
Remote Sens. 2012, 4, 404-423; doi:10.3390/rs4020404 
 

Remote Sensing 
ISSN 2072-4292 

www.mdpi.com/journal/remotesensing 
Article 

An Object-Based Image Analysis Method for Monitoring Land 
Conversion by Artificial Sprawl Use of RapidEye and IRS Data 

Stéphane Dupuy 1,*, Eric Barbe 2 and Maud Balestrat 2 

1 CIRAD, UMR TETIS, 500 rue François Breton, F-34398 Montpellier, France 
2 IRSTEA, UMR TETIS, 500 rue François Breton, F-34093 Montpellier Cedex 5, France;  

E-Mails: eric.barbe@teledetection.fr (E.B.); maud.balestrat@teledetection.fr (M.B.) 

* Author to whom correspondence should be addressed; E-Mail: stephane.dupuy@cirad.fr;  
Tel.: +33-567-548-727; Fax: +33-567-548-754. 

Received: 21 December 2011; in revised form: 17 January 2012 / Accepted: 17 January 2012 /  
Published: 2 February 2012 
 

Abstract: In France, in the peri-urban context, urban sprawl dynamics are particularly 
strong with huge population growth as well as a land crisis. The increase and spreading of 
built-up areas from the city centre towards the periphery takes place to the detriment of 
natural and agricultural spaces. The conversion of land with agricultural potential is all the 
more worrying as it is usually irreversible. The French Ministry of Agriculture therefore 
needs reliable and repeatable spatial-temporal methods to locate and quantify loss of land 
at both local and national scales. The main objective of this study was to design a 
repeatable method to monitor land conversion characterized by artificial sprawl: (i) We 
used an object-based image analysis to extract artificial areas from satellite images; (ii) We 
built an artificial patch that consists of aggregating all the peripheral areas that characterize 
artificial areas. The “artificialized” patch concept is an innovative extension of the urban 
patch concept, but differs in the nature of its components and in the continuity distance 
applied; (iii) The diachronic analysis of artificial patch maps enables characterization of 
artificial sprawl. The method was applied at the scale of four departments (similar to 
provinces) along the coast of Languedoc-Roussillon, in the South of France, based on two 
satellite datasets, one acquired in 1996–1997 (Indian Remote Sensing) and the other in 
2009 (RapidEye). In the four departments, we measured an increase in artificial areas of 
from 113,000 ha in 1997 to 133,000 ha in 2009, i.e., an 18% increase in 12 years. The 
package comes in the form of a 1/15,000 valid cartography, usable at the scale of a 
commune (the smallest territorial division used for administrative purposes in France) that 
can be adapted to departmental and regional scales. The method is reproducible in 
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homogenous spatial-temporal terms, so that it could be used periodically to assess changes 
in land conversion rates in France as a whole. 

Keywords: public policy; land use; artificial sprawl; artificialized patch; Object-Based 
Image Analysis (OBIA); France 

 

1. Introduction 

In France, peri-urban development in rural areas, and the development of infrastructure for transport 
and tourism is made possible by the conversion of agricultural land [1–3]. Local dynamics (population 
growth, economic stakes, real estate, the extension of existing infrastructure) and the financial gains to 
be had by property owners, almost systematically lead to the approval of such land conversion. 

The dynamics underpinning such land conversion are considered to have a minor impact at local 
scale, but cause greater concern at the regional scale, and even more at the national scale when 
multiplied by the number of municipalities and accumulation over time. The loss of agricultural land 
may be irreversible as it would be very difficult and costly (if not impossible or at least economically 
unrealistic) to subsequently reclaim this land for agriculture. Consequently, this heritage is being 
destroyed for short term economic gain with no consideration of its collective utility in the medium to 
long term [1]. 

In France, natural areas and aquatic environments are public domain and the need for conservation 
strategies to protect them has been acknowledged [4]. 

In July 2010, a French law for the modernization of agriculture and fishing was passed which 
included the creation of an observatory for land conversion with the objective of reducing land 
conversion by 50% by 2020. To implement this law, a method is needed that would enable monitoring 
of any changes in land conversion at a national scale to help ensure that the objective is met. 

