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Abstract: Remotely sensed indices of burn severity are now commonly used by researchers 
and land managers to assess fire effects, but their relationship to field-based assessments of 
burn severity has been evaluated only in a few ecosystems. This analysis illustrates two cases 
in which methodological refinements to field-based and remotely sensed indices of burn 
severity developed in one location did not show the same improvement when used in a new 
location. We evaluated three methods of assessing burn severity in the field: the Composite 
Burn Index (CBI)—a standardized method of assessing burn severity that combines 
ecologically significant variables related to burn severity into one numeric site index—and 
two modifications of the CBI that weight the plot CBI score by the percentage cover of each 
stratum. Unexpectedly, models using the CBI had higher R2 and better classification 
accuracy than models using the weighted versions of the CBI. We suggest that the weighted 
versions of the CBI have lower accuracies because weighting by percentage cover decreases 
the influence of the dominant tree stratum, which should have the strongest relationship to 
optically sensed reflectance, and increases the influence of the substrates strata, which should 
have the weakest relationship with optically sensed reflectance in forested ecosystems. Using 
a large data set of CBI plots (n = 251) from four fires and CBI scores derived from additional 
field-based assessments of burn severity (n = 388), we predicted two metrics of image-based 
burn severity, the Relative differenced Normalized Burn Ratio (RdNBR) and the differenced 
Normalized Burn Ratio (dNBR). Predictive models for RdNBR showed slightly better 
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classification accuracy than for dNBR (overall accuracy = 62%, Kappa = 0.40, and overall 
accuracy = 59%, Kappa= 0.36, respectively), whereas dNBR had slightly better 
explanatory power, but strong differences were not apparent. RdNBR may provide little or 
no improvement over dNBR in systems where pre-fire reflectance is not highly variable, 
but may be more appropriate for comparing burn severity among regions.  

Keywords: fire ecology; fire severity; Landsat; change detection; dNBR; RdNBR; CBI; 
GeoCBI; Washington State; Cascade Range 

 

1. Introduction 

The large size, inaccessibility, and spatial variability of wildland fires have caused multispectral 
satellite data to become a common tool for mapping fire locations and effects. Remotely sensed indices 
are commonly used to map burn severity of wildfires, but remotely sensed indices are more meaningful 
when they can be linked with field-based assessments of burn severity. We evaluate the applicability of 
methodological refinements to field-based and remotely sensed indices of burn severity developed in 
other locations, to a new location, the northern Cascade Range of Washington, USA. We compare two 
remotely sensed indices of burn severity; the differenced Normalized Burn Ratio (dNBR) and the 
Relative differenced Normalized Burn Ratio (RdNBR), a refinement of the dNBR which had stronger 
correlations with field-based assessments of burn severity and higher classification accuracy when 
evaluated in other regions [1,2].  

We also compare three methods of measuring burn severity in the field: the Composite Burn Index, 
(CBI), which was specifically developed to validate and produce regionally-based classification 
schemes of remotely sensed burn severity data [3], and two variations of a methodical refinement of 
the CBI based on the Geometrically structure Composite Burn Index (GeoCBI), which has been used 
successfully in Spain and Portugal [4,5]. Regional empirical validation of burn severity indices is 
necessary because previous research has shown that the relationships between remotely sensed and 
field-based assessments vary among regions [6]. Regressions that predict remotely sensed burn-
severity from field measurements can be used to classify the remotely sensed data into distinct severity 
classes [1,2]. Although some information is lost in the classification process, categorical images 
facilitate: (1) visual interpretation of images; (2) comparisons of multiple fires or fires from multiple 
regions; (3) analysis of the spatial context and spatial pattern of severity; (4) spatially explicit 
predictions of the impacts of the fire (i.e., soil erosion, water quality, succession, and carbon 
emissions); and (5) targeted management responses to those impacts.  

In addition to providing a test of the transferability of new methods to a novel location, our results 
also provide an empirically derived classification scheme for two commonly used remotely sensed 
indices of burn severity. This classification scheme should be applicable to ecologically similar areas 
in the Cascade Range, from northern Oregon to southern British Columbia. No empirical validation of 
the relationship of the two burn severity indices with field data has been conducted in the Cascade 
Range of Washington and Oregon, although they have been conducted for many different vegetation 
types across North America [1,2,7–14]. In the northern Cascade Range, the benefits of using remote 
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sensing to quantify the severity and spatial pattern of fires are particularly strong. Fire regimes are 
generally of mixed severity. Burn severity varies with fuel continuity, the fire tolerance of the vegetation, 
and variation in the post-fire response of the vegetation, and generally increases with elevation, although 
within individual fires there are spatially complex severity patterns [15]. Furthermore, remote sensing 
may be the only option in relatively inaccessible and rugged terrain of this region, which makes 
fieldwork difficult, dangerous, or even impossible [16]. Therefore, remotely sensed indices of burn 
severity greatly augment field studies in mixed-severity fire regimes like those of the northern Cascade 
Range by allowing the variation of the within-fire burn severity pattern to be quantified, and permitting 
differences in severity and spatial pattern of fires across the region to be assessed.  

1.1. Remotely Sensed Burn-Severity Indices 

Fire severity is the ecological effect of fire on soils and plants, and is of interest because it is often 
related to short-term and long-term changes in biogeochemical cycles and plant and animal community 
composition, structure, and function. Common measurements of fire severity quantify the consumption 
of organic materials, such as the loss of litter and duff, canopy fuel consumption (often measured by 
the height or percentage of scorch and char on trees), or twig diameter remaining on residual branches. 
Measurements may also include additional proxies for consumption, such as tree mortality and white 
ash deposition [17,18]. In forested ecosystems fire severity has often been classified solely by 
overstory tree mortality, while incorporating other variables secondarily. For example, Larson and 
Franklin [19] defined low, moderate, and high severity fire levels by 0–20%, 20.1–80%, and >80.1% 
basal area mortality. In the context of remote sensing “fire severity” usually refers to measurements 
made in the same season as the fire [17]. This study examines “burn severity”, not fire severity, using 
measurments made one year after the fire, and therefore includes aspects of fire severity described 
above, such as the consumption of organic materials and tree mortality, and aspects of ongoing 
ecosystem responses, such as delayed tree mortality, vegetation resprouting, and colonization of new 
propagules. 

