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Abstract: Knowledge of the spatial distribution of biofuel crops is an important criterion 
to determine the sustainability of biofuel energy production. Remotely sensed image 
analysis is a proven and effective tool for describing the spatial distribution of crops using 
vegetation characteristics. Increases in the number of options and availability of satellite 
sensors have expanded the horizon of choices of imagery sources for appropriate image 
acquisitions. The Thailand Earth Observation System (THEOS) satellite is one of the 
newest satellite sensors. The growing number of satellite sensors warrants their comparative 
evaluation and the standardization of data obtained from various sensors. This study 
conducted an inter-sensor comparison of the visible/near-infrared surface reflectance and 
Normalized Difference Vegetation Index (NDVI) data collected from the Landsat 5 
Thematic Mapper (TM) and THEOS. The surface reflectance and the derived NDVI of the 
sensors were randomly obtained for two biofuel crops, namely, cassava and sugarcane. These 
crops had low values of visible surface reflectance, which were not significantly (p < 0.05) 
different. In contrast, the crops had high values of near-infrared surface reflectance that 
differed significantly (p > 0.05) between the crops. Strong linear relationships between the 
remote sensing products for the examined sensors were obtained for both cassava and 
sugarcane. The regression models that were developed can be used to compute the NDVI 
for THEOS using those determined from Landsat 5 TM and vice versa for the given 
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biofuel crops.  

Keywords: biofuel crops; THEOS; Landsat 5 TM; radiometric calibration; 6S model; 
surface reflectance; NDVI; spatial accuracy assessment 

 

1. Introduction  

Knowledge of the spatial information for biofuel crops, which includes the geographical location 
and spatial distribution, are important criteria for determining the sustainability of renewable energy 
production at different spatial scales [1–3]. Remote sensing image analysis has become an effective 
tool for describing the spatial distributions of vegetation characteristics, including crop types and their 
quality, quantity, and geographic distribution over the last 30 years, from local to regional and global 
spatial scales [4,5]. Satellite sensors have a wide range of temporal frequency and spatial resolution, 
from high resolution and narrow swath width to lower resolution and larger swath width. The higher 
resolution systems can provide the spatial details required, but their revisiting periods are somewhat 
longer, particularly when data acquisition is limited by cloud cover. As a consequence, the application 
of multiple satellite sensors for data collection is of great interest among user communities to combine 
data from various observing systems to fill in gaps in observations. It is also valuable to establish a 
relationship between the high-resolution measurements of vegetation and more frequent measurements 
of lower resolution systems [5–10]. The THEOS satellite can acquire both high-resolution panchromatic 
and large-swath multispectral data. It can also be used for frequent revisiting of areas for natural 
resource and environment monitoring, which has numerous applications, such as in cartography, land 
use analyses, agricultural monitoring, forestry management, coastal zone monitoring, and flood risk 
management. Launched in 2008, THEOS, is one of the newest satellite sensors and Thailand’s first 
Earth resource observation satellite [11].  

The increasing number of satellite sensors necessitates cross-sensor standardization of data [5,12]. 
There are several techniques for this evaluation, which include radiometric, spatial, and temporal 
calibration [7,9]. Numerous studies have been done to compare the relative performances of sensors. 
Hill et al. [6] calibrated the radiometric relationship between Landsat 5 TM and field reflectance and 
also compared the radiometric accuracy of Satellite Pour l’Observation de la Terre High Resolution 
Visible (SPOT HRV) and Landsat 5 TM. The results of their calibration indicate that the visible and 
near-infrared wavelengths are highly related. Moreover, a linear relationship was also found between 
both systems for the NDVI information on agricultural, forest, and non-vegetated cover types in 
France. Steven et al. [8] studied the effects of the sensor spectral characteristics of NDVI on sugar beet 
(Beta vulgaris, L.), and showed a strong linear relationships, while establishing conversion factors for 
the Advanced Very High Resolution Radiometer (AVHRR), Advanced Along-Track Scanning 
Radiometer (ATSR-2), Landsat (Landsat 4 Multispectral scanner: MSS, Landsat 5 TM, and Landsat 7 
Enhance Thematic Mapper Plus: ETM+), SPOT-2 and SPOT-4 HRV, Indian Resource Satellite (IRS), 
IKONOS, Sea-viewing Wide Field-of-view Sensor (SEAWIFS), Multi-angle Imaging 
SpectroRadiometer (MISR), MODerate Resolution Imaging Spectroradiometer (MODIS), POLarization 
and Directionality of the Earth’s Reflectance (POLDER), QuickBird, and MEdium Resolution Imaging 
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Spectrometer (MERIS) sensors. Thenkabail [9] compared the visible and near-infrared wavelengths of 
IKONOS and Landsat 7 ETM+ and conducted an NDVI inter-sensor regression analysis for three distinct 
eco-regions of African rainforests and savannas. Their results indicate that the IKONOS visible and 
near-infrared wavelengths have a high degree of correlation with those from ETM+. Inter-sensor 
model equations relating IKONOS NDVI with ETM+ NDVI were also determined for multiple 
sensors over time. Miura et al. [10] compared the products from ASTER and MODIS sensors for the 
visible/near-infrared surface reflectance and spectral vegetation indices (VIs), namely, NDVI and the 
Enhanced Vegetation Index (EVI). The results show that the surface reflectance products and NDVI of 
the two sensors compared well at a global scale.  