The method must be sufficiently: (i) accurate, to analyze phenomena involved at the municipal/local 
scale; (ii) exhaustive, to accurately account for changes in artificial land conversion; (iii) reliable and 
reproducible in homogenous spatial-temporal terms, so that it could be used periodically to evaluate 
changes in land conversion rates in the country as a whole. 

Remote sensing based on satellite images is an appropriate tool as it enables: (i) land use maps to be 
generated and the location of urban areas to be determined precisely; (ii) large areas to be processed; 
and (iii) the processes to be reproduced sufficiently rapidly to monitor any changes in land conversion 
in a timely manner [5–7]. 

Processing data from satellite images data enables land use objects to be extracted. These then have 
to be aggregated in such a way that they incorporate all the peripheral areas that characterize each class 
(for example linking the edges of buildings (gardens, carparks, etc.)) in the “built-up” class. 
Geographers and urban planners use the urban patch concept [8] as it enables the continuous 
generation of consistent data on urbanized land. It describes an item of information generated by 
mathematical morphology processing and gathers together the different component parts or built-up 
areas (housing, industrial zones, etc.), in accordance with the criterion “continuity distance between 
buildings”. 
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We adapted the urban patch concept to peri-urban and rural contexts. We defined the term “artificial 
patch” in which “artificial” means built up, in the broadest sense of the term (i.e., not only urban areas 
but also roads and railways, quarries, landfills, etc.). 

Constituent objects can be extracted either by photo-interpretation or automatically. As our method 
is intended to be spatially and temporarily reproducible and to be used for vast areas, we opted for 
automatic classification. This is accomplished in three steps that can generate global exhaustive 
information on land “artificialization” to enable monitoring of land conversion over time: (i) mapping 
of artificial land based on satellite images; (ii) creation of “artificial patches”; and (iii) diachronic 
analysis of artificial patch maps to characterize artificial sprawl. 

This article presents the methodological approach based on remote sensing and the concept of an 
artificial patch developed to meet the objectives of the French Ministry of Agriculture.  

2. Definitions 

This paper introduces two specific concepts: 

(1). Artificial patch: this consists of aggregating all the peripheral areas that characterize artificial 
areas to allow the continuous generation of consistent data on “artificialized” areas. It consists of 
applying successive dilation/erosion operations characterized by a continuity distance to the 
artificial areas. The artificialized patch concept is an innovative extension of the urban patch 
concept. The principle is similar but our definition of the artificial patch differs from that of the 
urban patch in its components and in the continuity distance used: 

− We defined three main categories of constituent objects: (i) housing areas; (ii) commercial 
and business areas; and (iii) facilities and infrastructure (including quarries and landfills). 

− We applied a continuity distance of 100 m, which is the best compromise in peri-urban and 
rural areas. This distance was defined after trials revealed overestimation of the artificial 
area when the standard continuity distance of 200 m was used to calculate urban patches, 
and underestimation when a distance of less than 100 m was used 

(2). Artificial sprawl: this concept describes the irreversible land conversion by artificialized areas. It 
is calculated by diachronic analysis of artificial patches. 

3. Study Area and Dataset 

3.1. Study Area 

The Languedoc-Roussillon region is a territorial collective located in the South of France. It is 
composed of five departments (Aude, Gard, Lozère, Hérault and Pyrénées-Orientales). The region 
covers 2,737,600 ha and had a population of 2,548,000 in 2007. 

For the last three decades, population pressure in Languedoc-Roussillon has led to rapid and poorly 
managed urbanization of the coastal plain, notably that of the most productive land in the region. The 
topography of the territories and coastal development policies have led to an imbalance in both the 
population and in the distribution of activities over the region, and hence to “coastalization” (the 
concentration of populations and activities along the coastline [9], which is characteristic of the 
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Mediterranean basin). The region’s demographic growth is concentrated in the major cities and their 
peripheral extensions, all of which are situated within 30 km of the coast [10]. On the coastal plain, the 
construction of housing and infrastructure, and the development of economic activity zones (which has 
increased with demographic growth), have led to significant pressure on land resources. Successive 
crises in the wine making sector and subsequent vineyard clearances and reconversion policies have 
had a negative impact on agricultural activities in general. There is intense land speculation on the 
fringes of the main urban areas in the region. Most land located close to urban areas that is cleared of 
vines is sold and urbanized. The remaining lands are subject to agricultural reconversion or are planted 
with high quality vines [11]. This phenomenon is deemed marginal at the local scale but takes on a 
whole new dimension when considered at the regional scale. The loss of this strategic agricultural 
heritage is a major concern for the institutions and stakeholders in the agricultural sector who fear that 
the disappearance of these farmlands may be irreversible. The method we developed was applied at the 
scale of the four coastal departments of Languedoc-Roussillon (Aude, Gard, Hérault and Pyrénées-
Orientales), all of which have undergone significant urban growth in recent decades (Figure 1). 