Remotely sensed measurements of burn severity aggregate fire effects at the spatial grain of the 
sensor; for dNBR and RdNBR burn severity measurements are aggregated at the spatial grain of a 
Landsat pixel, 30 m2. Both indices are based on the NBR, which was first proposed by López-Garcia 
and Caselles [20] to identify burned areas in Spain. The original formula for NBR was given by Key 
and Benson [3]. NBR is usually scaled by 1,000 and rounded to an integer; this scaling factor was 
subsequently integrated into the NBR equation (for example see [21]): ܴܰܤ ൌ ሺܴ4 െ ܴ7ሻ/ሺܴ4 ൅ ܴ7ሻ ൈ 1000 (1)

where R4 and R7 are the intensity of per-pixel surface spectral reflectance of Landsat bands 4  
(0.76–0.90 μm, near-infrared) and 7 (2.08–2.35 μm, mid-infrared) [3,7]. Band 4 is sensitive to the cell 
structure of plants, which can be related to plant abundance and productivity. Band 7 is sensitive to the 
cellulose content and water content of the plants, and increases with greater cover of soil, ash, or 
carbon [7]. In forested systems Band 7 increases with higher burn severity [7] but may decrease with 
burn severity in grass dominated systems [22]. In forested systems recent burns have negative NBR 
values (R4 < R7) whereas unburned vegetated has strongly positive NBR values (R4 > R7).  
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The dNBR is based on the change over time from pre-fire NBR image to the post-fire NBR image: ܴ݀ܰܤ ൌ ௣௥௘௙௜௥௘ܴܤܰ െ ௣௢௦௧௙௜௥௘ (2)ܴܤܰ

Usually the dNBR is calculated using images from either the same season as the fire, or from one year 
before and after the fire. Increasingly positive values of dNBR indicate increasing burn severity [7].  

In order to improve classification accuracy of the dNBR in mixed forest and shrubland in 
California, Miller and Thode [1] developed the Relative differenced Normalized Burn Ratio (RdNBR). 
The RdNBR normalizes the dNBR by the initial image reflectance to account for spatial variation in 
pre-fire leaf area index. In addition to normalizing the image by pre-fire reflectance, dNBR values are 
also normalized by subtracting the average dNBR value sampled from unburned areas outside the fire 
perimeter, in order to account for inter-annual variation in phenology [2]. This step is included 
explicitly in the equation below, as the dNBRoffset value, which is equal to the average dNBR value of 
sampled unburned vegetation (of a type that is similar to the vegetation that did burn). In theory, the 
dNBRoffset = 0 when the phenologies of the pre-fire and post-fire image are perfectly matched. This 
processing step was described in Miller and Thode [1], but was not explicitly included in the original 
RdNBR equation. It is included in the RdNBR equation below, which is the RdNBR equation recorded 
in the metadata for all RdNBR images processed by the national Monitoring Trends in Burn Severity 
Program (described below) (for example of formula see [21]). ܴܴ݀ܰܤ ൌ ሺܴ݀ܰܤ െ ௣௥௘௙௜௥௘/1000ห (3)ܴܤ௢௙௙௦௘௧ሻ/ටหܴܰܤܰ݀

These two normalization processes correct for pre-fire spatial variation in reflectance in the image 
and produce more consistent RdNBR values across image sets, facilitating the comparison of different 
fires [1,2]. 

In temperate conifer forests in western North America, dNBR and RdNBR have been shown to be 
correlated with field-based assessments of burn severity in a number of different forested systems 
[1,2,6,7,9,12,23]. In forested systems, dNBR and RdNBR provide more accurate measurements of burn 
severity than many other indices that use Landsat TM or ETM+ data, such as the differenced normalized 
vegetation index (dNDVI) or indices based on principal component analysis or machine-learning 
algorithms based on the reflectance of all the Landsat bands [6,24], although single-date indices using 
band ratios, tassel-cap transformations, and spectral mixture analysis have also been successfully used to 
map burn severity [9,25,26]. When tested in mixed-conifer forests of the Sierra Nevada with the 224 
spectral bands available from the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) sensor, 
the bands used in the dNBR calculation were among the four most sensitive bands to changes in surface 
spectral reflectance after fire [27]. Brewer et al. [24] compared six approaches of classifying and 
mapping fire severity in the Rocky Mountains (USA) with Landsat TM data to a “control” method of 
photo-interpretation and field data, and found the dNBR to be the most accurate and consistent index. 
Overall, correlations with field-based data and classification accuracies of the indices are good, but do 
seem to vary among regions; of the 26 studies using dNBR reviewed by French et al. [9] the average 
classification accuracy was 73% but accuracies varied from 50 to 95%. Also, because the two spectral 
bands do not change at the same rate with increased burn severity, NBR, by itself, does not meet the 
criteria for being an “optimal index” for assessing burn severity [22]. Other remote-sensing methods, 
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such as spectral-mixture analysis, have also shown promise for detecting burn severity and post-fire 
effects [26], but field evaluation of these methods have been limited in geographic scope compared to 
dNBR and RdNBR. 

Overall, dNBR and RdNBR are the most widely used indices for assessing burn severity. 
Their multi-temporal nature minimizes classification errors due to sun-sensor geometry and 
phenology. Because both indices use Landsat imagery, which has relatively high resolution (30 m), is 
readily available, and is now free to the public, they have been widely used in both research and 
management [17]. In the United States, there is also a deep temporal record of burn severity using both 
dNBR and RdNBR: the Monitoring Trends in Burn Severity project (MTBS) has mapped all fires that 
occurred between 1984 and 2010 that were >405 ha in the western USA and >202 ha in the eastern 
USA, with plans to continue mapping severity of fires in the future [28]. MTBS uses the dNBR index 
to produce five-class categorical burn-severity images, but unclassified dNBR and RdNBR images are 
also produced for all fires [28]; as of April 2011 over 12,500 fires had been mapped [29].  

Classifications based on RdNBR are more accurate than those based on dNBR in vegetation with a 
mix of grass and shrubland or with a mix of forest and non-forest [1,2,6]. In the Sierra Nevada, Miller 
and Thode [1] found that where pre-fire vegetation is highly variable, RdNBR has similar or slightly 
lower classification accuracy than dNBR in the low-severity class, but higher overall classification 
accuracy and greater classification accuracy in the high-severity class. Severely burned areas are often 
of greater interest to scientists and managers than lightly burned areas, since the former often have 
greater change in vegetation species composition, slower vegetation recovery, greater susceptibility to 
invasive species establishment, and higher erosion potential.  

RdNBR may be more robust than dNBR for comparing multiple fires, particularly among fires in 
different types of forests, different regions, or heavily vegetated and sparsely vegetated areas [1,2,6]. 
Based on a large field data set from 25 fires in the Sierra Nevada and Klamath mountains of 
California, Miller et al. [2] found that RdNBR was better than dNBR when burn-severity thresholds 
were extrapolated to fires not included in the original calibration. However, it is not clear if RdNBR is 
more accurate than dNBR in all systems or for all uses. Zhu et al. [6] found that RdNBR produced 
more consistent regression curves across multiple regions, but dNBR had higher regional correlations 
with field data. A recent study in the Canadian Rocky Mountains and the western boreal forests of 
Canada, using field data from six fires, found higher correlation and better classification accuracy with 
dNBR (72.2%) than RdNBR (65.2%), and concluded that classification based on RdNBR was no 
better than dNBR when based either on regressions from individual fires or on pooled data from 
multiple fires [12]. There is not yet strong consensus regarding the strengths and weaknesses of each 
index; their relative merits vary among ecosystems and with the scale of analysis. 