Though several studies are available for a variety of satellite sensors that have been applied to crop 
studies, there is no comparative work for the surface reflectance and NDVI between THEOS and 
Landsat 5 TM, especially for cassava and sugarcane [5–10,13–16]. Cassava and sugarcane are 
agricultural crops that are increasingly used for biofuels in Thailand [17]. The Landsat 5 TM sensor 
was selected for comparison because the location and bandwidth of the visible and near-infrared 
channels are similar to those of THEOS followed advice of Hill et al. [6] and it is one of the most 
frequently used sensors for radiometric calibration [6,8] and terrestrial applications [18–21]. In 
addition, Landsat 5 TM was calibrated in 2003 and was further revised in 2007, based on the detectors’ 
responses to pseudo-invariant desert sites and cross-calibration with ETM+ [22]. The important remote 
sensing products for the analysis of radiometric accuracy of a sensor are the surface reflectance and 
Normalized Difference Vegetation Index (NDVI) [5–10]. Thus, this study was conducted with four 
main objectives: (a) to investigate the spectral characteristics of two biofuel crops (cassava and 
sugarcane); (b) to compare the surface reflectance and NDVI between Landsat 5 TM and THEOS; 
(c) to develop NDVI regression models between THEOS and Landsat 5 TM for multiple satellite 
sensors; and (d) to perform classification and spatial accuracy assessment. The results are expected to 
provide an alternate approach for the frequent monitoring of biofuel crops using the THEOS and 
Landsat 5 TM satellites. The study was conducted using data from two provinces of Thailand 
representing a wide range of cassava and sugarcane cultivations. 

2. Study Areas 

Two provinces of Thailand, Nakhon Ratchasima (14°58′20″N and 102°6′0″E) and Suphanburi 
(14°28′12″N and 100°7′48″E), with approximately 1,500–2,000 ha that are planted with cassava and 
sugarcane, comprised the study area (Figure 1). The surface reflectance and NDVI of cassava were 
studied in Nakhon Ratchasima Province, whereas Suphanburi Province was considered for sugarcane. 
A total of sixty biofuel crop sites were sampled in Market Year (MY) 2008/09: thirty samples for 
cassava and thirty samples for sugarcane as depicted in Figure 1. 

3. Materials and Methods 

3.1. Satellite Images 

One THEOS and one Landsat 5 TM image were acquired for the same acquisition period in MY 
2008/09 (Figure 2). The acquisition dates and characteristics of the images are listed in Tables 1 and 2. 
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Figure 1. Study areas and locations of sample fields marked on a THEOS image. (a) Cassava 
site in Nakhon Ratchasima Province. (b) Sugarcane site in Suphanburi Province. 

 
(a) 

 
(b) 



Remote Sens. 2012, 4              
 

 

358

Figure 2. Multispectral images from THEOS and Landsat 5 TM for the study area: 
(a) THEOS for cassava. (b) Landsat 5 TM for cassava. (c) THEOS for sugarcane. 
(d) Landsat 5 TM for sugarcane. 

  
(a)       (b) 

  
(c)       (d) 

Table 1. Acquisition of THEOS and Landsat 5 TM images for the study area. 

Study Area Biofuel Crop Satellites 
Date of Acquisition  

(dd/mm/yy) 
Nakhon Ratchasima  
Province 

Cassava 
THEOS 29/11/08 

Landsat 5 TM 11/12/08 

Suphanburi Province Sugarcane 
THEOS 9 /02/09 

Landsat 5 TM 11/02/09 
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Table 2. Sensor characteristics of four multispectral bands of THEOS and Landsat 5 TM 
used in the study.  

Sensor 
* Spatial  

Resolution (m) 
Band Number  
Abbreviation 

* Spectral  
Range (nm) 

*Center  
Wavelength (nm) 

THEOS 15 TH1 450–520 485 
 TH2 530–600 565 

TH3 620–690 655 
TH4 770–900 835 

Landsat 5 
TM 

30 TM1 450–520 485 
 TM2 520–600 560 

TM3 630–690 660 
TM4 760–900 830 

* THEOS: Geo-Informatics and Space Technology Development Agency (Public Organization) 
(GISTDA), Thailand; Landsat 5 TM: National Aeronautics and Space Administration (NASA), USA. 

3.2. Satellite Data Processing and Analysis 

Images obtained from the THEOS and Landsat 5 TM sensors were corrected geometrically and 
atmospherically. Geometric correction dealt with the spatial distortions, whereas atmospheric 
correction removed the influences of scattering and the absorption of atmospheric molecules and 
aerosols on an object’s reflectance.  

In the geometric correction for inter-sensor comparison, the THEOS image was spatially  
re-sampled at a 15 m spatial resolution using the nearest neighborhood procedure and then set to the 
WGS-84 projection. Ground Control Points (GCPs) were selected on the image and on the topography 
map. Image rectification was based on a first-order polynomial transformation with an acceptable root 
mean square error (RMSE) of about 0.004. Then, the geometrically corrected THEOS image was used 
as a reference for the geometric correction of the Landsat 5 TM image. The Landsat 5 TM images 
were then spatially re-sampled at the THEOS spatial resolution. The same GCPs were selected on the 
THEOS and Landsat 5 TM images. Image rectification was based on a first-order polynomial 
transformation with an acceptable RMSE of about 0.004 [5]. Following geometric correction, the 
satellite images were processed using low pass filtering with a 3 × 3 kernel to solve for any discrepancies 
in the positions of sampling points from the Global Positioning System (GPS). The error from GPS 
measurements ranged from less than a meter to around 30 m and was adjusted accordingly [23].  

