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Abstract: We have investigated for forest plantations in Chile the stand-level retrieval of 
canopy height (CH) and growing stock volume (GSV) using Airborne Laser Scanner 
(ALS), ALOS PALSAR and Landsat. In a two-stage up-scaling approach, ensemble 
regression tree models (randomForest) were used to relate a suite of ALS canopy structure 
indices to stand-level in situ measurements of CH and GSV for 319 stands. The retrieval of 
CH and GSV with ALS yielded high accuracies with R2s of 0.93 and 0.81, respectively. A 
second set of randomForest models was developed using multi-temporal ALOS PALSAR 
intensities and repeat-pass coherences in two polarizations as well as Landsat data as 
predictor and stand-level ALS based estimates of CH and GSV as response variables. At 
three test sites, the retrieval of CH and GSV with PALSAR/Landsat reached promising 
accuracies with R2s in the range of 0.7 to 0.85. We show that the combined use of  
multi-temporal PALSAR intensity, coherence and Landsat yields higher retrieval 
accuracies than the retrieval with any of the datasets alone. Potential limitations for the 
large-area application of the fusion approach included (1) the low sensitivity of ALS 
first/last return data to forest horizontal structure, affecting the retrieval of GSV in less 
managed types of forest, and (2) the dense ALS sampling required to achieve high retrieval 
accuracies at larger scale. 
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1. Introduction 

1.1. Background 

In recent years, Light Detection and Ranging (Lidar) has become one of the most promoted remote 
sensing techniques for the assessment of various aspects of forest ecosystems, for instance for 
investigating the linkages between forest structure and biodiversity or for quantifying forest 
biophysical parameters such as canopy height (CH), growing stock volume (GSV) and aboveground 
biomass [1–6]. As yet, Lidar is a great sampling tool that allows, with optimized sampling strategies, 
the estimation of regional means and variance of forest resources and structure [7,8].  

A number of investigators have assessed the feasibility of using passive optical imagery to spatially 
extend point-based estimates of biophysical parameters derived from Lidar to wall-to-wall maps. For 
example, the synergy of spaceborne large-footprint Lidar (ICESAT GLAS) and medium resolution 
optical data, primarily from the Moderate Resolution Imaging Spectrometer (MODIS), has been 
exploited to map canopy height and biomass at regional to global scales [9–14]. The synergy of Lidar 
and higher resolution optical data has so far been tested at the regional scale. For example, Wulder and 
Seeman [15] deployed a regression model, relating reflectances in the different spectral bands to 
airborne large-footprint Lidar estimates of canopy height in a 34-km2 forest area in Saskatchewan, 
Canada (R2 of 0.61), to estimate canopy height across an entire Landsat image. At a forest site in 
western Oregon, USA, Hudak et al. [16] tested different spatial and aspatial methods for the 
extrapolation of small-footprint airborne Lidar estimates of canopy height by means of Landsat data.  

The synergy of Lidar and Synthetic Aperture Radar (SAR) has only been studied more recently 
[17–20]. The retrieval of forest aboveground biomass with multi-temporal and multi-polarization 
Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar 
(PALSAR) L-band intensity and interferometric repeat-pass coherence data was tested by Sun et al. [19] 
at a forested site in Maine using airborne large-footprint Lidar derived estimates of biomass for model 
calibration and validation. In addition, interferometric scattering phase center heights derived from the 
Shuttle Radar and Topography Mission (SRTM) Digital Elevation Model (DEM) were considered. 
Sun et al. reported retrieval accuracies of 0.63 and 0.71 and 32.0 and 28.2 t/ha in terms of the R2 
and RMSE when using two polarimetric and dual-polarization PALSAR acquisitions, respectively.  
He et al. [20] tested the retrieval of biomass at a mountainous forest site in southwestern China using 
three ALOS PALSAR dual-polarization acquisitions and airborne Lidar derived estimates of biomass 
for model calibration. At stand level, the retrieval accuracies for single images ranged from 0.67 to 
0.79 in terms of the R2 and improved further when using two PALSAR acquisitions jointly (R2 of 
0.84). The mapping of forest resources by means of Lidar and SAR was tested at the regional scale by 
Englhart et al. [18] and Kellndorfer et al. [17]. In Englhart et al. [18], biomass estimates from a 
number of airborne Lidar transects acquired over Kalimantan, Indonesia, were used to calibrate 
models, relating multi-temporal TerraSAR-X and ALOS PALSAR L-band data to biomass, and 
extrapolated to a 280,000 ha area (RMSE of 79 t/ha, R2 of 0.53). Kellndorfer et al. [17] extrapolated 
airborne Lidar derived estimates of canopy height for a 1,200 km2 area in Maryland, USA, to an area 
of 110,000 km2 using SRTM, National Elevation Dataset (NED) and Landsat data as spatial predictor 
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layers in an ensemble regression tree model. Kellndorfer et al. reported an RMSE of 4.4 m (Pearson 
correlation of 0.71) when independently validating against plot-level forest inventory data. 

1.2. Objectives 

Currently, small-footprint Airborne Laser Scanners (ALS) represent the most deployed type of 
Lidar sensors. Numerous studies have illustrated the use of ALS for the estimation of biophysical 
forest parameters such as canopy height, basal area, growing stock volume and aboveground 
biomass [21–27]. Because of the scanning capability, ALS provide for the spatially explicit mapping 
of forests covered by transects of several hundred meters in width. However, wall-to-wall coverage of 
large forest areas with ALS is in most cases prohibitively expensive, which is why fusion with image 
data is required to generate wall-to-wall maps of forest attributes for larger areas [28]. It follows that 
the goal of the work presented herein was to investigate novel and robust methods for estimating 
canopy height (CH) and growing stock volume (GSV) by spatially extending ALS data using 
spaceborne SAR and Landsat ETM+ imagery, both of which are available globally.  