Figure 1. The study area in the Languedoc Roussillon region, in the South of France. The 
method was applied at the scale of the four coastal departments. 

 

3.2. Image Dataset and Pre-Processing 

Two different datasets of HSR multi-spectral satellite images were used to map changes in artificial 
sprawl. Different datasets were used for each period: RapidEye images for the most recent period 
(2009) and Indian Remote Sensing (IRS) images for the earlier (1996–1997) period. IRS images were 
the only HSR remotely sensed data available that covered the study area during the earlier period. 
Table 1 lists the characteristics of the two datasets. We wanted to use images acquired during spring 
and summer, i.e., when vegetation was in active growth, to limit confusion between bare soils (natural 
or agricultural) and artificial areas.  

RapidEye images are produced by the remote sensors in a five-satellite constellation in use since 
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2008. This constellation can quickly provide homogenous and recent data covering large areas. Images 
are delivered in 25 km large orthorectified blocks with a spatial resolution of 5 m. Sixty-five images 
(acquired during spring and summer, 2009) were required to cover the study area. 

IRS images are generated by two remote sensors: one sensor (LISS) is used to acquire multispectral 
images at a spatial resolution of 23 m, and the other (PAN) for panchromatic images with a spatial 
resolution of 5.8 m. Images from the two sensors (LISS & PAN) were used for our study because 
panchromatic images are required to accurately delineate artificial areas in addition to multispectral 
images. Twelve archive image pairs (LISS + PAN) were used to cover the study area. Images from 
each pair were collected simultaneously. Only eight image pairs were available for spring or summer 
in the archive catalogue, the three other pairs were acquired in the fall. Images are delivered without 
geometric correction. Each image was orthorectified using the LPS module of ERDAS IMAGINETM 

ERDAS, Inc. (GA, USA) software based on a digital elevation model with a spatial resolution of 50 m 
and orthophotos with a spatial resolution of 0.5 m produced by the French National Geographic 
Institute (IGN). The images were resampled to match the spatial resolution of the RapidEye images 
(5 m). Finally, mosaics were built for the whole study area using each image dataset. 

Table 1. Characteristics of remotely sensed datasets: RapidEye and Indian Remote Sensing 
(IRS) satellite images (B: Blue; G: Green; R: Red; RE: Red Edge; NIR: Near infrared; 
SWIR: Shortwave Infrared). 

Satellite Sensor Footprint 
Spatial 

Resolution
Spectral 

Resolution 
Acquisition Date 

Number of 
Blocks 

RapidEye 1, 2, 
3, 4, 5 

 25 km 5 m 
B, G, R, RE, 

NIR 
Spring and summer 2009 65 

IRS 1C LISS 70 km 23 m 
G, R, NIR, 

SWIR 

Fall 1996 (3 images)  
Spring and summer 1997  

(8 images) 
12 

IRS 1C LISS 70 km 5.8 m Panchromatic
Fall 1996 (3 images)  

Spring and summer 1997  
(8 images) 

12 

3.3. Ancillary Data 

Given the difficulties involved in extracting roads from remotely sensed images, linear vector data 
from the BDCarto® database were also collected for roads in the study area. BD CARTO® is a 
mapping reference database produced by IGN and uses a departmental scale (1:50,000). These linear 
vector data were converted into polygons by building buffers. The buffer widths depended on the type 
of road: 10 m for two lane roads and 20 m for multi-lane highways. 

4. Methods 

A three-step method was designed to characterize artificial sprawl between 1997 and 2009 (see 
workflow diagram in Figure 2) including: (i) fine-scale mapping of artificial areas by processing the 
HSR satellite images acquired for each period; (ii) building artificial patches from each map; 



Remote Sens. 2012, 4              
 

 

409

(iii) performing diachronic analysis of artificial patches to characterize changes in artificial sprawl 
between 1997 and 2009. 