The atmospheric correction consisted of three steps. First, the atmospheric correction converted the 
digital numbers (DN) into a spectral radiance at a sensor’s aperture (Lλ) using the sensor’s gains. The 
gains of THEOS and Landsat 5 TM were given on their image header files and the at-sensor spectral 
radiances of THEOS for each band were calculated using the following equation. 

i

i
i

G
DNL THEOS =λ  (1)

where THEOS
iL λ is the spectral radiance at the sensor’s aperture of THEOS for band i (Wm−2·sr−1·μm−1); 

DNi is the digital number of band i; Gi is the gain of THEOS for band i (Wm−2·sr−1·μm−1) as shown in 
Table 3. 
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Table 3. THEOS spectral ranges, gain numbers, and mean exo-atmospheric solar 
irradiances ( λ

iESUN ) for cassava and sugarcane.  

Spectral Range 
(nm) 

*Gain: Wm−2·sr−1·μm−1 ** λ
iESUN  

Wm−2·sr−1·μm−1 Gain Number Cassava Gain Number Sugarcane 
450-520 G6 2.937 G4 1.468  1983 
530-600 G5 2.122 G4 1.501 1813 
620-690 G6 3.420 G4 1.710 1552 
770-900 G4 1.671 G4 1.671 962 

* THEOS image header files; ** Thuillier solar spectrum [24]. 

The spectral radiance at a sensor’s aperture for each band of Landsat 5 TM was calculated using the 
following equation [22]: 

( ) MIN
i

MIN
ii

MIN
i

MAX
i

MIN
i

MAX
i

i LDNDN
DNDN
LLL TMLandsat +−×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−=5λ  (2)  

where TMLandsat
iL 5λ is the spectral radiance at a sensor’s aperture for Landsat 5 TM (Wm−2·sr−1·μm−1); 

iDN  is the digital number of band i; MAX
iDN  and MIN

iDN  are the maximum (255) and minimum (1) 
digital number of band i; MAX

iL  and MIN
iL  (Wm−2·sr−1·μm−1) are the spectral radiances at the sensor’s 

aperture scaled to MAX
iDN  and MIN

iDN , which were stored in the header file of Landsat 5 TM [22]. 
The values of MAX

iL  and MIN
iL  used in this study are shown in Table 4.  

Table 4. Landsat 5 TM spectral ranges, gains ( MAX
iL  and MIN

iL ), and mean  
exo-atmospheric solar irradiances ( λ

iESUN ) for cassava and sugarcane. 

Landsat 5 TM (LPGS) ( MIN
iDN =1 and MAX

iDN =255) 

Spectral Range (nm) 
*Gain: Wm−2·sr−1·μm−1 ** λ

iESUN  

Wm−2·sr−1·μm−1
 MIN

iL  MAX
iL  

450-520 −1.52 193 1,983 
520-600 −2.84 365 1,796 
630-690 −1.17 264 1,536 
760-900 −1.51 221 1,031 

* Landsat 5 TM image header files; ** Thuillier solar spectrum [24]. 

The second step of the atmospheric correction involved the conversion of spectral radiance at the 
sensor’s aperture (Lλ) into the exo-atmospheric top-of-the-atmosphere (TOA) reflectance (ρTOA). This 
process reduces the scene-to-scene variability, also known as the in-band planetary albedo. The  
exo-atmospheric TOA reflectance of the earth was computed based on the following equation [22]: 

)cos(*
** 2

s
i

i

TOA
i

ESUN
dL

θ
πρ

λ

λ=  (3) 

where ρi
TOA is the TOA reflectance (unitless); Li

λ is the spectral radiance at the sensor’s aperture 
(Wm−2·sr−1·μm−1); d is Earth-Sun distance (astronomical units); λ

iESUN  is the mean exo-atmospheric 
solar irradiance (Wm−2·sr−1·μm−1); θs is the solar zenith angle (rad) or the value of the sine function of 
the solar elevation angle.  



Remote Sens. 2012, 4              
 

 

361

Calculation of the TOA reflectance requires the exo-atmospheric solar irradiance ( λ
iESUN ), the 

Earth–Sun distance (d), and the solar zenith angle (θs), which are stored in the header files of THEOS 
and Landsat 5 TM. Tables 3 and 4 summarize the exo-atmospheric solar irradiances ( λ

iESUN ) for the 
THEOS and Landsat 5 TM sensors using the Thuillier solar spectrum [24]. Table 5 presents d in 
astronomical units throughout a one-year period and the values of θs. 

Table 5. Acquisition dates, times, Earth-Sun distances (d), and sun and view geometrics 
(θ: zenith angle and Ø: azimuth angle). 

Sensor 
*Date 

(dd/mm/yy) 
*Time 
UTC 

**Earth-Sun  
distance (d) 

*θsun  
(deg) 

*Øsun 

(deg) 
*θview 

(deg) 
*Øview 

(deg) 

THEOS 
29/11/08 3h13 0.9727 44.30 143.50 34.92 177.57 
9/02/09 3h29 0.9734 43.22 132.65 13.86 199.57 

Landsat 5 
TM 

11/12/08 3h15 0.9693 45.79 144.29 0.07 357.06 
11/02/09 3h29 0.9680 42.41 130.57 0.08 357.06 

* THEOS and Landsat 5 TM image header files; ** Chander et al. [22]. 