The study presented in this paper is based on ALS, spaceborne SAR and multispectral optical data 
for an area of approximately 2.5 million ha of forest plantations in Central Chile, all of which were 
acquired in a narrow time span around year 2007. The spaceborne datasets considered were the L-band 
SAR data acquired by ALOS PALSAR and Landsat-7 ETM+ optical data. Between its launch in 2006 
and its failure in 2011, ALOS PALSAR has collected an extensive global database of L-band imagery, 
which in many areas comprises multi-annual coverage in the high-resolution Fine Beam Single- (FBS) 
and Dual-Polarization (FBD) modes [29]. Such multi-annual SAR observations are of value for several 
reasons. In a series of publications, the benefit of using multi-temporal stacks of SAR intensity (in C- and 
L-band) for the retrieval of forest biophysical parameters has clearly been demonstrated [20,30–35]. In 
addition, the multi-annual PALSAR acquisitions allowed for the computation of the interferometric 
repeat-pass coherence, which describes the temporal stability of scattering between two images and 
generally decreases with increasing forest density and height. Despite the long repeat intervals of 
44/46 days of the major hitherto L-band satellite missions (JERS/ALOS PALSAR) and the hence 
increased risk of temporal decorrelation substantially diminishing the forest related information in the 
coherence [31,36,37], spaceborne L-band repeat-pass coherence has shown some potential for the 
retrieval of forest biophysical parameters, in particular in combination with intensity measurements, 
when the imaging conditions were suitable [19,31,36,38]. We also considered the use of Landsat 
optical data, which is available globally and free of cost, as in several studies it was shown that a 
retrieval of forest biophysical parameters based on the fusion of SAR and optical data yielded higher 
retrieval accuracies than that based on either SAR or optical data alone [17,32,39–42]. As modeling 
framework we have adopted randomForest [43], a popular machine-learning algorithm that has proven 
to be robust and computationally efficient and that in recent years has successfully been applied in 
several large-scale forest mapping efforts [13,14,17,41,44–45].  

The extensive remote sensing database together with stand-level forest inventory data were used to 
address a number of specific research questions concerning the performance of a stand-level retrieval 
of CH and GSV by means of fusion of ALS, L-band SAR/InSAR and optical remote sensing: 
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• the performance of a stand-level retrieval of CH and GSV with ALS data in commercial forest  
• the performance of a retrieval of CH and GSV with ALOS PALSAR and Landsat data when using 

stand-level CH and GSV estimates from ALS as surrogate reference for model development 
• the required ALS sampling density (in form of the number of transects that are flown)  

Subsequent research questions were related to the benefit of using (1) multi-temporal stacks of ALOS 
PALSAR backscatter intensity in HH and HV polarizations, (2) L-band interferometric repeat-pass 
coherence and (3) Landsat optical data as spatial predictors in randomForest.  

2. Study Area, Data and Methods 

2.1. Study Area and Field Data  

The study area in Central Chile extended over three Chilean administrative regions (Maule, Biobio, 
and Araucania) and covered parts of the coastal Cordillera and the Chilean Central Valley (Figure 1). 
The forests in the study area are dominated by even-aged plantations of Pinus radiata and to a lesser 
extent (<20% by area) Eucalyptus globulus [46]. Stand-level forest inventory data for 437 stands that 
were collected in the timeframe of the airborne lidar campaigns were provided by the ARAUCO 
timber company. The inventory data were delivered in the form of stand boundary maps with attached 
attribute tables. Stands in the inventory data were characterized by similar species, planting times and 
forest management practices. Within stands, field surveys were carried out in 0.25 ha sample plots. 
The plot density depended on the age and the species and varied between 0.25 and 1 plot per hectare. 
The plots are revisited every four years beginning eight years after planting and continuing until 
harvest (age 24–30). The inventory data provided information about the age, diameter at breast height 
(DBH), CH or stem density as well as derived parameters such as the basal area (BA) or the GSV. The 
DBH was measured for all stems in the plots using calipers. The canopy height (CH) referred to the 
dominant height (i.e., the height of the hundred tallest trees per hectare); the heights of five to seven 
trees per plot were actually measured in the field using clinometers. The growing stock volume (GSV) 
represented the volume of the merchantable portion of the tree stems [m3/ha], which does not include 
branches, stump and tip. The volume was estimated by means of species-specific taper functions. The 
relative stocking (RS) for each stand was determined by relating the observed basal area to that of the 
most productive stands in the same development stage (i.e., age). Among the 437 stands, 424 were 
pine stands and 13 were eucalyptus stands.  The inventory data for the eucalyptus stands included GSV 
(61–442 m3/ha) but not CH. A summary of the pine stand characteristics is provided in Table 1. 

Table 1. Biophysical properties of 424 Pinus radiata stands in the study area. 

 Mean/SD Range 
Canopy Height 24/7 m 8–39 m 

Basal Area 33/10 m2/ha 13–77 m2/ha 
Relative Stocking 70/15% 26–100% 

Growing Stock Volume 276/140 m3/ha 37–768 m3/ha 
Stand Size 6.3/10 ha 1–120 ha 
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Remote Sensing (http://www.gamma-rs.ch) and included absolute calibration [47], multi-looking (1 × 4 
FBD, 2 × 4 FBS) and terrain-corrected geocoding with the aid of the 90 m SRTM-3 Digital Elevation 
Model (DEM) and the orbit data. The geocoded images were resampled to a regular map grid with 
15 × 15 m2 pixel size (Projection: UTM Zone 18 South, Ellipsoid: WGS84). Radiometric correction 
for topographic effects included the compensation for topographic alterations of the pixel scattering 
area according to [48] and normalization with respect to the dependence of surface and volume 
backscatter on the local incidence angle [49]. Gamma-MAP filtering (7 × 7 pixels window size) was 
applied [50] to reduce speckle noise. A mosaic of FBD images for Central Chile is shown in Figure 1.  

The interferometric coherence was computed for image pairs with temporal baselines of 46 or 92 
days and all possible combinations of image modes, including FBD-FBD (HH-HH & HV-HV), FBS-FBS 
(HH-HH) as well as FBS-FBD (HH-HH) image pairs. The interferometric processing consisted of the 
oversampling (2×) of the FBD SLC in the case of FBS-FBD image pairs [51], co-registration of the 
Single Look Complex image pairs by means of cross-correlation of a large number of image chips, 
multi-looking, slope-adaptive range and azimuth common band filtering [52], adaptive coherence 
estimation with window sizes between 3 × 3 and 9 × 9 pixels and terrain-corrected geocoding and 
resampling to 15 × 15 m2 pixel size. In total, coherence images for 11 acquisition date combinations 
were produced (Table 2). The perpendicular baselines were between 40 and 900 m and thus 
significantly shorter than the critical baseline length (12.9 and 6.5 km for FBS and FBD, respectively) 
beyond which complete decorrelation due to nonoverlapping range spectra would occur. 