This method enabled areas to be assigned to one of the two following classes:  

• “artificial areas”, including urban fabric, industrial and commercial areas, mineral extraction, 
dumps, construction sites, and roads. We considered that these objects represent “sustained 
urbanization” ( i.e., a return to “non artificial” is not feasible)  

• “non artificial areas” including all the other land uses: agriculture, forests, water, etc. 

Figure 2. Order of steps in the fine characterization of artificial sprawl. 

OBIA

Mathematical
Morphology

Artificialized
patch for 2009

OBIA

Mathematical
Morphology

Artificial areas in 1996 -
1997

Artificialized patch 
for 1996 - 1997

Artificial areas in 
2009

Thematic
data RapidEye 2009

Thematic
data

IRS
1996 - 1997

GIS 
analysis

Artificial sprawl
1996-1997 / 2009

1

2

3

 

4.1. Mapping Artificial Areas from OBIA 

When high resolution is used (i.e., when the pixels are significantly smaller than the object 
concerned, [12]), the spectral information in an image is spatially heterogeneous and the pixel no longer 
corresponds to the object. This was the case in our study: artificial areas in HSR images are composed 
of pixels with different spectral behaviors (roofs, roads, parks, etc.) distributed in a disorganized 
way throughout the area. Many researchers have pointed to the limited accuracy of this method 
of classification, the “salt and pepper” effect being responsible for this drawback (e.g., [6,13–19]).  
Object-based image analysis (OBIA) has proven to be an effective way of solving this problem. First, a 
segmentation process identifies and builds up homogeneous regions (segments or image objects) to 
delineate the objects to be taken into account. Next, the objects are classified using spectral as well as 



Remote Sens. 2012, 4              
 

 

410

spatial information such as texture, shape and context features to more clearly distinguish spectrally 
similar land cover types. Most comparative studies that have compared OBIA and pixel classification 
approaches reported that OBIA provides the most accurate results (e.g., [19–23]). Recent advances in 
OBIA have revolutionized the processing of high to very high spatial resolution remote sensing data by 
providing effective computer-assisted classification techniques whose results are close to the quality of 
manual photo-interpretation, while also being much faster, cheaper and reproducible over large areas 
(e.g., [6,7]). 

We developed two specific OBIA procedures to map the artificial areas for each period using 
eCognition Developer 8 software (see Sections 3.1.1 and 3.1.2). With this software, fuzzy 
classification can be used to extract objects of interest at the scale desired. To this end, a hierarchical 
image object network able to simultaneously segment images at fine and coarse scales is created from 
the multi-resolution algorithm, and a hierarchical classification scheme is built to allow semantic 
organization of the classes. A complete description of the multi-resolution algorithm (region-growing 
algorithm) can be found in [24–26]. Fuzzy classification improves class description, using 
understandable linguistic concepts built from expert knowledge, and facilitates fusion of 
heterogeneous multi-source information including non-image data [25]. 

The classification process we developed will be easy to transfer to other areas since: (i) the fuzzy 
classification introduces flexibility in defining classification rules; and (ii) the expert knowledge 
classification method allows thresholds to be changed between each image, and classes to be added if 
the context is different [7,27]. 

The fuzzy classification method combined with expert knowledge classification means the 
definition of classes can be adapted to each individual context 

4.1.1. Procedure for Classification of RapidEye Images Acquired in 2009 

To map artificial areas, we developed an OBIA procedure comprised of two successive steps of 
segmentation-classification (Figure 3). The first step allows the area to be stratified into regions of the 
same nature. The second step consists of reclassifying each of these regions to extract artificial objects. 
This method allows the parameters and thresholds of each class to be adapted to the local context. 

Next we provide a short description of the procedure. The segmentation parameters and feature 
classes for each step are summarized in Table 2. 

Step I, “classification of coarse land cover” allows the landscape to be stratified into six land cover 
categories: C1-“agriculture areas”, C2-“coastal wetlands”, C3-“forest areas”, C4-“roads”, C5-“water 
surfaces”, C6-“urban areas”. To this end, a coarse segmentation level is first created by implementing 
the multi-resolution segmentation algorithm using information from both thematic (roads) and raster 
(all bands of RapidEye) layers. In this way, the study zone is segmented according to the limits of both 
thematic data to product coarse land cover objects. Second, each object is assigned to a land cover 
category using fuzzy classification rules based on thematic attributes for the C4 category, and raster 
attributes (spectral and context) for the other categories (see Table 2). For example, the normalized 
difference vegetation index (NDVI) was used to distinguish artificial and agriculture areas. Finally, 
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neighboring objects in the same category are merged into a single object using the merge algorithm 
included in the software. 