1.2. Field-Based Assessments of Burn Severity 

Field measurements of burn severity must be aggregated to the spatial resolution of the remotely 
sensed images for the two to be compared. For this purpose, Key and Benson [3] developed the 
Composite Burn Index (CBI), a standardized procedure for assessing burn severity in the field in order 
to calibrate and validate 30-m resolution Landsat-based burn-severity images. The CBI combines 
ecologically significant variables related to burn severity into one numeric site index assessed over a 
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30-m diameter plot. Ocular estimates of burn severity from 0 (unchanged) to 3 (high severity) are 
made for four to five individual factors for each of 5 strata present on a plot (Table 1). (Individual 
rating factors include estimates of litter and duff consumption; soil exposure; herbaceous and shrub 
mortality, resprouting, and colonization; and tree char, scorch, and mortality.) Like many ecological 
metrics, CBI is an imperfect but useful way to characterize the combined effects of multiple causes, 
e.g., flame length, fireline intensity, fire residence time, and vegetation response to fire. The full CBI 
protocol is available in Key and Benson [3]. If a rating factor or stratum is not present on a plot it is 
not assessed. The CBI score is the average score of all evaluated rating factors.  

Table 1. CBI Strata. 

Strata  Short Name Number of Rating Factors 

Substrates Substrates 5 

Herbs, low shrubs and trees <1m Herbs and low shrubs 4 

Tall shrubs and trees 1–5 m Tall shrubs 4 

Intermediate trees (subcanopy, pole-sized trees) Intermediate trees 5 

Big trees (upper canopy, dominant, codominant trees) Dominant trees 5 

CBI scores have stronger relationships with remotely sensed burn-severity indices than other 
common measurements of severity, such as fire-caused change in basal area or tree canopy cover [2]. 
In some systems, such as boreal forests [30] and chaparral [10], CBI does not capture burn-severity 
characteristics that have a strong relationship with ecosystem response to the fire, but in conifer forests 
in the western USA, the CBI corresponds well with field-based measurements of plant injury, fuel 
consumption, and tree mortality [2,3].  

The CBI provides a standardized method for estimating burn severity for a site, but has been criticized 
because it does not account for differences in the fractional cover of each stratum [4,5]. In a modeling 
analysis of spectral reflectance De Santis and Chuvieco [4] found that the fractional cover of individual 
strata influences the overall reflectance of a plot. On high-severity plots the fraction of cover does not 
affect plot reflectance, since leaf area index is generally low [4], and strata tend to burn with similar 
severity. In contrast, at moderate and low burn severity relatively small changes in the fraction of cover 
of vegetation influence the reflectance of the both bands used in the NBR calculation [4].  

To address this issue De Santis and Chuvieco proposed a modification to the original CBI 
calculation, which they termed the Geometrically Structured Composite Burn Index (GeoCBI) [5]. 
This method accounts for the fraction of coverage (FCOV) of each stratum in the CBI calculation: ܫܤܥ݋݁ܩ ൌ ∑ ሺܫܤܥ௠ כ ܱܥܨ ௠ܸሻ௠೙௠భ ∑ ܱܥܨ ௠ܸ௠೙௠భ  (4) 

where m refers to each vegetation stratum and n is the number of strata. All vegetated strata are 
weighed by their FCOV; the substrates stratum is not weighted. De Santis and Chuvieco [5] also 
slightly modified the individual rating factors in the CBI sheet, adding a “new sprouts” rating factor to 
the herbs and low shrubs stratum, combined the effects of scorch and char in the intermediate trees and 
dominant trees categories, and converted the “percent change in cover” rating factor to “change in leaf 
area index (LAI)”.  



Remote Sens. 2012, 4              
 

462

CBI and GeoCBI were compared on three fires in Mediterranean ecosystems, measuring post-fire 
severity during the same season as the fire using immediate post-fire NBR images (single date). 
Regressions using the GeoCBI had a stronger relationship with remotely sensed measurements of burn 
severity on plots where the burn severity and fraction of cover of the overstory and the understory 
strata differed compared to regression using CBI [5].  

Researchers in North America have also used a version of the CBI that weighted the scores by 
FCOV for each stratum [12,13], but without modifying individual rating factors sensu De Santis and 
Chuvieco [5]. We refer to this as the “weighted CBI” (hearafter WCBI), and calculate it with the same 
formula as the GeoCBI (Equation (4)), but using the individual rating factors from the original protocol 
of Key and Benson [3].  

Weighted versions of the CBI (GeoCBI and WCBI) are now being used in burn-severity 
assessments that use data from 1 year post-fire (as opposed to immediate same-season assessments) 
and multi-temporal burn-severity data (dNBR and RdNBR as opposed to NBR) [12,13,31]. However, 
validations of weighted versions of the CBI for this application have not been published. Likewise, 
weighted versions of the CBI have been compared to the original CBI in dry Mediterranean pine-oak 
forests [5], but not in more densely vegetated mesic conifer forests.  

1.3. Study Objectives 

The objectives of this study were twofold. First, we tested the hypothesis that WCBI and GeoCBI 
would outperform the CBI in terms of correlation with the remotely sensed burn-severity indices and 
their classification accuracy. On a subset of data we also compare the WCBI to the GeoCBI, to assess 
the impact of the change in the individual rating factors made by De Santis and Chuvieco [5]. Our 
second objective was to assess the relative performance of dNBR and RdNBR for creating classified 
burn-severity images in the northern Cascade Range. We developed empirical relationships between 
the two remotely sensed indices of burn severity and field data, and based on these regressions, 
evaluated the hypothesis that CBI would predict RdNBR better than dNBR, in terms of variance 
explained and classification accuracy, thereby confirming that RdNBR provides a better surrogate for 
the fire effects quantified by CBI. Empirical assessment of burn severity in the study area to date is 
limited to one fire [32]. Our results, based on local data from multiple fires and a large number of 
plots, provide a basis for classifying and interpreting remotely sensed burn-severity images from past 
and future fires in the Cascade Range.  