2.2.2. Airborne Laser Scanner Data 

The geospatial information company Digimapas Chile Aerofotogrametría Ltda. provided  
small-footprint airborne Lidar data for an area of ~2.5 million ha in Central Chile (Figure 1). The data 
was acquired between November 2006 and 2008. The airborne platform that was used consisted of a laser 
scanning system (Riegl LMS-Q560), two digital cameras (Applanix DSS 322) and navigation equipment 
(Applanix POS AV 401). The Riegl LMS-Q560 Lidar has a nominal range resolution of 2 cm and delivers 
an absolute vertical and horizontal accuracy of better than 15 and 25 cm, respectively. During operation the 
height and intensity of multiple discrete laser returns for each laser pulse were recorded. The laser point 
density on the ground varied between 1 and 3 hits/m2 and the scan angles ranged up to 22.5°. Digimapas 
produced and delivered fully geocoded Digital Topographic (DTM) and Surface Models (DSM) with  
1 × 1 m2 pixel spacing. The DTM was generated by filtering out vegetation returns and interpolating 
between ground (last) returns to obtain an estimate for the ground elevation. The DSM was computed from 
the first returns representing the top of the canopy in each 1 × 1 m2 grid cell. The vertical accuracy of the 
DTM was better than 0.75 m (pers. com. Markus Rombach, Digimapas Chile).  

2.2.3. Landsat ETM+ 

From the Global Land Survey 2005, three Landsat 7 ETM+ images were obtained. Two images 
were acquired in 2005 (12/01/2005) and one in 2007 (01/30/2007) under cloud-free conditions over the 
study area in Central Chile. The images were downloaded from the Global Land Cover Facility 
(http://www.landcover.org/). The L1T surface reflectance data were already calibrated and corrected 
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for terrain as well as atmospheric effects [53]. Gaps in the data due to the SLC failure of the ETM+ 
instrument were filled for ~98% with data from other acquisitions.  

2.2.4. Weather Data 

In order to investigate weather related effects on the SAR/InSAR observations, weather data were 
obtained for three weather stations from the US National Climatic Data Center (NCDC). Two weather 
stations were located in the Central Valley in Temuco (38.75°S, 72.633°W) and Curico (34.967°S, 
71.233°W) and a third near the Pacific Coast in Concepcion (36.767°S, 73.067°W). The weather data 
included daily summaries of temperature, precipitation and wind conditions spanning all of 2007. 

2.3. Data Preparation 

2.3.1. Stand-Level Canopy Structure Indices 

A Canopy Height Model (CHM) with 1 × 1 m2 pixel spacing was produced by subtracting the ALS 
DTM from the DSM. A suite of ALS canopy structure indices, characterizing different aspects of the 
forests canopy structure, were computed from the CHM for each stand in the inventory data. The 
indices that were computed comprised the percentiles of the height distribution of first returns in steps 
of 10% (referred to as relative heights RH10 to RH100), the coefficient of variation (CV), mean (ME), 
kurtosis (KT), skewness (SK) and several canopy density indices. Canopy density within each stand 
was estimated at four height intervals by dividing the height range between 2 m and RH90 into four 
equal-length bins [25,54] and estimating the proportion of first returns from heights above the 
respective height threshold, referred to as CD1 (returns > 2 m) to CD4. A Gaussian fit to the profile of 
first return heights was computed as an additional means of characterizing canopy vertical structure 
(i.e., with the number of Gaussians (NG) used to describe the profile). We followed the approach 
described in Hofton et al. [55] for large-footprint Lidar waveforms. For the Gaussian fit to the ALS 
canopy height profiles (see example in Figure 2), the single-bin peak at 0 m height (i.e., the forest 
floor) was not considered so that the Gaussian fit only reflected the vegetation profile. No more than 
three Gaussians were required to describe any of the canopy profiles. 

Figure 2. Segmented canopy height model (left) and height profile of ALS first returns for 
a radiata pine stand with a GSV of 96 m3/ha and a CH of 17 m (right). 
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From the ALOS PALSAR data, the average intensity and coherence were computed within 
each stand. From the Landsat ETM+ imagery, the average reflectance observed in bands 1 to 5 and 7 
were computed. 

2.3.2. Segmentation 

In this study, we focused on the stand-level retrieval of GSV and CH because the stand scale is 
generally of greater interest to land managers. Image segmentation was therefore conducted on the 
ALS CHM using the multi-resolution segmentation algorithm implemented in the eCognition software 
package (http://www.ecognition.com). Segmentation was used to delineate “stand-like” image object 
polygons across the study area. The eCognition multi-resolution segmentation algorithm considers 
within object variance, shape, compactness and smoothness parameters for the identification of 
homogeneous image objects and has shown good performance when used for the identification of 
homogeneous hectare-scale polygons from ALS CHMs [23]. For the segmentation, the CHM was 
aggregated by means of simple block averaging from 1 to 4 m pixels as a tradeoff between preserving 
spatial detail and reducing the amount of data to a level that could be handled by the software in an 
acceptable amount of time. The segmentation parameters (i.e., scale, compactness, smoothness) were 
chosen so that segments had sizes comparable to the polygons in the inventory dataset (on average 
8 ha) and smoothly followed stand boundaries visible in the CHM. For the segments, the same set of 
ALS, ALOS PALSAR and Landsat canopy structure indices that were described in Section 2.3.1 were 
extracted. Segments for which RH90 was below 2 m and/or the canopy density (CD1) below 15% 
were labeled as non-forest and received no further consideration. By masking out all segments with 
low RH90 or CD1, we were able to ensure that all ALS canopy structure indices that were extracted 
from the segments and inventory polygons, respectively, varied within similar bounds. Very small 
segments < 0.5 ha (~1% of all segments) were discarded from the dataset. 