Step II, “extraction of artificial area” allows all artificial objects to be extracted and assigned to one 
of the three categories extracted in Step I: C1-“agricultural areas”, C3-“forest areas” and C6-“urban 
areas”. To this end, a finer segmentation level based on image object limits in step 1 and RapidEye 
band information is first obtained by using the multi-resolution segmentation algorithm. This 
segmentation level is needed for satisfactory delimitation of all artificial objects including small 
isolated objects. Then, each object at this level inherits the land cover categories from step I using 
class-related features at the super-object level. An “artificial areas” class is allocated to all objects in 
the C4 category. For each object classified in C1, C3 and C6, category specific classification rules 
based on spectral and textural attributes (see Table 2), are used to distinguish the “artificial areas” 
class. For instance for objects that belong to the C3 category, a classification rule based on near 
infrared information is used to separate “vegetation objects” from “building objects”, the latter being 
extremely small and isolated in this region [28]. Finally, manual classification processing is performed 
to reduce confusion between artificial objects and agricultural or semi-natural bare soil objects that 
have very similar spectral and textural behaviors. 

Figure 3. OBIA procedure for mapping artificial areas from 2009 RapidEye images. This 
procedure is composed of two successive segmentation-classification steps. 

1 : Classification of coarse
land cover

Classification Classification

Coarse classes:
agriculture area, coastal
wetlands, forest areas,
roads, urban areas, water

2 : Extraction of artificial
objects

Classes:
Artificial areas,
non artificial areas

Segmentation

Merge

Segmentation

Manual classification
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Table 2. Parameters used in the multi-resolution segmentation and image object classification in 2009 and 1996-1997 of the OBIA (B = Blue, 
G = Green, R = Red, RE = Red Edge, NIR = Near infrared, PAN = IRS panchromatic; (1) and (2) = weight used in segmentation). 

  Segmentation Classification 
  Parameters Object Features 

Illustration   Spectral band and 
thematic layer Scale Form Compactness RapidEye IRS Thematic 

Layer Context 

20
09

 

Phase 1
RapidEye : B(1), 
G(1), R(1), RE(1), 
NIR(1) and roads 

750 0.4 0.6 

B: standard deviation, ratio, Haralick 
second moment, Haralick Contrast 
and Haralick dissimilarity 
G : mean of outer border and ratio 
RE : Mean of outer border 
NIR : mean 
Brightness 
NDVI 

not used roads Distance to 
classes 

Agriculture areas

Urban areas

Forest areas

Phase 2
RapidEye : B(1), 
G(1), R(1), RE(1), 
NIR(1) and roads 

80 0.3 0.9 

B : mean, ratio, Haralick second 
moment, Haralick Contrast and 
Haralick dissimilarity 
R : ratio 
RE : ratio, standard deviation 
Brightness 
NDVI 

not used roads 

Existence of 
super object  
Relative area 
of classes Agriculture areas

Urban areas

Forest areas  

19
96

–1
99

7 IRS : PAN(2) 
LISS(1) and 
artificial areas in 
2009 

35 0.1 0.5 not used 

PAN : Haralick 
entropy and 
Haralick contrast 
 
NDVI 

artificial 
areas in 
2009 

not used 

Agriculture areas

Urban areas

Forest areas
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4.1.2. Procedure Used for Classification of IRS Images Acquired in 1997 

In this procedure, we consider that the artificialization of a territory is permanent, i.e., artificial 
areas built in the past will be present in the future. The procedure thus consists of checking to see if the 
artificial areas extracted from the 2009 images were also visible in the archive images. It is based on 
OBIA and comprises one segmentation-classification step, which includes the results (artificial areas) 
of processing of the 2009 images, which were used as thematic data input. The segmentation 
parameters and feature classes are summarized in Table 2. First, the segmentation level was created by 
implementing the multi-resolution segmentation algorithm based on information from both thematic 
and raster (with a weight for IRS-PAN twice that of IRS-LISS) layers. The study area was thus 
segmented according to the limits of the artificial areas present on images while retaining the limits of 
thematic data entities (artificial areas present in 2009). Then, each object was classified into “artificial 
areas in 2009” according to their thematic attributes. For each object classified under “artificial area in 
2009”, we checked to see if it was still artificial using fuzzy classification rules, based on spectral and 
textural attributes both from IRS-PAN and IRS-LISS information (see Table 2). 