Finally, in the last step of atmospheric correction, the exo-atmospheric TOA reflectance (ρTOA) was 
converted into surface reflectance (ρλ). The atmospheric code of the Second Simulation of the Satellite 
Signal in the Solar Spectrum (6S) model was selected for converting the exo-atmospheric TOA 
reflectance into surface reflectance. The input parameters of 6S include: (1) geometric conditions; 
(2) an atmospheric model for gaseous components; (3) an aerosol model (type and concentration); 
(4) spectral conditions; and (5) field reflectance (type and spectral variation). Based on the above 
mentioned input parameters, three atmospheric correction coefficients for each band were obtained 
from the 6S model. Moreover, the atmospheric code for 6S predicts the satellite signal between 0.25 
and 4.0 µm, and assumes a cloudless atmosphere taking into account the main atmospheric effects of 
the absorption by water vapor, carbon dioxide, oxygen, and ozone, and the scattering by molecules and 
aerosols [25]. However, there was a limit to the use of 6S in this study because THEOS is a new sensor 
that is still not defined in the 6S code. Therefore, in this study, the 6S code was applied to THEOS by 
defining the spectral responses of the THEOS sensors as shown in Figure 3 [11]. The 6S modification 
is included in the Appendix. Following the 6S model, three coefficients were used for obtaining 
surface reflectance using the following equation: 

)*(1
*

iiii

iii
i

xbLxaxc
xbLxa

−+
−=

λ

λ
λρ  (4) 

where i
λρ  is the surface reflectance of band i; λ

iL is the measured radiance of band i; ixa , ixb  and ixc  

are three coefficients obtained from 6S model. 
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Figure 3. Spectral responses of the THEOS and Landsat 5 TM multi-spectral sensors 
Source: Geo-Informatics and Space Technology Development Agency (Public Organization) 
[11]; European Space Agency (ESA) [26].  
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3.3. Regressions Analysis and NDVI Computation 

Empirical relationships between the surface reflectance in the visible/near-infrared bands and NDVI 
were developed and analysed for all sensors. Models were evaluated using coefficients of 
determination (R2) and root mean square errors (RMSE). The NDVI computation typically uses 
surface reflectance in the red and near-infrared bands (Equation (5)) for Landsat 5 TM, and THEOS 
sensors: 

RNIR
RNIR

+
−=NDVI  (5) 

where NIR  is the surface reflectance in the near-infrared band, and R  is the surface reflectance in the 
red band. 

The relationship between THEOS (high-resolution) measurements of vegetation and more frequent 
measurements of Landsat 5 TM (lower-resolution) systems were considered. The regression analysis 
relating the NDVI of THEOS and Landsat 5 TM was conducted using their original pixel sizes (15 m 
resolution for THEOS and 30 m resolution for Landsat 5 TM) and the re-sampled pixel sizes of 
THEOS (from 15 m resolution to 30 m resolution) and Landsat 5 TM (from 30 m resolution to 15 m 
resolution).  

3.4. Classification and Accuracy Assessment 

The most widely adopted parametric classification algorithm is the maximum likelihood classifier 
(MLC) method [27–30]. This method was employed to classify the satellite images. Fifty training 
points for each class were used for image classification. The existing knowledge of land use was 
identified by the land use map for MY 2008/09. The THEOS and Landsat 5 TM satellite images 
(Figure 2(a,b)) for Nakhon Ratchasima Province (cassava site) were classified into six classes: water, 
forest, paddy field, sugarcane, and cassava. The satellite images (Figure 2(c,d)) for Suphanburi 
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province (sugarcane site) were classified into four classes: water, forest, bare land, and sugarcane. The 
accuracy assessment of map classification was identified by the overall accuracy, the user’s and 
producer’s accuracies, and the Kappa statistics, which are given in the form of an error matrix that can 
be used to derive a series of descriptive and analytical statistics [31,32].  

4. Results and Discussions 

The inter-sensor relationships are presented and discussed based on the data from the two study 
areas (Figure 1(a,b)). The presents of spectral characteristics of the biofuel crops, a comparison of 
THEOS and Landsat 5 TM, Inter-sensor NDVI regression analysis for multiple satellite sensors, and 
classification and accuracy assessment are presented in the following subsections:  

4.1. Spectral Characteristics of Biofuel Crops 

The spectral characteristics of the two biofuel crops are plotted using the mean of the percent 
surface reflectance of the samples at the center wavelength of the visible and near-infrared bands of the 
THEOS and Landsat 5 TM satellite images (Table 2). The surface reflectance of the biofuel crops, 
based on the satellite sensors, is normalized to surface reflectance using the 6S model. Normalization 
is necessary to account for the variations in sensor degradation, sun angle, and a host of other 
calibration factors listed in Tables 1–5. 

Figure 4. Mean of the percent surface reflectance in the blue, green, red and near-infrared 
bands of THEOS and Landsat 5 TM for cassava and sugarcane. 
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The results show that the spectral characteristics of cassava and sugarcane were similar for both 
sensors (Figure 4). Specifically, the reflectance was low in the visible region (THEOS: TH1, TH2, and 
TH3 bands; Landsat 5 TM: TM1, TM2, and TM3 bands), but high in the near-infrared (THEOS: TH4 
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band; Landsat 5 TM: TM4 band). The results are indicative of the spectral reflectance of vegetation 
that absorbs in the visible wavelengths (500–750 nm) and has reflectance in the near-infrared at  
750–1,350 nm [33]. However, there was a minor difference in surface reflectance in the visible 
wavelength and a significant difference in the near-infrared wavelength between the two crops as 
indicated in Figure 4. The noticeable difference in the surface reflectance of the near-infrared 
wavelength is useful for distinguishing the two types of biofuel crops. The difference between cassava 
and sugarcane in the surface reflectance of the near-infrared band of THEOS (~28%) was higher than 
that of Landsat 5 TM (~20%). As a consequence, THEOS can discriminate between cassava and 
sugarcane better than Landsat 5 TM because the spatial resolution of THEOS is higher than that of 
Landsat 5 TM. 