2.4. Modeling 

For modeling the relationship between the suite of space- and airborne-remote sensing data and the 
in situ measurements of CH and GSV we used randomForest [43], a popular ensemble regression tree 
algorithm. In randomForest, a large number of regression trees are grown, each recursively partitioning 
the training data, considering at every node a random selection of predictors. The predictions from all 
regression trees are then averaged to obtain a single estimate. Each regression tree is grown using a 
random selection of samples. The rest of the samples, the so-called ‘out-of-bag’ cases (OOB), are 
estimated via the respective regression trees after training and the obtained OOB predictions for all 
trees are then averaged to obtain an unbiased estimate for the retrieval error. The randomForest 
package also provides tools for evaluating the importance of the different predictors. The appraisal of 
the predictor importance is accomplished by randomly permuting the values of a particular predictor 
(OOB cases) while keeping all other predictors unchanged and putting the data down the developed 
regression trees. The change of the retrieval error then allows inferring on the particular predictors’ 
ability to increase the node purity [56]. The performance of randomForest has been found comparable 
to other machine learning techniques and superior to single regression trees or multivariate regression 
models when used for predicting forest biophysical parameters from remotely sensed data [41,45,57]. 
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Its robustness, computational efficiency and user friendliness have made randomForest one of the 
most applied modeling approaches for the mapping of forest resources at large spatial scales 
[13,14,17,41,44,45,57]. A Matlab port (available at http://code.google.com/p/randomforest-matlab/) to 
the original Fortran randomForest code of Breiman and Cutler was used in this study. In a two stage 
up-scaling approach, randomForest was used for the modeling of 1) the relationship between the ALS 
canopy structure indices and the in situ measurements of CH and GSV and 2) the relationship between 
the ALS-based estimates of GSV and CH and the PALSAR/Landsat datasets. 

2.5. Layout and Spatial Scale of Fusion Experiments 

2.5.1. Test Sites 

The development of fusion-based models incorporating the ALS, PALSAR and Landsat data was 
first performed within three 100 km2 test sites. The test sites were selected so that (1) a wide range of 
stand growth stages were covered, (2) no management activities (e.g., thinning, logging, etc.) had 
occurred during the image acquisition timeframe and (3) a cluster of inventory polygons (i.e., stands) 
was located within each site. Two of the selected test sites were located in the Cordillera along the 
Pacific coast and one in the Chilean Central Valley (Figure 1). In total, 105 inventory stands were 
located within the area of the three test sites. These 105 stands were used for validation purposes only 
(i.e., they were not used for the development of models, relating the ALS canopy structure indices to 
CH and GSV). Information pertaining to the topography, forest characteristics and ALOS data 
availability at each test site is summarized in Table 2. At each of the test sites, ALS-derived estimates 
of CH and GSV for the segments in the ALS CHM were used as response variables in randomForest 
to develop new models, relating all available per-segment PALSAR intensities and coherences as well 
as Landsat reflectances to CH and GSV, respectively. The retrieval accuracy was assessed by 
(1) comparing the OOB estimates for CH and GSV to the per-segment ALS predictions of CH and 
GSV and (2) applying the developed models to the ALOS and Landsat data extracted for the inventory 
polygons that were located within the area of the test sites and comparing the obtained estimates for 
CH and GSV to the respective in situ measurements. 

2.5.2. Extrapolation to Entire PALSAR Frames 

The goal of a fusion of ALS and spaceborne data is eventually to extrapolate estimates of forest 
biophysical parameters from ALS samples (transects) to larger areas without ALS coverage. A key 
question in this respect is how the number of transects flown with ALS affects the retrieval 
performance. To this end, an experiment was carried out in which randomForest models were trained 
using a varying number of simulated ALS transects with constant distance and applying the models to 
predict the CH for entire PALSAR frames (~70 × 70 km2). The extrapolation was tested for the 
southernmost area for which ALS data were available (i.e., the largest of the three ALS mosaics). The 
ALS CHM for this 189 × 90 km2 large area (see Figure 1) was divided into 600 m wide transects, each 
of which crossed the study area in East-West direction. The ALS canopy structure indices were used 
for estimating the CH for each of the segments in the ALS CHM. Segments for which less than 50% of 
their total area fell into a particular simulated transect were not considered as well as segments for 
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which RH90 and CD1 were less than 2 m and/or 15%, respectively. 50% (150) of the simulated ALS 
transects (every other) were used for validation. The rest of the transects were considered for training 
randomForest models, relating the multi-temporal PALSAR FBD/FBS SAR/InSAR and Landsat 
observations to CH. Models were developed for two ALOS PALSAR paths. In each path, the parts of 
two consecutive PALSAR frames (i.e., both were acquired from the same orbit) that covered the ALS 
mosaic were mosaiced to form one image somewhat larger (~90 × 70 km2) than a typical ALOS 
PALSAR frame (70 × 70 km2). One path covered test site 1 and the other test site 2 (i.e., the same set 
of intensity and coherence images that were listed in Table 2 was used). For each of the two paths, the 
corresponding subsets of the Landsat data mosaic were extracted. 

Table 2. Properties of forest in inventory stands (FID) and segments derived from the ALS 
CHM (CH and GSV estimates from ALS) and the ALOS SAR/InSAR imagery available at 
each test site. PALSAR acquisitions for which the weather stations in Concepcion, Temuco 
or Curico reported rainfall (>1 mm) in the two days prior to the sensor overpasses are 
marked with superscript indices ‘c’, ‘t’ and ‘u’, respectively. 