4.1.3. Map Validation 

As metric accuracy of boundary locations was not required to satisfy the main objective of the study 
(i.e., building artificial patches and indicators from these patches) we did not check the planimetric 
accuracy of the boundaries, but focused on the semantic quality of the classification (i.e., the nature of 
the objects). Obviously semantic quality also depends on planimetric accuracy. Semantic quality is 
assessed using a confusion matrix [29]. Given that the features used for classification are calculated at 
the scale of the object, objects or polygons were chosen as sampling units for the selection of control 
data [30–33]. As the resulting map contains objects of different sizes, from tiny to very large, the 
confusion matrix was computed using the area of the selected control objects (expressed as a number 
of 5 m pixels). To select control data (required for a sample that is spatially and thematically  
well-distributed over the study area [34]), we used an algorithm available in “Hawths Analysis Tools 
for ArcGis” (http://www.spatialecology.com). Next, stratified random sampling was performed using 
grid cells as geographic strata (equal area for all strata). To obtain at least one object from each class in 
each grid cell, the number of cells (N) was made equal to the desired sample size. As suggested by [35] 
and used in other studies (e.g., [7]), 50 samples were taken from each class to build the confusion matrix. 
Considering the size of the study area (and mapping regions), collecting field data for the control sample 
would normally be extremely labor-intensive and time-consuming. As suggested by [22] and [36], 
selected control objects were photo-interpreted using the image with the highest spatial resolution as 
control data. To ensure photo interpretation was objective, the classified map was not viewed during the 
process and the manual photo interpretation was made by an experienced photo-interpreter who was not 
involved in developing the method. Three statistics were extracted from the confusion matrix to assess 
the accuracy of the land cover pressure map [35]: (i) overall accuracy: i.e., the proportion of map pixels 
that are correctly classified (i.e., equivalent to the proportion of real pixels that are correctly classified); 
(ii) user accuracy, i.e., for each class, what percentage of this map class corresponds to this class in reality; 
(iii) producer accuracy, i.e., for each class what percentage of the reality is correctly classified on the map. 
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4.2. Building Artificialized Patches to Monitor Land Conversion 

4.2.1. Mathematical Morphology Operation: Closing 

The extent of geographical objects can be increased by applying a mathematical morphology 
operation called closing, which combines two basic operations called dilation and erosion [8,37–40]. 
In our case, the method used to produce an artificial patch is the successive application of the two 
transform operations to the artificial objects extracted from the satellite images. The successive 
execution of these operations enables the addition of elementary objects (from the same group) [40]. 
However, the dilation and erosion operations have opposite effects. The dilation effect first increases 
the size of building objects. The height and width of dilated components is then the respective sum of 
the heights and widths of the original components and of a structuring element. The erosion operation 
is used to shrink the resulting elements through dilation. The height and width of the eroded element is 
then the respective differences in the heights and widths of the original components and the structuring 
element. Therefore, the area eroded corresponds to the symmetrical element (or residue) of the dilation 
process [41]. 

The structuring element is defined by its shape and size. The shape of the structuring element has an 
effect on the contours of the modified object; a square filter will highlight angular elements while a 
round filter will soften the contours [42]. In this study we applied a round structuring element in order 
to generate artificial patches with smooth contours (Figure 4). 

Figure 4. The mathematical morphology operation used to produce an artificial patch. The 
process combines two basic operations, dilation and erosion to merge separate objects. 