4.2. Comparison of Landsat 5 TM and THEOS  

Sixty surface reflectance samples were used to compare THEOS and Landsat 5 TM (Figure 1(a,b)) 
results for the visible/near-infrared bands and NDVI of the two biofuel crop fields. Relationships 
between the THEOS and Landsat 5 TM surface reflectances for the visible/near-infrared bands and 
NDVI of the two biofuel crops were also established (Table 6 and Figure 5).  

The results indicated a strong relationship and positive association, where higher visible/near-
infrared and NDVI of THEOS correspond to higher visible/near-infrared and NDVI of Landsat 5 TM 
and lower visible/near-infrared and NDVI of THEOS correspond to lower visible/near-infrared and 
NDVI of Landsat 5 TM. Furthermore, the RMSE was also small significant difference between the 
visible/near-infrared and NDVI of THEOS and Landsat 5 TM in cassava and sugarcane. 

Figure 5. Relationships between THEOS and Landsat 5 TM surface reflectances for two 
biofuel crops. (a) Blue. (b) Green. (c) Red. (d) Near-infrared (NIR) bands. (e) NDVI.  

 
(a)        (b) 
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Figure 5. Cont. 

 
(c)        (d) 

 
(e) 

The results indicate that there is a strong relationship between THEOS and Landsat 5 TM surface 
reflectances of the visible/near-infrared bands and the NDVI of the two biofuel crops and that the 
results are similar to other inter-sensor studies on vegetation [6,8]. Therefore, THEOS has a radiometric 
capability that corresponds with Landsat 5 TM for both cassava and sugarcane. Theoretically, the results 
should be verified for accuracy ground truth spectra along with the acquisition of images. However, 
because of the lack of ground truth spectra, Landsat 5 TM was used instead. 
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Table 6. Statistics linear regressions between THEOS and Landsat 5 TM surface 
reflectances for cassava and sugarcane (95% confidence level). 

Band 
Cassava Sugarcane 

R2 RMSE R2 RMSE 

TH1 0.75 0.46 0.76 0.61 

TH2 0.73 0.73 0.77 1.01 

TH3 0.87 0.60 0.73 1.27 

TH4 0.93 6.42 0.82 1.44 

NDVI 0.94 0.03 0.74 0.04 

4.3. Inter-Sensor NDVI Regression Analysis for Multiple Satellite Sensor Applications 

These results indicated that the relationships between the THEOS and Landsat 5 TM for NDVI data 
for cassava and sugarcane had strong relationships as illustrated in the training data column of Table 7. 
The R2 obtained from the transformation of the lower spatial resolution to the higher spatial resolution 
were higher than that of the opposite transformation, but the RMSE trend is the reverse. Finally, the 
relationships of NDVI at the THEOS resolution (15 m) were better than at the Landsat 5 TM 
resolution (30 m).  

Table 7. Statistics linear regressions between THEOS and Landsat 5 TM at 15 and 30 m 
resolution for NDVI for cassava and sugarcane.  

THEOS vs. Landsat 5 TM (15 m) 
Training Data Testing Data 

R2 RMSE R2 RMSE 
Cassava 0.94 0.03 0.88 0.01 
Sugarcane 0.74 0.04 0.73 0.04 

Landsat 5 TM vs. THEOS (30 m) 
Training Data Testing Data 

R2 RMSE R2 RMSE 
Cassava 0.70 0.05 0.89 0.06 
Sugarcane 0.62 0.14 0.73 0.10 

The intercept (a) and slope (b) coefficients (Table 8) can be used to convert the NDVI in one spatial 
resolution (NDVIDependent) into NDVI in another spatial resolution (NDVIIndependent) using Equation (6). 
These results can help in combining data from both THEOS and Landsat 5 TM in case that data from 
one of them is not available due to various reasons. However, the regression coefficients obtained from 
such a generalization of inter-sensor relationship would vary, most likely, field-by-field, and even 
time-to-time.  

tIndependenDependent NDVIbaNDVI *+=  (6)

For example, the values of Landsat 5 TM at 30 m resolution were re-sampled to THEOS 15 m 

resolution for cassava. Thus, the calculation is based on Equation (7): 

TMLandsatNDVI 5THEOS 7691.00.2338 NDVI ∗+=  (7)
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where the THEOS and Landsat 5 TM subscripts denote sensor derived values for the THEOS and 
Landsat 5 TM sensors, respectively. 

The intercepts (a) and slopes (b) in Table 8 were validated using actual NDVI data for Landsat 5 
TM and THEOS for cassava and sugarcane. The actual data was selected for testing data from the two 
study areas. The predicted NDVI from Landsat 5 TM and THEOS were computed using the intercept 
(a) and slope (b) coefficients from Table 8 instead of equations (6) for the same testing data for 
cassava and sugarcane. 

Table 8. NDVI intercept (a) and slope (b) coefficients for THEOS and Landsat 5 TM 
satellite sensors relationships for cassava and sugarcane. 