Test 
Site 

Slope 
(Mean/SD) 

CH and GSV 
(mean/SD) 

PALSAR Data 
Date           Mode 

Coherence (Bn) 

1 16/9° 

CHFID: 29/11 m 
CHALS: 25/9 m 

GSVFID: 386/198 m3/ha 
GSVALS: 316/152 m3/ha 

10 Jul. 
10 Oct. 
7 Jan. 

25 Nov. 
11 Dec. 

FBD 
FBD 
FBS 
FBS 
FBStc 

10 Jul. & 10 Oct. (503 m) 
10 Oct. & 25 Nov. (304 m) 

2 2.6/5° 

CHFID: 19/4 m 
CHALS: 17/6 m 

GSVFID: 172/70 m3/ha 
GSVALS: 154/98 m3/ha 

5 Jul. 
5 Oct. 

17 Feb. 
4 Apr. 

20 Nov. 

FBDtc 
FBD 
FBStcu 
FBS 
FBS 

5 Jul. & 5 Oct. (597 m) 
5 Oct. & 20 Nov. (214 m) 
17 Feb. & 4 Apr. (567 m) 
4 Apr. & 5 Jul. (320 m) 

3 6.5/4° 

CHFID:  21/3 m 
CHALS: 16/6 m 

GSVFID: 172/53 m3/ha 
GSVALS: 144/102 m3/ha 

17 Jul. 
1 Sep. 
1 Mar. 
2 Dec. 

FBDtcu 
FBD 
FBS 
FBS 

17 Jul. & 1 Sep. (42 m) 
1 Sep. & 2 Dec. (887 m) 

3 Results and Discussion 

3.1. Stand-Level Retrieval of CH and GSV with ALS 

3.1.1. Retrieval Accuracy 

For the stand-level retrieval of CH and GSV by means of the ALS data, randomForest was applied 
using the default values for the number of regression trees that are grown (500), the number of 
randomly selected predictors that are considered at each node (the square root of the total number of 
predictors) as well as the percentage of bootstrap samples (OOB) that are used for each added 
regression tree to obtain an estimate of the retrieval error (33%). Figure 3 illustrates the stand-level 
OOB estimates for GSV and CH when using all stand-level ALS canopy structure indices as predictors 
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and the in situ measurements of CH and GSV obtained from 319 pine stands as response variables. 
The retrieval accuracy is given with the coefficient of determination (R2), the root mean square error 
(RMSE), the relative RMSE (RMSEr) and the bias. The RMSEr represented the RMSE divided by the 
average GSV and CH in the in situ dataset and the bias was calculated from the difference between the 
average GSV and CH in the in situ dataset and the ALS predictions, respectively.  

Figure 3. randomForest out-of-bag GSV and CH estimates for pine stands based on  
stand-level ALS canopy structure indices versus in situ GSV and CH.  

 

In the case of the GSV retrieval, the R2 was 0.81, the RMSE was 62 m3/ha and the relative RMSE 
was 22% when comparing the randomForest OOB predictions to the inventory data. In the case of CH, 
the R2 was 0.93, the RMSE was 1.7 m and the RMSEr was 7.1%. The bias was negligible in both 
cases. When using independent sets of training (67%) and testing samples (33%), the retrieval 
accuracies did not differ significantly (in the range of 1%) from the OOB results. The number of 
eucalyptus stands in the inventory dataset (13) was too low for developing a species-specific model. 
When applying the model developed for pine to predict the GSV of the eucalyptus stands in the 
inventory dataset, the retrieval accuracy was high (RMSE = 36.5 m3/ha, RMSEr = 18%, R2 = 0.95, 
bias = −1.9 m3/ha).  

3.1.2. Information Content of the ALS Canopy Structure Indices 

The randomForest predictor importance ranking (Figure 4) suggested that the higher range of 
relative heights (except RH100) were most important for the retrieval of the CH as well as GSV. The 
most important predictor in both cases was RH90. Overall, the randomForest predictor importance 
ranking for the retrieval of CH and GSV revealed only minor differences. Noticeable differences were 
only observed in the lower range of relative heights (RH30), which appeared to be somewhat more 
important for the retrieval of GSV. The most important predictors according to randomForest were 
highly correlated. The correlation of the relative heights RH50 to RH90, for instance, was always 
>0.98, suggesting substantial redundancy between the predictors. Also the response variables CH and 
GSV revealed a high correlation of 0.84 (Figure 5). The correlation further increased when only 
considering stands with similar RS. For stands with a RS > 80%, for instance, the correlation of CH 
and GSV increased to 0.91. 
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Figure 4. randomForest predictor importance ranking for the ALS-based retrieval of GSV and CH. 

 

Figure 5. Allometric relationship between GSV and CH for radiata pine stands. 

 

In order to appraise the information content of the different ALS canopy structure indices with 
respect to the forests structural properties in the vertical and horizontal forest growth dimensions, 
accounting for the correlation between the predictor as well as the response variables, we also 
conducted a Canonical Correlation Analysis (CCA). In a CCA, which allows investigating 
interrelationships between two sets of variables (e.g., a set of predictor and response variables), 
weights for each variable are computed that maximize the correlation between weighted linear 
combinations (the canonical variables) of the variables in each of the two datasets [58,59]. Subsequent 
canonical variables maximize the correlation between the two datasets while minimizing the 
correlation with respect to prior canonical variables. For the CCA, we first considered the full set of 
ALS canopy structure indices in the first (predictor) and the in situ estimates of CH and GSV in the 
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second (response) dataset. The CCA generated two canonical variable pairs for which we calculated 
the Pearson correlations (r) with the respective variables in the predictor and response datasets (the  
so-called canonical factor loadings). The canonical correlations between the two canonical variable 
pairs were 0.97 and 0.49, respectively. Both canonical correlations were statistically significant (F-test, 
P < 0.0001). The first pair of canonical variables, which accounted for most (87%) of the variance in 
the ALS dataset, was highly correlated to CH (r > 0.99) and RH90 (r = 0.99), respectively. The second 
canonical variable pair was most correlated to GSV (r = −0.46) and the KT (r = 0.65), RH10  
(r = −0.49) and RH20 (r = −0.47) indices, respectively. The CCA hence pointed out the precedence of 
height related information in the ALS first/last return data. The second canonical variable pair 
suggested though that some of the ALS canopy structure indices (i.e., the KT or the lower range of 
relative heights) added information about forest structural differences in the horizontal forest growth 
dimension. We also conducted the CCA with other inventory parameters in the response dataset (e.g., 
BA, DBH, RS) and observed that, while the first canonical variable was always highly correlated to 
CH (r > 0.99), the second canonical variable was most correlated to RS (r ~ 0.9), which describes basal 
area differences between stands with similar CH but different GSV (Figure 5). 