Structuring
element Buf fer

Initial objects
(f rom classif ication)

Eroded object

Dilatation

Erosion

Dilated object

 

The size of the structuring element is linked to the distance between the buildings to be taken into 
account in order to decide if they belong, or not, to the same zone (which buildings are bounded within 
a single polygon?) The weaker the continuity criterion, the more fragmented the artificial patch, which 
therefore depends on the type of object under study and the accuracy of the data used.  
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4.2.2. Determining the Artificial Patch Envelope: Choosing a Continuity Distance between Buildings  

Current research on the choice of a building continuity distance is generally based on a building gap 
threshold of 200 m (a 100 m radius), which is internationally used for the definition of urban areas. 
This definition results from the development of a urban nomenclature that is shared worldwide and 
corresponds to the distance that a person can comfortably walk between two houses [38]. However, it 
may not be suitable for the definition of an artificial patch, whose accuracy and characterization 
depend on the mode of detection and on the spatial resolution of the data used in the analysis. 

We tested several distances and evaluated the results obtained by laying the resulting artificial 
patches on aerial photographs. The results showed that a 100-m radius (used to define an urban area) 
tends to include too many non-urbanized areas, while a 25-m median radius overexpresses sprawl in 
densely artificialized areas. 

Given these results, we decided that a 50-m median radius was sufficient to monitor land 
conversion in rural, peri-urban and urban areas. A study conducted by the Certu Institute (Research 
institute for the study of networks, transport, urban planning and state building projects) and the CETE 
Institute (Research institute for the development of infrastructure) supported our choice [43]. The 
artificial patch generated did not significantly encroach on surrounding rural areas and allowed us to 
retain a 1 to 2 ha minimum data collection unit. 

5. Results and Discussion 

5.1. Accuracy of Map of Artificial Objects Using HSR Imagery 

We validated the results of the classification of artificial areas for 2009 and 1996–1997. The overall 
accuracy for 2009 was 90.57%. This is a very good classification rate for an automatic classification 
method. Errors were the result of the method’s inability to distinguish between non-cultivated 
agricultural/rocky areas and artificial areas. 

Concerning the 1996–1997 classification, the IRS images had a lower spatial resolution, which 
reduced the detection of isolated buildings. We used the 2009 results as a mask to reduce the error rate. 
The overall accuracy obtained was 88.33%. 

The user accuracy and producer accuracy values obtained are listed in Table 3. They confirm the 
high quality of the results. 

Table 3. User and producer accuracy for artificial areas in 1996–1997 and 2009. 

  User Accuracy Producer Accuracy Overall Accuracy 

2009 
Artificial Areas 86% 80% 

90% 
No Artificial Areas 92% 95% 

1996–1997 
Artificial Areas 82% 93% 

88% 
No Artificial Areas 94% 85% 
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5.2. Monitoring Land Conversion Using Artificial Patches 

At the end of the classification process we developed, we extracted images of artificial areas from 
the RapidEye images of 2009 and the IRS images of 1996–1997 (Figure 5). 

Figure 5. Result of the classification: Artificial areas in 1996–1997 and 2009. 

Artificial areas in 1996 - 1997 Artificial areas in 2009  

Two artificial patches were generated covering the four coastal departments in Languedoc-Roussillon 
in 1996–1997 and 2009. An extract of these results is shown in Figure 6. 

Figure 6. Result of the dilation/erosion process: artificialized patches in 1996–1997 and 2009. 

Artificialized Patch in 1996 - 1997 Artificialized Patch in 2009  

These two artificial patches were then combined and used to identify any increase in urban sprawl 
between 1996–1997 and 2009, and also to quantify land conversion. Figure 7 shows the spatial 
progression of land artificialization. Figure 8 shows an extract of artificial sprawl at a coarser scale. 
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Figure 7. Combining the artificialized patches enabled us to locate and quantify artificial 
sprawl between 1996–1997 and 2009—fine scale extract. 

  

The increase in artificial areas in our study area amounted to 20,000 ha, i.e., 0.8% of the total area 
of the four coastal departments. However, this represents an approximate 8% increase in artificial areas 
(Table 4).  

Table 4. Increase in artificialized patch areas between 1996–1997 and 2009. 