NDVIDependent 

NDVIIndependent 

Cassava Sugarcane 
THEOS 

30 m 
Landsat 5 TM 

15 m 
THEOS 

30 m 
Landsat 5 TM 

15 m 
THEOS  

15 m 
- 

a = 0.2338 
b = 0.7691 

- 
a = 0.3417  
b = 0.4833 

Landsat 5 TM  
30 m 

a = 0.249  
b = 0.752 

- 
a = 0.109  
b = 1.038 

 

The results indicate the R2 and RMSE testing data were not different from those of the training data 
(Table 7). All of the R2 indicate strong relationships, and the RMSE were very small. The evaluations 
depicting actual versus predicted NDVI values of Landsat 5 TM and THEOS have a high degree of 
reliability. 

4.4. Classification and Accuracy Assessment 

The spatial resolution capabilities of THEOS (15 m) and Landsat 5 TM (30 m) for 
landuse/landcover (LULC) mapping were compared in MY 2008/09. A classification accuracy 
assessment was performed for the MLC classified maps of THEOS and Landsat 5 TM at the different 
spatial resolutions of 15 m and 30 m, respectively (Figure 6). The LULC classification accuracy of 
THEOS at Nakhon Ratchasima Province (Cassava site) was 96% overall accuracy with a kappa 
coefficient of 0.95, while 93% accuracy and a 0.90 kappa coefficient was achieved by Landsat 5 TM 
(Tables 9 and 10). The LULC classification accuracy of THEOS at Suphanburi Province (sugarcane 
site) was 99% overall accuracy with a 0.99 kappa coefficient, while 96% overall accuracy and a 
0.92 kappa coefficient was achieved using Landsat 5 TM (Tables 11 and 12). The results show that the 
THEOS images were capable of classifying and mapping the LULC with a higher overall accuracy and 
kappa coefficient than the Landsat 5 TM images.  
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Table 9. Error matrix of landuse/landcover (LULC) classification accuracy assessment for 
THEOS images of Nakhon Ratchasima Province (Cassava site). 

M
ap

 D
at

a 

Reference Data 
 Water Forest Paddy field Sugarcane Cassava Total 

Water 2,566 0 6 21 21 2,614 
Forest 0 3,415 0 7 177 3,599 
Paddy field 44 0 8,503 29 28 8,604 
Sugarcane 489 9 156 2,015 548 1,572 
Cassava 39 25 4 18 29,859 29,945 
Total 3,138 3,449 8,669 2,090 30,733 47,979 

Overall Accuracy = 96% and Kappa Coefficient = 0.95 
Producer’s Accuracy    User’s Accuracy 
Water  = 82%    Water  = 98% 
Forest  = 99%    Forest  = 95% 
Paddy field = 98%    Paddy field = 99% 
Sugarcane = 96%     Sugarcane = 63% 
Cassava  = 98%    Cassava  = 99% 

Table 10. Error matrix of LULC classification accuracy assessment for Landsat 5 TM 
images of Nakhon Ratchasima Province (Cassava site). 

M
ap

 D
at

a 

Reference Data 
 Water Forest Paddy field Sugarcane  Cassava Total 

Water 925 0 2 2 44 973 
Forest 0 1,242 0 6 136 1,384 
Paddy field 0 0 3,148 2 9 3,159 
Sugarcane 180 20 3 697 672 1,572 
Cassava 23 3 22 29 10,247 10,324 
Total 3,138 3,449 8,669 2,090 30,733 47,979 

Overall Accuracy = 93% and Kappa Coefficient = 0.90 
Producer’s Accuracy    User’s Accuracy 
Water  = 82%    Water  = 95% 
Forest  = 98%    Forest  = 90% 
Paddy field = 99%    Paddy field = 99% 
Sugarcane = 95%     Sugarcane = 44% 

  Cassava  = 94%    Cassava  = 98% 

Table 11. Error matrix of LULC classification accuracy assessment for THEOS images of 
Suphanburi Province (sugarcane site). 

M
ap

 D
at

a 

Reference Data 
 Water Forest Bare land Sugarcane Total 

Water 1,336 0 5 1 1,342 
Forest 2 560 22 47 631 

Bare land 29 0 10,253 34 10,316 
Sugarcane 0 0 43 16,419 16,462 

Total 1,367 560 10,323 16,501 28,751 
Overall Accuracy = 99% and Kappa Coefficient = 0.99 

Producer’s Accuracy    User’s Accuracy 
Water  = 98%    Water  = 100% 
Forest  = 100%    Forest  = 89% 
Bare land  = 99%    Bare land  = 100% 
Sugarcane = 100%     Sugarcane = 99% 
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Table 12. Error matrix of LULC classification accuracy assessment for Landsat 5 TM 
images of Suphanburi Province (sugarcane site). 

M
ap

 D
at

a 
Reference Data 

 Water Forest Bare land Sugarcane Total 
Water 484 0 0 160 644 
Forest 8 192 33 171 404 

Bare land 9 0 3,691 45 3,745 
Sugarcane 2 14 22 5,604 5,642 

Total 530 206 3,746 5,980 10,435 
Overall Accuracy = 96% and Kappa Coefficient = 0.92 

Producer’s Accuracy    User’s Accuracy 
Water  = 96%    Water  = 75% 
Forest  = 93%    Forest  = 48% 
Bare land  = 97%    Bare land  = 99% 
Sugarcane = 94%     Sugarcane = 99% 

Figure 6. The LULC mapping of Nakhon Ratchasima Province (cassava site). (a) THEOS. 
(b) Landsat 5 TM and Suphanburi Province (sugarcane site). (c) THEOS. (d) Landsat 5 TM. 