The CCA as well as the overall minor differences in the randomForest predictor importance ranking 
(Figure 4) for the retrieval of CH and GSV suggested that the retrieval of GSV, an attribute that 
necessarily integrates horizontal and vertical forest structure, largely reflected the allometric 
relationship between CH and GSV. This suggestion was confirmed when converting the randomForest 
OOB CH estimates to GSV using the allometric relationship shown in Figure 5; the allometric 
equation was derived by means of regression. In this case, the GSV retrieval accuracy was only 
slightly lower than that achieved with the randomForest model trained on in situ GSV directly  
(RMSEr = 25%, R2 = 0.76, bias = 1.1 m3/ha). The high accuracy of the GSV retrieval in the case of the 
Central Chilean study area may therefore be attributed to the fact that in plantations the GSV is highly 
correlated to CH.  

The limited capability of the ALS first/last return data to explain the GSV variability due to forest 
structural differences in the horizontal forest growth dimension for stands with similar CH entails that, 
in order to produce GSV estimates without systematic bias when extrapolating from field data to ALS 
transects and eventually to the area covered by the spaceborne imagery, a rather large in situ dataset is 
required to cover not only the full range of GSV but also the regional distribution of RS, which 
influences the allometric relationship between CH and GSV (cf. [60]). For example, when models for 
the prediction of GSV are developed for stands with high RS (> 80%) and then used to estimate the 
GSV for stands with lower RS (<60%), the estimates are strongly biased (RMSE = 85.2 m3/ha, 
RMSEr = 36%, R2 = 0.79, bias = 60 m3/ha) whereas the CH retrieval remains unbiased (RMSE= 2.1 m, 
RMSEr = 9.0%, R2 = 0.89, bias = 0.02 m). More detailed information about the forests horizontal 
structure may be inferred from ALS data when not only considering the first/last returns but also the 
returns from within the canopies. Also a stratified modeling approach might help to reduce systematic 
biases in the GSV estimates. In Gobakken et al. [61], for instance, separate models were developed for 
different forest productivity classes that were classified by means of existing land use maps, elevation 
models and Landsat data for a county in Norway. 
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3.2. CH and GSV Retrieval through Synergy of ALS, PALSAR & Landsat  

3.2.1. Retrieval with All Spaceborne L-Band SAR/InSAR and Optical Images 

Table 3 summarizes the accuracies of the randomForest CH and GSV retrieval at the three test sites 
when using all available spaceborne predictor layers (i.e., up to 18 layers incl. multi-temporal PALSAR 
HH&HV intensities, repeat-pass coherences and Landsat ETM+ reflectances) and the ALS-based  
per-segment estimates for CH and GSV as response variables. Figure 6 illustrates the agreement of the 
obtained CH and GSV estimates for the segments and inventory polygons with the ALS-based 
estimates and in situ measurements, respectively. 

Table 3. CH and GSV retrieval error when using multi-temporal PALSAR SAR/INSAR as 
well as Landsat data as predictors in randomForest and ALS-based GSV and CH estimates 
as response variables. The accuracies refer to the comparison with (1) ALS-based estimates 
of CH and GSV and (2) the inventory data (FID). 

Test Site Retrieval Error 
ALS FID 

GSV CH GSV CH 

1 

RMSE 89.6 4.1 87.2 3.72 
RMSEr 28.3 16.5 22.6 12.9 

R2 0.79 0.82 0.72 0.76 
Bias 0.06 0.01 −15.0 −0.93 

2 

RMSE 43.9 2.53 25.8 1.80 
RMSEr 28.5 15.0 15.0 9.7 

R2 0.81 0.82 0.87 0.86 
Bias 0.37 0.1 −9.4 −1.0 

3 

RMSE 42.6 2.4 43.8 1.8 
RMSEr 29.6 15.6 25.5 8.5 

R2 0.83 0.86 0.87 0.86 
Bias −0.1 0.01 20 −0.51 

When comparing the OOB estimates of CH and GSV with the per-segment estimates from ALS, 
similar accuracies in terms of the R2 and RMSEr were obtained at the three test sites. In the case of 
GSV, the R2 was ~0.8 and the RMSEr was below 30% for all three test sites. In the case of CH, the R2 
was ~0.82–0.86 and the RMSEr was in the range of 15 to 17%. The RMSEs at test sites 2 and 3 were 
about 43 m3/ha (GSV) and 2.5 m (CH), respectively. At test site 1, the RMSEs were higher but since 
the average GSV and CH values were also higher, the RMSEr was comparable to that obtained at the 
other two sites. The bias was always close to zero. The result of the independent validation using 105 
inventory stands was consistent with those obtained when comparing the PALSAR/Landsat OOB 
estimates for CH and GSV to the respective ALS derived estimates. In the case of GSV, the R2 was 
between 0.72 and 0.87 and the RMSEr between 15 and 25%. In the case of CH, the R2 was between 
0.76 and 0.86 and the RMSEr between 8 and 13%. The GSV and CH estimates for the inventory 
polygons generally presented a somewhat larger bias of up to 20 m3/ha and 1 m, respectively. 
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Figure 6. Estimates of GSV and CH obtained through fusion of multi-temporal  
dual-polarization ALOS PALSAR intensities and coherence and Landsat ETM+ data 
versus (1) Lidar estimates of GSV and CH for segments derived from the CHM (grey dots) 
and (2) in situ measurements of CH and GSV (black dots). 

 

3.2.2. Benefit of the Fusion of Multi-Temporal L-Band SAR/InSAR and Landsat Data 

In order to evaluate the benefit of integrating multi-temporal PALSAR FBD and FBS intensity 
images, repeat-pass coherence and Landsat, we repeated the CH retrieval using different combinations 
of the spaceborne datasets; note that we focused on the CH retrieval because the GSV estimates simply 
represented the allometric relationship between CH and GSV (see Section 3.1.2). Eight different 
combinations of predictors were considered: (1) the best FBS intensity image (1×HH), (2) the best 
FBD intensity image (1×HH, 1×HV), (3) all FBD intensity images (2×HH, 2×HV), (4) all FBS/FBD 
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intensity images (4–5×HH, 2×HV), (5) all FBD intensity (2×HH, 2×HV) and coherence images (1×HH, 
1×HV), (6) all FBS/FBD intensity (4–5×HH, 2×HV) and coherence images (2–4×HH, 1×HV), (7) Landsat 
only, (8) Landsat and all FBS/FBD intensity (4–5×HH, 2×HV) and coherence images (2–4×HH, 1×HV). 