2. Methods 

2.1. Study Area 

The four fires in this study burned in the northern Cascade Range of Washington, USA (Figure 1). 
They span the climate and types of vegetation that burn within the northern Cascade Range [33–35] 
(Table 2). The Camel Humps and Arctic fires burned in subalpine forests. The area where the Arctic 
fire occurred, experiences greater annual precipitation and lower temperatures than the other fires, 
reflected in a mesic species composition, dominated by Abies lasiocarpa, Tsuga mertensiana, and 
Abies amabilis. Dominant tree species in the Camel Humps fire were Abies lasiocarpa and Picea 
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engelmannii. About one third of the Camel Humps fire had burned in the 1994 War Creek fire; these 
areas were dominated by grasses and sprouting shrub species (e.g., Salix, Ribes and Vaccinium). The 
Flick Creek fire covered the largest elevation range, but plots were principally located in lower 
elevations of the fire, in mixed-conifer forests of Pseudotsuga menziesii, Pinus ponderosa, and Abies 
grandis. Plots on the Tripod fire spanned the widest range of forest types, from Pinus contorta stands 
that burn predominantly with high severity, to Pseudotsuga menziesii, Pinus ponderosa, and Larix 
occidentalis forest types that burn more often with low and moderate severity [36–38]. 

Table 2. Characteristics of locations burned by fires included in study. Precipitation and 
temperature are 1971 to 2000 averages. Ranges are given for the large fires and reflect 
spatial variation in gridded climate data within the fire [39–41]. 

Fire Name 
Fire 
Year 

Fire Size  
(ha) 

Elevation  
(m) 

Mean Annual 
Precip. (mm) 

Mean July Max.  
Temp. (°C) 

Mean Jan. Min. 
Temp. (°C) 

Flick Creek 2006 2,856 335–2,186 750–1,709 15–29 −11–−6 

Tripod 2006 70,753 1,179–2,307 426–939 15–27 −14–−8 

Arctic 2008 35 1,364–1,810 2,387 18 −8 

Camel Humps 2008 53 1,608–1,917 1,757 19 −8 

Figure 1. The four fires assessed in this study, labeled and outlined in black, are located in 
the northern Cascade Range of Washington, USA. The polygon within the Tripod fire is an 
area that burned approximately 30 years earlier, and was unburned by the fire. 
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2.2. Field Data 

The primary field-based assessment of burn severity, used on all four fires, was the Composite Burn 
Index (CBI). On the two larger fires, Tripod and Flick Creek, CBI plot locations were selected via 
stratified random sampling. Plots were stratified by burn severity, forest cover, accessibility, and on 
the Tripod fire, physiography. Plots were located in fairly homogenous patches of a given severity 
type. In order to maximize the number of plots in the two smaller fires, Arctic and Camel Humps, plot 
locations were created by transferring the gridded burn-severity images into grids of points and then 
selecting a random sample of points spaced at least 60 m apart within each fire. Collection of CBI data 
was overseen by personnel who had experience with fire ecology in the northern Cascade Range, and 
followed the standard protocol [3]. On the Arctic and Camel Humps fires the GeoCBI was assessed 
concurrently with the CBI. Plots on the Tripod, Camels Humps, and Arctic fires were 30 m in 
diameter. Plots on the Flick Creek fire, installed in conjunction with another study, were 22.6 m in 
diameter.  

The weighted versions of the CBI could not be calculated on all plots. Percentage cover of each 
stratum was not consistently recorded on the Flick Creek and Tripod fires, and CBI data collection on 
these fires occurred prior to the introduction of GeoCBI in the literature. The WCBI was calculated for 
the 146 plots that had proportional-cover data for each stratum. It was unclear if the authors of the 
GeoCBI intended for strata to be weighted by the pre-fire or post-fire FCOV [5]. Pre-fire FCOV was 
usually greater and corresponded with the area assessed for each stratum, therefore we calculated 
WCBI and GeoCBI based on the pre-fire FCOV. Because the individual rating factors on the GeoCBI 
protocol were slightly different, it was assessed only on the 52 plots in the 2008 fires that were 
installed after the GeoCBI method was published.  

Table 3. Field data. 

Fire Name Fire Year Data Collected 
CBI Plots 

(WCBI, GeoCBI)* 
Forest Plots Total 

Flick Creek 2006 2007 100 (39, 0) 0 100 

Tripod 2006 
2007 0 (0, 0) 388 388 
2008 43 (0, 0) 0 43 
2009 56 (55, 0) 0 56 

Arctic 2008 2009 24 (24, 24) 0 24 

Camel Humps 2008 2009 28 (28, 28) 0 28 

Total 251 (146, 52) 388 639 

* WCBI and GeoCBI were implemented on subsets of the CBI plots.  

In addition to the 251 CBI plots, data from 388 “forest plots” from a study of the Tripod fire were 
also used to assess burn severity (Table 3). These plots included measurements of individual tree 
canopy scorch, char height, tree mortality, and a burn-severity index of surface fuel consumption. To 
convert these measurements into CBI scores, numerical CBI scores for two different strata, the 
substrates and overstory trees (equivalent to the combined intermediate and dominant tree strata on the 
CBI from), were determined based on (1) a burn severity index for the substrates and (2) the average 
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plot canopy scorch percentage, maximum char height, and tree mortality for the overstory trees. The plot 
CBI score was calculated based on the average of substrates and understory CBI scores (Table 4) [42]. 
Exploratory data analysis showed no statistical difference between models based on CBI plots and CBI 
scores calculated from forest plots [15], so both were used.  

Table 4. Factors used to convert forest plot measurement to CBI scores. 

CBI Score 3 2.5 2 1.5 1 0.5 

Substrates  

Substrate burn severity index >5 >4 >3 >2 >1.67 >1 

Overstory (intermediate and dominant) trees  

Canopy scorch percent >95 >70 >30 >10 >5 >0 

Percent tree mortality 100 >69 >49 >29 >9 >0 

Maximum char height (meters) >7 >5.4 >3.9 >2.9 >1.8 >0.9 

2.3. Remotely Sensed Data 

Burn-severity images for the 2006 Tripod and Flick Creek fires were downloaded from the 
Monitoring Trends in Burn Severity website [43]. Pre-fire images were from one or two years before 
the fire, and post-fire images were from the year after the fire. For the smaller 2008 Camel Humps and 
Arctic fires, which were not available online, we identified cloud-free Landsat image pairs with 
matching phenology (Table 5). Burn-severity images were produced by the US Geological Survey 
National Center for Earth Resources Observation and Science (EROS) following standard protocols 
of the Monitoring Trends in Burn Severity project. Image data were geometrically registered,  
terrain-corrected, and radiometrically corrected. The NBR index was calculated for pre-fire and  
post-fire images and inspected for co-registration accuracy. NBR images were differenced for each 
fire-scene pair to generate the dNBR, and the RdNBR was created from the pre-fire NBR and the 
dNBR images [28]. Perimeters based on remote-sensing data are more consistent than other mapping 
methods, particularly in complex terrain [44], therefore fire perimeters were corrected, if necessary, 
based on the remotely sensed burn-severity images. 

Table 5. Imagery used for each fire. 