 
(a)       (b) 
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Figure 6. Cont. 

  
(c)       (d) 

5. Conclusions 

The paper presents an inter-sensor comparison of Landsat 5 TM and THEOS for surface 
reflectance, NDVI including classification for cassava and sugarcane at various study sites in Thailand. 
It was confirmed that THEOS and Landsat 5 TM are strongly correlated and can serve to be an 
alternate data source to each other in case data from one is not available. The outcome of the study has 
established that: 
(a) The spectral characteristics of cassava and sugarcane were quite similar respectively from both 

sensors specifically in the visible wavelength. However, higher values were found in the  
near-infrared between the two crops where THEOS could offer slightly better discrimination 
between cassava and sugarcane than Landsat 5 TM. 

(b) Significant strong relationships were obtained between THEOS and Landsat 5 TM surface 
reflectance and NDVI for cassava and sugarcane.  

(c) The regression models to calculate NDVI from one satellite can be used for another. But the model 
from Landsat 5 TM to THEOS offered poorer R2. These variations may be due to different spatial 
resolution and also difference in image acquisition day.  

(d) Performance of THEOS and Landsat 5 TM in classifying land cover classes was quite similar. 
THEOS performed slightly better, but not really much of a difference.  This may be due to original 
resolution of Theos is 15 m as compared to 30 m of Landsat 5 TM.  

This study found that the differences in sensor degradations, especially regarding TM5 which has 
been operated far longer than its expected lifespan, may largely influence classification accuracies. 
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Since the original spatial resolution is different between the two sensors, there must be a fundamental 
difference even though this study conducted precise co-registration and re-sampling. This fundamental 
difference may influence the accuracies both in cross-calibration and classification. Moreover, the 
regression results may be different if one uses much coarser spatial resolution, since by doing so we 
expect much less influence from geometric accuracy.  

Further studies are needed for other crops and landuse/landcover types for inter-sensor calibrations 
of radiometric, spatial, and temporal characteristics to overcome problems of data limitation due to 
cloud cover and revisit periods.  
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Appendix 

The 6S code (Version 4.1) was applied to THEOS by defining the spectral responses of the THEOS 
sensors. The spectral response is provided by a step of 0.0025 micrometer (μm) as shown in 6S new 
subroutines. 

6S Main 

program ssssss 
data etiq1/ 
s '(1h*,22x,34h user defined conditions ,t79,1h*)', 
s ' theos 1 ',' theos 2 ', 
s ' theos 3 ',' theos 4 ', 
 
c**********************************************************************c 
c iwave input of the spectral conditions c 
c -------------------------------- c 
c 61 THEOS band 1 (0.450-0.520) c!RS140507 
c 62 THEOS band 2 (0.530-0.600) c!RS140507 
c 63 THEOS band 3 (0.620-0.690) c!RS140507 
c 64 THEOS band 4 (0.770-0.900) c!RS140507 
c note: wl has to be in micrometer c 
c**********************************************************************c 
do 38 l=iinf,isup 
c 132 THEOS band (61,64)!RS140507 
 18 goto (110,111,112,112,114,114,114,114,114,114,114,114 
 s ,114,114,114,114,118,118,118,118,118,118,118,118 
 s ,121,121,121,121,121,121,127,127,127,127 
 s ,128,128,128,128,128,128,128,129,129,129,129,129 
 s ,129,129,130,130,130,130 
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 s ,131,131,131,131,131,131,131,131,132,132,132,132),iwave 
 110 read(iread,*) wlinf,wlsup 
 132 call theos(iwave-60) 
  19 iinf=(wlinf-.25)/0.0025.5 
   isup=(wlsup-.25)/0.0025.5 
  20 continue 

6S New Subroutines: 

 subroutine theos (iwa) 
 real s,wlinf,wlsup 
 common /sixs_ffu/ s(1501),wlinf,wlsup 
 real sr(4,1501),wli(4),wls(4) 
 integer iwa,l,i 

c 1st spectral band of THEOS (multi-spectral) 

 data (sr(1,l),l=1,1501)/72*0., 
 a 0.0045, 0.0083, 0.0163, 0.0322, 0.0658, 0.1340, 0.2759, 0.6278, 
 a 0.6258, 0.6997, 0.7461, 0.7889, 0.8122, 0.8100, 0.8178, 0.8462, 
 a 0.8571, 0.8262, 0.8079, 0.8297, 0.8767, 0.8959, 0.8744, 0.8339, 
 a 0.8267, 0.8917, 0.9372, 0.9430, 0.9339, 0.9244, 0.9443, 0.9874, 
 a 1.0000, 0.9743, 0.8624, 0.5996, 0.3001, 0.1121, 0.0468, 0.0235, 
 a 0.0100, 0.0046, 0.0029, 0.0021, 0.0012, 0.0007, 0.0005, 0.0004, 
 a 0.0003, 0.0002, 0.0002, 0.0001, 0.0001, 
 a 1376*0./ 
c 
c 2nd spectral band of THEOS (multi-spectral) 

