) results 
for Study Area 3. 
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Figure 14. Edge completion using filters: (a) non-completed edges, (b) segmentation result 
using non-completed edges, (c) completed edges, and (d) segmentation result using 
completed edges. All results were generated with Δdi = 40. 
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Figure 15. Edge completion by using combined edges: (left) extracted edges and (right) 
segmentation results using these edges. (a) Results with Δdi = 40, (b) results with Δdi = 30, 
(c) results with Δdi = 20, and (d) combined edges when edges with Δdi = 40, 30, and 20 
were merged. 
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5.2. Rectangular Index 

The rectangular index selects an optimal region at a specific location from a number of candidates. 
Because the author's focus in this research was on urban areas, this index is considered appropriate for 
extracting buildings. In spite of this, as shown in Figures 13(b), triangular regions of hip-roofs are also 
extracted by using the proposed algorithm. A perfect triangle’s rectangular index is only 0.5, and so the 
proposed algorithm does not prioritize triangular regions for selection. The reason for this successful 
extraction may be that neighboring regions were already successfully extracted. Under certain interval 
widths and offsets, a triangular region and its neighbor are often merged. However, under different 
values of these parameters, they may become separated. A merged region that includes a triangular 
region might not be selected, however, since they tend to have a lower rectangular index. Instead, the 
regions around the triangular region are extracted, and extraction of the triangular region then follows 
this. Whether the proposed algorithm is also able to segment circular roofs or buildings could not be 
confirmed, because none were found in the study areas. However, based on the successful segmentation 
of triangular regions, it may be possible to correctly segment such roofs and buildings. 

However, selection based on the rectangular index presents a problem. The proposed algorithm 
extracts regions according to the rectangular index without considering a region’s area. As a result, 
small regions with a high rectangular index are selected above large regions with a lower rectangular 
index, even though the large region may be more suitable for delineating the building. An approach to 
prioritize such large regions by applying a correction to the rectangular index was therefore examined. 
As a result, a greater number of large regions corresponding to roads or vegetation and a lesser number 
of building regions were selected. The idea of a correction to the rectangular index may be useful for 
certain purposes (e.g., segmentation of a number of buildings on a district level). However, issues 
remain that require consideration: for example, an appropriate functional form for the correction and 
adjustment of the coefficients in such a function. Hence, the results shown in the present paper were 
generated without this correction. 

Discussion now turns to calculation of the rectangular index. When PCA was employed in 
rectangular index calculations, many slate roofs were divided into small regions or parts of the slate 
roofs were missed. In contrast, over-merged roofs were also found. Application of PCA in rectangular 
index calculations generated axes that were far from being parallel to the rectangular sides. Therefore, 
because segmentation results using PCA were found to be unstable, the main and sub axes used in 
rectangular index calculations were determined by the procedure explained in Section 3.1. Although 
the thresholds must be optimized empirically, this approach was found to have higher stability  
than PCA. 

5.3. Optimization of Parameters 

Among the parameters listed in Table 1, final segmentation results are sensitive to those related to 
quantization, edge detection, and completion. In particular, DN interval widths were repeatedly 
examined during the experiment. These intervals are dependent on the brightness contrast, and 
empirical determination of the intervals through a number of investigations may be necessary. The 
design of filters for edge completion is dependent on the objects to be segmented. In the experiment, 
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filters were selected to complete linearly-aligned edges because rectangular buildings were dominant 
in the study areas. In the case of extraction of round buildings, the filters should be designed to 
complete curved edges. 

5.4. Computation Time 

Labeling of regions after quantization requires computation time. Therefore, the technique 
described in Section 3 of splitting the area into small windows during edge detection and segmentation 
was adopted. Comparing this segmentation with the result without such a split, no significant 
difference was found. The computation time for different-sized images is shown in Figure 16. This 
experiment was conducted using a PC with an Intel Core i7 (3.20 GHz) processor and 6 GB memory. 
The computation time is almost proportional to the number of pixels, and the proposed algorithm is 
shown to be useful. 

Figure 16. Computation time for different-sized aerial images. 
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5.5. Applications 

The author’s interest in conducting this research is to generate 3D building models using airborne 
LiDAR data and the segmented results obtained using the proposed algorithm. The author developed a 
3D building modeling algorithm that uses the results of building segmentation from aerial 
photographs. With the information of roofs and buildings, the accuracy of 3D building models was 
improved even in the dense urban areas where houses that have slant roofs are located close to each 
other, and their heights are similar [34]. In addition, the proposed algorithm can be applied to the 
generation of 2D maps of buildings. Such 2D building maps are useful for applications that require 
rapid map generation to ascertain the status of an urban area without the need for high accuracy. For 
example, assessment of damage caused by a natural disaster—an earthquake, flood, or tsunami—is a 
conventional application. In assessing the damage caused by the Great East Japan Earthquake on 
11 March 2011, 2D thematic maps were useful for national and local governments. However, the 
majority of these maps were generated through manual interpretation. Compared with existing 
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algorithms, segmented results by the proposed algorithm are less affected by shadows, and thus 
manual correction of the results is greatly reduced. 

Ideal processing of 2D building maps should automatically exclude vegetation, whereas vegetation 
was not removed in this research. The timing of vegetation removal was a complex issue. Removal in 
the preprocessing stage of pixels whose DNs are similar to those of vegetation was examined. 
However, this approach removed the vegetation pixels covering buildings and roads. As a result, 
regions considerably smaller than the actual buildings were extracted, or regions were not extracted 
because their areas were below the threshold. Another examined approach was to retain vegetation 
pixels during segmentation and remove regions having a high probability of being vegetation at the 
end. This approach was successful, while some large vegetated regions were not removed. However, 
the removal of red vegetation while maintaining red roofs was still difficult. Because vegetation 
removal is a key factor in various applications of the proposed algorithm, it will be examined in the 
near future. 

6. Conclusions  

In this paper, an algorithm to segment buildings, including shadowed buildings, from aerial 
photographs of dense urban areas was proposed. To distinguish roofs having a rough texture, DNs are 
quantized into a number of quantum values. Quantization using several interval widths is applied 
during segmentation, and for each quantization, areas with homogeneous values are labeled in an 
image. Edges determined from the homogeneous areas obtained at each quantization are merged, and 
frequently observed edges are extracted. By using a rectangular index, regions whose shapes are close 
to being rectangular are selected as buildings. Finally, pixels that have the potential to be part of an 
edge from the context of neighboring pixels are added to edges in order to improve segmentation 
accuracy. Quantization using three interval widths was applied in the experiment, and the main factors 
leading to successful segmentation of shadowed roofs were (1) the combination of different 
quantization results, (2) selection of buildings according to the rectangular index, and (3) edge 
completion. Crucially, owing to these three factors, the scale of the spatial filtering is optimized with 
respect to the size of building roofs in a locality. In addition, even though the proposed algorithm does 
not prioritize triangular regions, such regions are extracted. Owing to selection based on the 
rectangular index, the regions around a triangular region were extracted, and as a result, the triangular 
regions were also extracted. The experimental results showed that the proposed algorithm generated 
better segmentation results than an existing algorithm. In particular, in the cases of partially-shadowed 
(10% to 50%) buildings and mostly-shadowed buildings, the ratios of category that the error between 
the segmented and actual areas was within 10% obtained by using the proposed algorithm were 12% 
and 24% higher than the ones obtained by using ENVI EX, respectively. Therefore, the proposed 
algorithm is considered to be useful for conducting building segmentation for various purposes. 
Although the computation time for segmentation was deemed reasonable, this should be greatly 
reduced through future investigation.  
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