Fire Year 
Landsat 

Path/Row 
Pre-Fire 

Image Date 
Post-Fire 

Image Date 
Sensor 

Flick Creek 2006 46/26 8/7/2005 7/28/2007 Landsat 5 TM 
Tripod Complex 2006 46/26 8/7/2005 7/28/2007 Landsat 5 TM 

Arctic Creek 2008 46/26 9/2/2006 9/10/2009 Landsat 5 TM 
Camel Humps 2008 46/26 9/2/2006 9/10/2009 Landsat 5 TM 

2.4. Statistical Modeling and Classification Accuracy Assessment 

The relationship between field-based data and remotely sensed measurements of burn severity was 
estimated using linear and non-linear models. Previous studies have used CBI as a response variable 
[12,27,45] and as a predictor variable [1,2,46], but because regression analysis typically implies a 
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causal relationship between one or more predictors and a response, we use CBI as a predictor because 
burn severity causes changes in reflectance, not the other way around. This allows us to use the 
variable that has the greatest certainty associated with its meaning (CBI) to predict the variable that has 
no inherent ecological meaning (dNBR or RdNBR). Additional advantages of using CBI as a predictor 
variable include the ability to directly compare our results to the first regional study comparing dNBR 
and RdNBR [1], and to easily predict threshold values for image classification for dNBR and RdNBR 
from any CBI value.  

DNBR and RdNBR pixel values were sampled at plot locations in ArcGIS Version 9.2 using 
bilinear interpolation, which calculates a value at a point location by identifying the four nearest pixel 
centers, weights each based on its distance from the target point, and then assigns a value based on the 
weighted average of the four pixel values. Exploratory data analysis indicated that bilinear 
interpolation performed better than nearest neighbor (the value of the nearest cell) or cubic convolution 
(the distance-weighted value of the nearest 16 cells) [15]. As in previous studies [1,2,6,9,11–14], a 
non-linear model of the relationship between the field-based and remotely sensed data was usually 
necessary. To model dNBR or RdNBR (y) as a function of CBI, WCBI or GeoCBI (x) we used the 
following model form: ݕ ൌ ܽ ൅  ௖ (5)ݔܾ

where a, b, c are estimated coefficients, except in cases where a linear model was sufficient. 
Exploratory data analysis showed that the above model, though visually very similar to the models 
used by Miller and Thode [1], had lower standard error of the estimates, and all the parameter 
estimates were significant [15].  

Table 6. CBI severity category definitions *. 

Severity Category CBI Values Description 

Unchanged 0–0.1 
One year after the fire the area was indistinguishable from pre-fire 
conditions. This does not always indicate the area did not burn. 

Low 0.1–1.24 
Areas of surface fire occurred with little change in cover and little 
mortality of the structurally dominant vegetation.  

Moderate 1.25–2.24 
The area exhibits a mixture of effects ranging from unchanged to 
high severity within the scale of one pixel (30 m2). 

High 2.25–3.0 Vegetation has high to 100% mortality. 
* CBI severity category definitions follow Miller and Thode [1]. 

Based on the models, CBI threshold values were used to predict dNBR and RdNBR threshold 
values. Because CBI is a continuous index, any CBI value can be used with the regression equation to 
predict associated classification threshold values for dNBR or RdNBR; the choice of CBI values can be 
made according to the desired application. We chose CBI values that would facilitate comparisons of 
classification thresholds and burn-severity levels among different study areas. The thresholds between 
the four severity classes—high, moderate, low, and unchanged—were based on the same CBI values that 
were used by Miller and Thode [1] and Soverel et al. [12], and burn severity category descriptions follow 
those of Miller and Thode [1] (Table 6). 

DNBR and RdNBRs were compared based on model R2 and the accuracy with which plots and pixels 
were classified. The classification accuracy was calculated from a confusion matrix showing the 
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classification of field plots (columns) and remotely sensed pixels (rows) of each model [47]. Confusion 
matrices were used to compute (1) the producer’s accuracy (percentage of CBI plots classified correctly 
in each class), (2) the user’s accuracy (percentage of pixel values classified correctly in each class), 
(3) the overall accuracy (percentage of correct classifications across all classes) [47], and (4) the kappa 
statistic, a measure of overall accuracy compared to random classification [47]. Kappa values of 1 
indicate a 100% agreement and kappa values of 0 indicated that the classification was no better than a 
random assignment.  

To evaluate the different methods of measuring burn severity in the field, models predicting dNBR 
and RdNBR based on CBI and WCBI scores were compared on one subset of data (n = 146), and 
CBI, WCBI, and GeoCBI are compared on a smaller subset of data (n = 52). To compare the two  
burn-severity indices, dNBR and RdNBR, the full data set of 639 field plots from all four fires was 
used. All statistical analysis and classification accuracy assessments were performed in the statistical 
programming language R [48]. 

3. Results 

3.1. Comparison of CBI Indices 

Regression models predicting dNBR based on CBI had higher R2, overall accuracy, and Kappa 
values than those based on WCBI or GeoCBI (Table 7), although differences between the three indices 
were not large. Therefore, contrary to our first hypothesis, there was no indication that WCBI or 
GeoCBI consistently performed better than CBI. For regression models predicting RdNBR, CBI 
performed better than WCBI using the data set of 146 plots (Figure 2). WCBI had better classification 
accuracy than CBI in the low-severity class, but worse classification accuracy than CBI in the 
moderate- and high-severity classes. 

Figure 2. Regression models for the WCBI data set (n = 146) between (a) dNBR and CBI, 
(b) dNBR and WCBI, (c) RdNBR and CBI, and (d) RdNBR and WCBI. Using WCBI 
instead of CBI allowed for the use of a linear model, but a similar amount of variance was 
explained in all models. 
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Figure 2. Cont. 

 

Regression models for CBI, WCBI and GeoCBI using the data set of 52 plots explained a similar 
amount of variance (Figure 3). WCBI had slightly higher classification accuracy than CBI and GeoCBI, 
but these differences were not dramatic (Table 7). The difference in the individual rating factors in the 
GeoCBI did not lead to any better or worse classification accuracy than the WCBI (Table 7). 

Figure 3. Linear regression models for the GeoCBI data set (n = 52) from the two fires 
measured after the GeoCBI was published in 2008. Models are for (a) dNBR and CBI, 
(b) dNBR and WCBI, (c) dNBR and GeoCBI, (d) RdNBR and CBI, (e) RdNBR and 
WCBI, and (f) RdNBR and GeoCBI. 
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Table 7. Variance explained and overall accuracies for models using CBI, WCBI, and GeoCBI.  