 data (sr(2,l),l=1,1501)/ 100*0., 
 a 0.0040, 0.0029, 0.0046, 0.0072, 0.0072, 0.0129, 0.0327, 0.0471, 
 a 0.0614, 0.1537, 0.2979, 0.4166, 0.6152, 0.1537, 0.2979, 0.4166, 
 a 0.6152, 0.7244, 0.7609, 0.8286, 0.8793, 0.8944, 0.8874, 0.8729,  
 a 0.8673, 0.8872, 0.9220, 0.9392, 0.9376, 0.9387, 0.9295, 0.9080,  
 a 0.9140, 0.9554, 0.9807, 0.9837, 0.9803, 0.9724, 0.9625, 0.9587,  
 a 0.9676, 0.9917, 0.9921, 0.9557, 0.8115, 0.4726, 0.2384, 0.1515,  
 a 0.0985, 0.0328, 0.0088, 0.0030, 0.0014, 0.0011, 0.0010, 0.0014, 
 a 0.0018, 0.0008, 0.0004, 0.0001, 0.0001, 
 a 1340*0./ 
c 
c 3rd spectral band of THEOS (multi-spectral) 

 data (sr(3,l),l=1,1501)/ 136*0., 
 a 0.0001, 0.0002, 0.0003, 0.0003, 0.0004, 0.0004, 0.0007, 0.0015,  
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 a 0.0043, 0.0123, 0.0226, 0.0410, 0.0901, 0.2162, 0.4384, 0.7787,  
 a 0.9924, 0.9721, 0.9885, 0.9827, 0.9445, 0.9572, 0.9872, 0.9955,  
 a 0.9960, 0.9995, 0.9986, 0.9966, 0.9846, 0.9567, 0.9292, 0.9154,  
 a 0.9242, 0.9413, 0.9341, 0.8934, 0.8646, 0.8980, 0.9364, 0.9184,  
 a 0.8951, 0.8515, 0.6029, 0.3411, 0.2289, 0.1864, 0.1137, 0.0513,  
 a 0.0254, 0.0170, 0.0118, 0.0072, 0.0040, 0.0026, 0.0020, 0.0017,  
 a 0.0016, 0.0013, 0.0009, 0.0006, 0.0003, 0.0002, 0.0002, 0.0002,  
 a 0.0002, 
 a 1300*0./ 
c 
c 4th spectral band of THEOS (multi-spectral) 

 data (sr(4,l),l=1,1501)/192*0., 
 a 0.0040, 0.0058, 0.0089, 0.0144, 0.0239, 0.0426, 0.0771, 0.1394,  
 a 0.2485, 0.4261, 0.6373, 0.8178, 0.9259, 0.9736, 0.9948, 0.9979, 
 a 0.9783, 0.9377, 0.8928, 0.8580, 0.8402, 0.8466, 0.8644, 0.8853,  
 a 0.9005, 0.9029, 0.8914, 0.8741, 0.8520, 0.8443, 0.8426, 0.8487, 
 a 0.8655, 0.8802, 0.8907, 0.8962, 0.8959, 0.8933, 0.8875, 0.8778, 
 a 0.8656, 0.8489, 0.8264, 0.8018, 0.7738, 0.7451, 0.7199, 0.6983, 
 a 0.6838, 0.6772, 0.6759, 0.6776, 0.6852, 0.6870, 0.6911, 0.6987, 
 a 0.7008, 0.7027, 0.6972, 0.6990, 0.6831, 0.6706, 0.6541, 0.6350, 
 a 0.6144, 0.5937, 0.5775, 0.5668, 0.5600, 0.5481, 0.5187, 0.4568, 
 a 0.3626, 0.2515, 0.1576, 0.0908, 0.0510, 0.0299, 0.0178, 0.0109,  
 a 0.0068, 0.0046, 0.0035, 0.0024, 0.0016, 0.0012, 0.0009, 0.0007,  
 a 0.0005,  
 a 1220*0./ 

 wli(1)=0.43 
 wls(1)=0.56 
 wli(2)=0.5 
 wls(2)=0.65 
 wli(3)=0.59 
 wls(3)=0.75 
 wli(4)=0.73 
 wls(4)=0.95 
 do 1 i=1,1501 
 s(i)=sr(iwa,i) 
 1 continue 
 wlinf=wli(iwa) 
 wlsup=wls(iwa) 
 return 
 end 
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Sensor Required Information to Run 6S 

The 6S option used “0 “: “user condition”. The 6S required pieces of information are: the solar 
zenith angle (SZA), the solar azimuth angle (SAZ), the view zenith angle (VZA) and the view azimuth 
angle (VAZ). 

******************************************************************************** 
Input of band blue for sugarcane  

  0      //user condition 
43.22 132.65 13.86 199.58 02 09  //SZA, SAZ, VZA, VAZ, month, day 
1      // Tropical 
1      //Continental 
10      //visibility (10 km) 
−0.062      //−altitude (0.062 km) 
−1000      //sensor aboard a satellite 
61      //theos Band 1 
1      //non homogeneous surface 
1 1 0.5      //vegetation target, environment, radius (0.5 km) 
−0.0303987     //apparent reflectance RAPP = −ρ(TOA) 

******************************************************************************** 
******************************************************************************** 

Atmospheric correction result of band blue for sugarcane 
* input apparent reflectance : 0.030       * 
* measured radiance [w/m2/sr/mic] : 14.200      * 
* atmospherically corrected reflectance : −0.131     * 
* coefficients xa xb xc : 0.00355 0.18031 0.19496     * 
* y = xa*(measured radiance) − xb; acr=y/(1.+ xc*y)     * 
******************************************************************************** 
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