Figure 7. CH retrieval accuracy when using different combinations of the ALOS and 
Landsat data as predictors in randomForest. FBS, FBD and ETM stand for FBS intensity, 
FBD intensity and the Landsat data, respectively. FBDi and FBSi/FBDi denote the cases 
where intensities and coherences were used jointly. The white bars show the retrieval error 
when comparing the PALSAR/Landsat OOB against the ALS predictions. The grey bars 
refer to the comparison of the ALOS/Landsat predictions for the inventory polygons and 
the corresponding in situ measurements.  

 

The retrieval accuracies that were achieved when using intensities from only one FBS or FBD 
acquisition were low with less than 50% of CH variance being explained and RMS errors in the range 
of 4 to 6 m at test sites 2 and 3 and 8 to 10 m at test site 1 (i.e., the test site with the highest average 
and maximum CH) when comparing the randomForest OOB against the ALS estimates (Figure 7). As 
was to be expected, the retrieval with the FBD images performed somewhat better than the retrieval 
with FBS since the FBD images included the HV intensity. The integration of multi-temporal intensity 
observations allowed substantial improvements of the retrieval performance. When combining all 
available FBD intensities, the R2 and RMSE improved for about 5 to 12% and 0.25 to 0.8 m, 
respectively. The R2 and RMSE improved further when adding the stack of FBS intensity images for 
6.5 to 12% (R2) and 0.3 to 0.7 m (RMSE). The integration of the coherence images resulted as well in 
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higher retrieval accuracies. When using all available FBS/FBD intensities and coherences, the R2 and 
RMSE were in the range of 0.75 to 0.8 and 3 m at test sites 2 and 3 and 0.60 and 6 m at test site 1, 
respectively. Finally, the R2 and RMSE improved significantly for 6 to 22% and 0.4 to 2 m, respectively, 
when adding the Landsat data to the stack of multi-temporal intensities and coherences. When testing the 
retrieval with only the Landsat data, the retrieval accuracy was roughly comparable to that achieved with 
the multi-temporal PALSAR intensities at test sites 2 and 3. At test site 1 (the test site with the highest 
average and maximum CH), the Landsat image even outperformed the PALSAR imagery with only 
minor improvements being achieved when combining the PALSAR and Landsat imagery. 

The improvement of the retrieval accuracy with the successive integration of multi-temporal 
intensities, coherences and Landsat was generally confirmed when comparing the randomForest 
predictions for the inventory polygons to the corresponding in situ measurements, albeit a number of 
exceptions were noticed. At test site 1, for instance, the R2 decreased for about 5% when adding the 
coherences to the stack of multi-temporal FBD/FBS intensities and at test site 2, the retrieval with the 
best FBS intensity image performed better than the retrieval with the best FBD image. The reason for 
these contradictory results was not clear; they may be sporadic effects due to the much smaller sample 
size in the inventory datasets. 

3.2.3. Contribution of SAR, InSAR and Optical Datasets 

According to the randomForest predictor importance ranking, the HV intensity images were always 
amongst the most important predictors for the retrieval of CH and GSV at all test sites, albeit with 
some differences between the acquisition dates. Figure 8 illustrates the predictor ranking for the CH 
retrieval with all PALSAR intensities and coherences at test site 2. With one exception, the importance 
of the HH intensity images was low. In relative terms, the importance of the coherence images tended 
to be in a “low” to “medium” range compared to the best HV intensity images.  

Figure 8. randomForest predictor importance ranking for the retrieval of CH using all 
ALOS PALSAR imagery available at test site 2. 

 

The randomForest importance ranking not only reflected the different data types (i.e., 
intensity/coherence, HH/HV polarization) but also the changing weather (e.g., rain) and environmental 
(e.g., soil moisture) conditions. At all test sites, the multi-temporal consistency of the L-band intensity 
images was high (Pearson correlations mostly above 0.8), confirming what has been reported for other 
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forest sites [31,62,63]. Figure 9 illustrates the multi-temporal consistency of the intensity and 
coherence images covering test site 2 and the dynamic ranges that were defined with the 5th and 95th 
percentiles. When comparing intensity images that were acquired under dry and rainy conditions, 
respectively, those that were acquired under rainy conditions revealed clear deviations from the 1:1 
line, lower dynamic ranges and, in the case of HH polarization, lower multi-temporal correlations 
between the per-segment intensities in the range of 0.6 to 0.7. Consequently, at test site 2 the HV 
intensity image that was acquired under rainy conditions on 5 July contributed less to the retrieval than 
the HV image from 5 October (Figure 8). In the case of the HH intensity images, those that were 
acquired under rainy conditions (5 July, 17 February) always ranked low in the randomForest predictor 
importance ranking. However, the effect of rain did not entirely explain the differences in the 
importance ranking. The HH intensity images from 5 October and 20 November, for instance, were 
less important for the retrieval than the intensity image from 4 April although all three images were 
acquired during dry periods and had similar dynamic ranges. 