Field Index Remotely Sensed Index Number of Plots R2 Overall Accuracy Kappa 

CBI dNBR 146 0.53 63 0.459 

WCBI dNBR 146 0.47 55 0.368 

CBI dNBR 52 0.44 56 0.417 

WCBI dNBR 52 0.38 40 0.205 

GeoCBI dNBR 52 0.40 42 0.227 

CBI RdNBR 146 0.47 55 0.371 

WCBI RdNBR 146 0.43 51 0.323 

CBI RdNBR 52 0.60 56 0.378 

WCBI RdNBR 52 0.59 58 0.409 

GeoCBI RdNBR 52 0.60 52 0.336 

Classification accuracy in the moderate- and high-severity classes decreased when WCBI, as opposed 
to CBI, was used (Table 8). The increased classification accuracy in the unchanged and low-severity 
classes reflects differences in WCBI and GeoCBI from CBI scores in low- and moderate-severity plots. 
Scores were more consistent in unchanged and high-severity plots. WCBI and GeoCBI plot scores were 
mostly lower than CBI scores when the CBI score was between 1.0 and 2.0 (Figure 4), primarily due to 
differences between the CBI and WCBI scores for the understory strata (Figure 4). 

Table 8. User’s and producer’s accuracy for individual burn severity classes for dNBR and RdNBR. 

Field Data Type  CBI WCBI CBI WCBI GeoCBI 
Number of Plots  146 146 52 52 52 

dNBR 

Producer’s accuracy 

Unch. 75 80 91 91 91 
Low 39 47 45 20 27 
Mod. 66 52 42 32 33 
High 68 58 67 29 25 

User’s accuracy 

Unch. 63 63 77 67 71 
Low 35 46 42 25 36 
Mod. 72 60 83 46 40 
High 68 53 27 17 17 

RdNBR 
 

Producer’s accuracy 

Unch. 75 73 73 82 73 
Low 39 50 36 27 27 
Mod. 50 42 58 74 67 
High 68 58 50 43 38 

User’s accuracy 

Unch. 63 55 73 75 73 
Low 27 43 36 40 36 
Mod. 69 61 70 61 55 
High 58 46 30 43 38 
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Figure 4. Top: CBI and WCBI for (a) understory strata (substrates, herbs and low shrubs, 
tall shrubs), (b) overstory strata (intermediate trees, and dominant trees), and (c) the plot. 
Bottom: CBI and GeoCBI for (d) understory strata (substrates, herbs and low shrubs, tall 
shrubs), (e) overstory strata (intermediate trees, and dominant trees), and (f) the plot. 
Dashed lines shows theoretical CBI = WCBI, or CBI = GeoCBI.  
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Figure 5. Regression models for (a) dNBR, and (b) RdNBR. 
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indices with respect to explanatory power and classification accuracy. In fact, they often performed 
worse. The poor performance of the weighted versions of the CBI may be because they overemphasize 
the substrates stratum and underemphasize the dominant and intermediate tree strata—which should be 
most closely related to plot reflectance—in their calculation.  

Our second hypothesis was that RdNBR would outperform dNBR in both in terms of variance 
explained and classification accuracy. Although RdNBR showed slightly better classification accuracy 
than dNBR, particularly for the high-severity class, a strong difference in the accuracies of the two 
indices was not apparent. RdNBR may not improve on dNBR in systems where pre-fire reflectance is 
not highly variable, but may be a more appropriate index when comparing burn severity among 
regions. 

4.1. Weighted versions of the CBI 

Weighting the CBI scores by the fraction of cover of each stratum is consistent with remote-sensing 
theory [4,5] and is intuitive. Therefore it was surprising that the WCBI and GeoCBI performed worse 
than the original CBI in terms of R2 and classification accuracy. To understand why WCBI and 
GeoCBI did not perform as well as CBI, a closer look at how the weighted version of the CBI can shift 
burn-severity scores was necessary. Therefore we calculated the “influence” of each stratum on the 
overall plot CBI and WCBI score. For WCBI, influence is equal to the FCOV of a stratum divided by 
the sum of the FCOV for all strata assessed in a plot. The WCBI influence is equal to the GeoCBI 
influence because they are based on the same FCOV values, so for simplicity we use the larger WCBI 
data set in the example that follows. The CBI influence of a stratum is equal to the number of rating 
factors assessed in that stratum divided by the total number of rating factors assessed in the plot. The 
null model would be that each of the five strata has a CBI influence of 0.2. This was not always the 
case because some plots lacked individual strata or individual rating factors were not assessed because 
they were not present. 

Comparing the WCBI influence to the CBI influence reveals the strata that had the greatest effect 
on the plot WCBI scores (Figure 6). WCBI most often modified plot scores by increasing the influence 
of the substrates while decreasing the influence of the tall shrubs, intermediate trees, and dominant trees 
(Figure 6). The average WCBI influence of the substrates stratum was 0.51, much higher than the null 
model of 0.20. The average WCBI influence of the herbs and low shrubs stratum was 0.24, similar to 
the null model. The tall shrubs, intermediate trees, and dominant trees all had lower WCBI influence 
than the null model; 0.06, 0.10, 0.15, respectively. 

Because the substrates had the strongest influence on plot WCBI severity scores, the difference 
between WCBI and CBI reflected the severity of the substrates stratum over other strata. Most 
commonly, the substrates stratum burned with lower severity than the tall shrubs, intermediate trees, and 
dominant trees, causing WCBI and GeoCBI scores to be lower than CBI scores (Figure 7(b,d), Table 11). 
Occasionally, WCBI and GeoCBI increased plot severity scores, predominantly in higher-severity plots, 
by increasing the influence of the substrates stratum when it burned with higher severity than the rest of 
the plot (Figure 7(f), Table 11). It is possible for plots with high variation in the WCBI influence 
between strata to have similar CBI and WCBI scores if burn severity was similar among strata. 
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Figure 6. The influence of each stratum’s WCBI score on the total plot WCBI score 
plotted against the influence of CBI score on the total plot CBI score. Strata that were not 
assessed (i.e., 0% cover) were excluded from this analysis. Dashed lines represent the 
mean CBI and WCBI influence. Comparison of the dashed lines shows that use of WCBI 
increased the influence of the substrates and herbs and low shrubs strata, and decreased the 
influence of tall shrubs, intermediate trees, and dominant trees. 

 

Table 11. Strata CBI scores and FCOV corresponding with plot photos from Figure 5. Plot 
CBI, WCBI, and GeoCBI are also shown.  
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Figure 7. Examples of (a,b) low, (c,d) moderate, and (e,f) high severity field plots. Plots 
on left (a,c,e) are example of plots with little differences between CBI and WCBI. Plots on 
right are examples of plots where the use of WCBI notably decreased (b,d) or increased (f) 
the estimate of field-based burn severity.  

 

WCBI occasionally changed the plot score so that it better reflected actual conditions on the 
ground, by decreasing the influence of a stratum that burned with different severity from the rest of the 
plot and covered only a small portion of the plot. Nevertheless, based on the overwhelming influence 
of the substrates stratum compared to the other strata (Figure 6), we suggest that the weighted versions 
of the CBI were less accurate because they overvalued the substrates stratum and undervalued the 
intermediate tree and dominant tree strata. In optical remote sensing, the tree strata should have the 
strongest influence on reflectance, because trees (1) obscure the reflectance of lower strata, and 
(2) have greater biomass and leaf area index for a given amount of cover. 