  Area in hectares 
Name of 

Departments 
Total Area 

(ha) 
Artificialized Patch 

in 1996–1997 
Artificialized 
Patch in 2009 

Artificial 
Sprawl 

Pyrénées-Orientales 416,139 43,174 46,349 3,175 
Hérault 624,789 77,475 84,470 6,995 
Gard 588,826 68,746 75,583 6,837 
Aude 634,700 53,000 55,304 2,304 
Total 2,264,454 242,396 261,707 19,311 

These results illustrate the differences in the degree of pressure on each territory in the study area. 
The Hérault and Gard departments showed the largest increases in artificial sprawl: approximately 
7,000 ha in both departments and an increase in urban sprawl of 9% and 9.9% respectively. Figure 9 
shows the artificial sprawl for each department. 
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Figure 8. Combining the artificialized patch enabled us to locate and quantify artificial sprawl between 1996–1997 and 2009: Coarse scale extract. 
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Figure 9. Increase in artificial sprawl between 1996–1997 and 2009. 
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To identify the nature of these changes, we also produced a roadless “artificial patch”. Table 5 
shows that in this case, growth for the four departments analyzed increased from 8% to 18%. The 
increase in off-road artificial areas was highly significant (18% in 12 years). It mainly reflects the 
urban sprawl phenomenon. On the other hand, although including roads in the artificial patch leads to 
an exhaustive representation artificial areas, it partially smoothed land conversion. This is explained by 
the density of the existing road network and its marginal development that minimize the overall 
artificial sprawl. 

Table 5. Impact of roads on artificialized patches on the entire study area. 

 Area in hectares 
Artificial 

sprawl (%) 
 Artificialized patch 

in 1996-1997 
Artificialized patch in 

2009 
Artificialized patch with roads 242,396 261,707 8% 

Artificialized patch without roads 113,469 133,280 18% 

5.3. Improving the Method 

The image processing method developed in this study was designed for use in other study areas, and 
also at a national scale. During the study described here, the image processing method was 
implemented in Languedoc, which allowed us to assess its potential for application at the regional 
scale in a Mediterranean setting, and to adapt it accordingly. 

The method would be worth modifying for use in a different context and then assessing its 
feasibility. Certain lines of research could improve the processing time. Since 1 January 2011, IGN has 
made available its land cover databases to public services free of charge. Knowing how the databases 
were updated, these cannot replace the image processing step in our method. However, it would be 
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useful to combine them with satellite images in order to stratify processing and hence reduce confusion 
between areas of bare soil, agricultural areas, and artificial areas. Using these data would allow us to 
significantly reduce or even eliminate the post classification step and consequently reduce total 
processing time. 

A second improvement to the artificial patch production method would involve adapting the choice 
of the building continuity distance to the type of area under study (urban peri-urban or rural). This 
would involve varying the width of the buffer zone applied to the constituent objects of the artificial 
area produced by the dilation/erosion operation. The nomenclature would have to be extended to be 
able to distinguish the component artificial areas of rural, peri-urban and urban areas, and then to 
define criteria for distances between the corresponding building objects. 

The second possible improvement of the method mentioned above would be particularly useful to 
generate data that could be used for studies of the shape of towns and their spatial distribution. 

6. Conclusions 

This paper describes a generalizable and reproducible method for quantitative and qualitative 
monitoring of land conversion by artificial sprawl. The main innovations consists of: (i) the  
object-based image analysis (OBIA) method used to ensure spatial-temporal reproducibility; (ii) the 
artificial patch concept, which aggregates all the peripheral areas that characterize artificial areas to 
allow the continuous generation of consistent data on artificialized areas. The method comprises three 
steps: (i) fine-scale mapping of artificial areas from the OBIA processing of high resolution spatial 
satellite images; (ii) the building of artificial patches from each map; (iii) diachronic analysis of 
artificial patch maps. This generates information that can be used at a fine scale (1/15,000) to enable 
characterization of artificial sprawl. 

The method was applied to Indian Remote Sensing (1996–1997) and RapidEye (2009) satellite 
image datasets on the South of France (Languedoc-Roussillon). We measured an increase in artificial 
areas from 113,000 ha (1997) to 133,000 ha (2009), i.e., an 18% increase in 12 years. 

The transferability of the method remains to be confirmed. However, the concepts developed and 
the use of OBIA and high-resolution images should ensure transferability. This means that we can 
envisage using this method both at national scale and periodically to observe how land conversion 
phenomena evolve over time. 

In this respect, our innovative method fits in with the French law of July 2010 on the modernization 
of agriculture and fishing, which aims at a 50% reduction in land conversion by 2020. The periodic use 
of this method would enable changes in land conversion to be monitored at a national scale and help 
ensure that this reduction objective is met. 
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