The multi-temporal consistency of the coherence images was lower than that of the intensity images 
with correlations in the range of 0.5 to 0.7 (Figure 9). At all three test sites, the lowest correlations of 
~0.5 were observed when one of the two images that were compared was a HV coherence image. The 
dynamic range of the HH coherence images was consistently in the range of 0.3 to 0.35; in the case of 
HV, the dynamic range was always lower than 0.3. Compared to the intensity observations, the effect of 
rain on the coherence was not as evident. Rain events have been reported to cause substantial 
decorrelation that strongly diminishes forest related information in repeat-pass coherence images because 
of the pronounced associated changes in the dielectric properties of the soils and canopies [36,37]. At 
test site 2, however, the coherence for the HH image pair from 17 February & 4 April revealed the 
overall highest coherence amongst the available coherence images although all three weather stations 
reported continuous rainfall of 2 to 4 cm in the two days prior to the sensor overpass on 17 February. 
The two HH coherence images that were computed from the 5 July acquisition (both with 92 day 
temporal baseline), for which the weather stations in Concepcion and Temuco reported about 1.5 cm of 
rainfall in the two days prior to the acquisition, were instead characterized by an overall lower 
coherence (but similar dynamic range) than the other two HH coherence images at test site 2. Also the 
wind speeds and the perpendicular baselines may have influenced the coherence since strong winds 
and long baselines are associated with stronger temporal and volume decorrelation over forest [64]. 
The baseline lengths and the wind conditions recorded at the weather stations in Concepcion, Temuco 
and Curico did, however, not provide any immediate explanation for the different coherence levels that 
were observed. In order to differentiate the combined effects of temporal and volume decorrelation and 
to evaluate their respective effects on the sensitivity of the coherence to forest biophysical quantities, a 
physically-based modeling approach would be required, which was beyond the scope of this study.  

According to the randomForest predictor ranking (Figure 8), the HH coherence images from 17 
February and 4 April and 4 April and 5 July (i.e., one 46- and one 92-day repeat-pass image) 
contributed most to the CH retrieval at test site 2. When looking at the correlations between coherence 
and the ALS derived per-segment estimates of CH (between −0.2 and −0.6 at all test sites), the 
coherence images that were most important for the retrieval were not necessarily those with the highest 
correlation to CH. In the case of the coherence image from 17 February and 4 April, for instance, the 
correlation was only −0.23. A comparison of the CH estimates obtained when using (1) only the  
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multi-temporal intensities and (2) the multi-temporal intensities and coherences at the three test 
sites revealed that the coherence images primarily influenced the retrieval in the higher CH ranges 
(Figure 10). This observation suggested a higher sensitivity of coherence to CH in dense and a lower 
sensitivity in sparse forests compared to intensity. 

Figure 9. Multi-temporal consistency of HH/HV intensity and repeat-pass coherence at test 
site 2. Each circle represents the average intensity or coherence for a forest segment in two 
images. The dashed lines indicate the dynamic range, δ, for each image with the 5th and 
95th percentiles. 
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When using 10% (30) of the transects covered by the particular ALOS paths for model training, the R2 
and RMSEr were in the range of 0.7 and 24%, respectively. Concomitantly, the bias of the 
PALSAR/Landsat predictions remained low as long as more than ~10% of the simulated ALS 
transects were used for model training (Figure 11, right plot). 

Figure 11. Effect of ALS sampling density on the retrieval performance when 
extrapolating from 600m wide ALS transects to entire ALOS frames using multi-temporal 
intensities, repeat-pass coherence and one Landsat ETM+ optical scene. 

 

The results of the extrapolation experiment indicated rather high sampling requirements to achieve 
retrieval accuracies that were achieved at smaller test sites also at larger scale (i.e., 50% of the study 
area). When having ALS data for about 10% of the area covered by an ALOS PALSAR frame, the loss 
in retrieval performance remains moderate though (~10% lower R2). A 10% coverage with ALS might 
be practical when flying the ALS in higher altitudes, which in turn, however, can be expected to 
affect the retrieval performance because higher flight altitudes result in lower laser point densities on 
the ground [65]. On the other hand, ALS sampling in form of random or stratified random flight 
patterns [8] might allow reducing the required ALS sampling density.  

4. Conclusions 

We have demonstrated for the showcase scenario of forest plantations in Central Chile the 
feasibility of a stand-level retrieval of canopy height and growing stock volume through the two-stage 
fusion of field, airborne laser scanner, multi-temporal ALOS PALSAR L-band intensity, repeat-pass 
coherence and Landsat ETM+ multispectral data. At three 100 km2 test sites, the retrieval of canopy 
height and growing stock volume with the PALSAR and Landsat imagery reached promising 
accuracies with R2s in the range of 0.7 to 0.85 when training randomForest ensemble regression tree 
models with laser scanner based stand-level estimates of canopy height and growing stock volume as 
surrogate reference data. We were able to show that the combined use of multi-temporal PALSAR 
intensity, interferometric repeat-pass coherence and Landsat reflectances as predictors in randomForest 
allowed consistently higher accuracies than the retrieval with any of the datasets alone. The results of 
this study therefore re-emphasized the importance of fusion algorithms for making optimal use of the 
forest structural information contained in the wealth of data acquired by spaceborne radar and optical 
missions such as ALOS PALSAR and Landsat.  
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In this study, the retrieval of canopy height and growing stock volume by means of the fusion of 
lidar, radar and optical remote sensing was tested only for plantation forests. It is therefore advised to 
test the retrieval approach at other forest sites to evaluate its performance in structurally more diverse 
forest ecosystems. Another issue that will have to be addressed is the lidar sample survey design. Our 
initial investigations indicated dense laser scanner sampling requirements (at least 10% of the study 
area) when extrapolating from a number of simulated laser scanner transects with a systematic survey 
design (i.e., constant distance between transects) to larger areas using the PALSAR and Landsat 
imagery. The sampling requirements (and the associated costs of the airborne lidar campaign) might be 
reduced significantly when optimizing the sample survey design (e.g., with stratified random flight 
lines [8]). 

With an increasing number of commercial vendors offering the acquisition of airborne laser scanner 
data, the novel fusion approach presented above could be a viable option for the regional scale 
mapping of canopy height and growing stock volume in many forest regions. However, the ALOS 
PALSAR mission ended in 2011 so that currently no L-band radar data are acquired from space. With 
the planned ALOS-2 and DESDynI-R L-band radar missions as well as the Landsat Data Continuity 
Mission, a similar approach for the fusion of lidar, radar and optical data will also be possible in the 
future. The L-band ALOS-2 and DESDynI-R missions will likely provide for a number of 
improvements over ALOS PALSAR, such as a more consistent multi-annual coverage and shorter 
repeat intervals for improved interferometric applications (e.g., of coherence), so that improvements 
with respect to the retrieval performance can be expected.  
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