Quantifying how each stratum contributes to overall plot reflectance in mesic mixed-conifer and 
subalpine forests, perhaps based on leaf area index, would facilitate the development of a more robust 
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weighting scheme [4]. Meanwhile, the greater influence of the dominant tree strata on plot reflectance 
could be addressed by following the methods of Soverel et al. [12], who weighted the dominant tree 
stratum twice as strongly as the other strata to account for its greater influence on reflectance. 
Alternatively, the influence of the substrates stratum on the overall score could be lessened by 
weighting it by pre-fire fraction of cover of burnable material (i.e., the combined cover of litter, duff, 
and woody fuels), limiting its influence to the null level of 0.2, or fitting weighting parameters to each 
stratum.  

4.2. DNBR and RdNBR 

We expected categorized images of burn severity based on RdNBR to have higher classification 
accuracy than those based on dNBR [1,2]. R2 values for the models using dNBR were slightly higher 
than for the models using RdNBR, but classifications based on RdNBR had slightly better 
classification accuracy. The performance of RdNBR therefore falls in between the results of Miller and 
Thode [1], who found that RdNBR performed better than dNBR in the Sierra Nevada, and the results 
of Soverel et al. [12], who found dNBR had higher classification accuracy than RdNBR in the 
Canadian boreal forest and the Canadian Rockies. One possible explanation for similarity between 
dNBR and RdNBR in the northern Cascade Range is that pre-fire vegetation cover in the northern 
Cascade Range is consistently high, particularly compared to the Sierra Nevada. With little difference 
in pre-fire reflectance, the absolute change measured by the dNBR would be similar to the relative 
change measured by the RdNBR. 

We consider both dNBR and RdNBR to be suitable for producing categorical burn-severity images 
in areas with continuous forest cover in the Cascade Range. Our overall classification accuracies were 
within the range found in California and Canada [1,2,12] (Table 12). RdNBR was designed for 
locations where pre-fire reflectance is variable [1,2], and has been shown to perform better there than 
dNBR. In contrast, RdNBR may not improve on dNBR where vegetation cover is continuous and pre-
fire reflectance is relatively uniform, such as in the northern Cascade Range.  

Because both dNBR and RdNBR can be used to produce classified burn-severity images with 
similar classification accuracy in the northern Cascade Range, selection of dNBR or RdNBR should be 
based on the particular management or study goals. Given that classification thresholds from RdNBR 
are more robust for extrapolation to fires not included in the original study [2], and the slightly higher 
classification accuracy of RdNBR—particularly for the high-severity class—researchers and managers 
wishing to apply the regional classification thresholds developed in this study to additional fires in the 
northern Cascades region and beyond may be best served by using RdNBR. Conversely, dNBR may 
be better suited to addressing research questions about the absolute change as opposed to relative 
change caused by a fire (for modeling changes to biomass, for example), unburned and low severity 
areas, when the continuous burn severity values are of interest, and when the remotely sensed severity 
of a particular fire is to assessed, particularly if the class thresholds can be further calibrated using 
aerial photography or local field data. 
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Table 12. Classification results for the northern Cascade Range compared to other studies 
in coniferous forest in North America that use CBI to classify dNBR and RdNBR. 

Study Index Location 
Number of 

Plots 
Number of 

Fires 
Overall 

Accuracy 
Kappa R2 

Cocke et al. [45] dNBR 
Coconino National 
Forest, AZ, USA 

92 1 72.8 0.619 0.84 

Miller and Thode [1] dNBR Sierra Nevada, CA, USA 741 14 58.7 0.41 0.49 

Holden and Evans [49] dNBR 
Grand Tetons National 

Park, WY 
53 1 48 0.41 0.66 

Holden and Evans [49] dNBR 
Yellowstone National 

Park, WY 
41 1 59 0.41 0.64 

Holden and Evans [49] dNBR 
Gila National Forest, 

NM 
55 1 71 0.58 0.81 

Soverel et al. [12] dNBR 
Canadian Rockies, 

Canada 
110 3 62.4 0.38 0.69 

Soverel et al. [12] dNBR 
Western boreal forests, 

Canada 
125 3 70.3 0.50 0.70 

This study dNBR 
Northern Cascade Range, 

WA, USA 
639 4 59.0 0.36 0.50 

Miller and Thode [1] RdNBR Sierra Nevada, CA, USA 741 14 59.8 0.41 0.61 

Miller et al. [2] RdNBR 
Sierra Nevada and 
Klamath, CA, USA 

295 25 -- 0.46 0.68 

Soverel et al. [12] RdNBR 
Canadian Rockies, 

Canada 
110 3 68.2 0.52 0.71 

Soverel et al. [12] RdNBR 
Western boreal forests, 

Canada 
125 3 60.3 0.37 0.7 

This study RdNBR 
Northern Cascade Range, 

WA, USA 
639 4 61.7 0.40 0.47 

Our results provide a regional empirical basis for producing categorical burn-severity images; the 
classification thresholds for the burn-severity classes above should be applicable to ecologically 
similar areas, ranging from the Cascade Range in northern Oregon to its northern extent in southern 
British Columbia. Any CBI value can be chosen for a specific application and used to predict dNBR or 
RdNBR values using our regional equations, above. For example, if managers were interested in 
identifying areas with “very high” burn severity due to concerns about delayed regeneration of wind 
dispersed tree species, they could identify a CBI value associated with those ecological effects, and use 
it to predict a dNBR or RdNBR threshold value.  

An additional presumed benefit of RdNBR is consistent classification thresholds across regions. 
Comparisons of this study to others in temperate conifer forests of North America seem to indicate the 
RdNBR may produce more consistent classification thresholds between the moderate-high classes than 
dNBR, but for lower-severity classes the benefit of one index over the other is not evident (Table 13): 
RdNBR values for the moderate-high severity class threshold ranged between 641 and 703 (range = 62), 
and dNBR values for the moderate-high severity class threshold ranged between 367 and 568  
(range = 201). Thresholds for using dNBR were higher than those for the Sierra Nevada presented in 
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Miller and Thode [1] but lower than those developed by Soverel et al. [13] for Canada, and most 
similar to the dNBR thresholds of Key and Benson [3] that were developed primarily with field data 
from Glacier National Park (Table 13).  

Table 13. Severity class thresholds for the northern Cascade Range compared to those of 
other studies in conifer forests of North America that used CBI to classify dNBR and 
RdNBR using data from one year after fire. 

Study Index Location 
Remotely Sensed Class Thresholds* 

Unchanged-
Low 

Low-
Moderate 

Moderate-
High 

Key and Benson [3] dNBR Glacier National Park, MT, 
USA 

100 270 440 

Miller and Thode [1] dNBR Sierra Nevada, CA, USA 41 177 367 
Hall et al. [11] dNBR Boreal forests, Canada 41 284 514 

Holden and Evans [49] dNBR Grand Teton National Park, 
WY, USA 

−35 276 556 

Holden and Evans [49]  dNBR Yellowstone National Park, 
WY, USA 

195 333 575 

Holden and Evans [49]  dNBR Gila National Forest, NM, 
USA 

34 130 434 

Soverel et al. [12] dNBR Canadian Rockies, Canada NA 311 568 
This study dNBR Northern Cascade Range, 

WA, USA 
106 218 456 

      
Miller and Thode [1] RdNBR Sierra Nevada, CA, USA 69 316 641 

Holden et al. [50] RdNBR Gila national forest, NM, 
USA 

NA NA 665 

Dillon et al. [46] RdNBR Grand Canyon National Park, 
AZ, USA 

NA NA 695 

This study RdNBR Northern Cascade Range, 
WA, USA 

189 372 703 

*The CBI class thresholds used to determine the remotely sensed class thresholds mostly follow those of Miller and Thode [1] (Table 6). 

Holden et al. [50] used a CBI value of 2.2 based on a 75% overstory mortality threshold or for the moderate-high class. Hall et al. [11] 

used CBI values of 0.3, 1.6, and 2.3 based on field observations. Key and Benson [3] did not specific associated CBI values, and instead 

used a 7 class system. Their “moderate-high” threshold shown here is for their moderate-low and moderate-high severity classes; their 

dNBR threshold between the moderate-high and very high severity classes was 600. 

Because of the similarities between the high-severity classification thresholds across regions, and 
the better classification accuracy of the high-severity classes, managers and researchers may be best 
served by focusing on moderate and high severity in future analyses. We found that the high- and 
moderate-severity classes had the highest classification accuracies, whereas the classification accuracy 
for the low-severity class was poor. Other studies have also found that the high-severity class can be 
classified with the greatest accuracy [1,45]. Also, RdNBR class thresholds for the high-severity class are 
more consistent across studies in different regions than dNBR class thresholds (Table 13). Focusing 
primarily on high and moderate severity should not present a problem to researchers and managers, as 
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high-severity fire causes the greatest ecological change and is therefore often of most interest. If low and 
unchanged severity are of interest, they may be better represented as one class instead of two. Methods 
of analyzing the distribution [51,52] and spatial pattern [53] of uncategorized, continuous, remotely 
sensed burn severity data should also be explored and assessed in a variety of ecological settings. 

4.3. Future Research 

In order for additional methods to be useful for assessing burn severity across larger geographic 
areas, they must be cost efficient, produce results in a timely manner, and be easily implementable; these 
benefits must be balanced with the need for high accuracy [17]. Continued evaluation of how the 
classification accuracy of field-based and remotely sensed metrics of burn severity vary between 
regions, and how classification accuracy is influenced by the ecological variability included in an 
assessment, will improve our understanding of the relative merits of different remote-sensing methods.  

CBI provides a standardized method of aggregating multiple factors relating burn severity into one 
index, and its widespread use demonstrates its utility. We found that WCBI and GeoCBI did not show 
any improvement in classification accuracy over the original version of the CBI, because they increase 
the influence of the substrates stratum, while decreasing the influence of the intermediate and 
dominant tree strata, on the overall plot severity score. Consequently we recommend that other 
weighting methods that do not overemphasize the substrates at the expense of the overstory be 
developed and tested. Diligent recording of the pre-fire and post-fire fractional cover of every stratum 
on plots should continue in future studies so that additional methods of calculating CBI can to be 
evaluated. 

No other methods of remote sensing of burn severity have been operationally implemented over as 
large a region or over as temporally deep a time period as dNBR and RdNBR. Therefore, knowledge 
of how to best select between the two indices for a given location or application is of continued 
consequence. Focused and rigorous investigation of how pre-fire cover influences explanatory power 
and classification accuracy is needed so that the best index can be selected for a particular location. 
Collection of CBI data within a region should be targeted so that areas with continuous pre-fire cover 
and areas where pre-fire cover is spatially variable are both measured and can be compared. 
Uncertainties regarding classification thresholds can be addressed by emphasizing the high-severity 
category, which usually has greater classification accuracy. The high-severity threshold values for 
RdNBR seem to be relatively consistent across multiple regions; values in Table 13 range from 641 to 
703. An analysis of all the available CBI data that tests for consistency of the high-severity RdNBR 
thresholds, would help determine if one RdNBR high-severity threshold can be used across all temperate 
conifer forests in western North America.  

Further development of more accurate and transferable methods of remotely sensing burn severity is 
also needed. A variety of other factors, such as pre-fire mortality due to insects, spatial variation of 
inorganic substrates, and fine-scale spatial variation in burn-severity may have contributed to the slightly 
lower R2 values found in this study compared to others. Methods using a time series approach may be 
able to separate out disturbance that occurred before the fire from the impact of the fire itself [54]. The 
use of spectral mixture analysis to separate out different fire effects, such as the cover of unburned 
vegetation and charred vegetation, may also provide a more direct mechanistic link between remotely 
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sensed data and fire effects [17,26]. Use of sensors with greater spatial resolution than that available 
from Landsat satellites may also improve accuracy of burn severity mapping, but currently, 
affordability and processing requirements limit the use of these data for analyses of large areas. As 
more accurate methods are developed and tested, they will likely be adopted by programs like MTBS, 
and used to map severity across large regions.  

5. Conclusions 

Our analysis illustrates two cases in which methodological refinements—one of a field-based index 
of burn severity (the Composite Burn Index) and the other of a remotely sensed index of burn severity 
(the differenced Normalized Burn Ratio)—show to be advantageous in the area they were developed 
(the Sierra Nevada mountains of California USA, and the Mediterranean, respectively), did not show 
the same improvement when used in a new location (the northern Cascade Range of Washington, 
USA). We were unable to reproduce the improved performance of geometrically structured Composite 
Burn Index (GeoCBI) over the original Composite Burn Index (CBI), as was observed in 
Mediterranean ecosystems. Nevertheless, methods of calculating the CBI that weight all strata 
(including the substrates strata) by their proportional cover in their calculation should be evaluated in 
the future. Within our study area in the northern Cascade Range of Washington, USA, there was little 
difference in the explanatory power and classification accuracy of models predicting dNBR vs. 
Relative differenced Normalized Burn Ratio (RdNBR), but the high-severity threshold for RdNBR 
may be more consistent across regions than the threshold for dNBR. The relationships between the 
CBI and the dNBR and CBI and the RdNBR capture about 50% of the variance and classify severity 
with about 60% accuracy, suggesting that the methodology is applicable and useful but could use 
improvement. Studies comparing burn severity of fires within the Cascade Range of northern Oregon 
through southern British Columbia will likely be served well by either index, but comparisons across 
regions may be served best by RdNBR.  
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