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Abstract: A new multi-decade national-wide coarse-resolution data set of leaf area index 
(LAI) over the Republic of Kazakhstan has been developed based on data from the 
Advanced Very High Resolution Radiometer (AVHRR) and in situ measurements of 
vegetation structure. The Kazakhstan-wide LAI product has been retrieved using an 
algorithm based on a physical radiative transfer model establishing a relationship between 
LAI and given patterns of surface reflectance, view-illumination conditions and optical 
properties of vegetation at the per-pixel scale. The results revealed high consistencies 
between the produced AVHRR LAI data set and ground truth information and the 30-m 
resolution Landsat ETM+ LAI estimated using the similar algorithm. Differences in LAI 
between the AVHRR-based product and the Landsat ETM+-based product are lower than 
0.4 LAI units in terms of RMSE. The produced Kazakhstan-wide LAI was also compared 
with the global 8-km AVHRR LAI (LAI_PAL_BU_V3) and 1-km MODIS LAI 
(MOD15A2 LAI) products. Results show remarkable consistency of the spatial distribution 
and temporal dynamics between the new LAI product and both examined global LAI 
products. However, the results also revealed several discrepancies in LAI estimates when 
comparing the global and the Kazakhstan-wide products. The discrepancies in LAI 
estimates were outlined and discussed.  
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1. Introduction  

Leaf area index (LAI), defined as the one-side area of leaves per unit of ground area [1], is one of 
the key biophysical variables needed for the modeling of energy balance, evapo-transpiration, 
photosynthesis, and carbon sequestration. Ground-based estimations of LAI are based either on direct 
contact or indirect optical methods [2,3]. Ground-based measurements can provide excellent accuracy 
of LAI estimations. The main disadvantages of ground-based LAI estimations are that they are 
(1) time- and work-consuming and (2) can provide values only for site-specific or stand-specific 
targets. However, for various biophysical models over large areas, broad-wide estimations of LAI at 
regional to global scales are needed. For such estimations, application of remote sensing-based 
approaches is the most attractive possibility.  

Over the years, efforts to improve upon the quality of LAI estimates using remote sensing have 
resulted in the adoption of a variety of different approaches. The most used approach for scaling-up of 
ground-measured LAI to large areas bases on empirical models relating LAI to surface reflectance and 
to spectral vegetation indices (SVI) derived from reflectance values. There is a large number of SVI 
applied for mapping LAI from remotely sensed data. Among the most applied SVI are the Normalized 
Difference Vegetation Index (NDVI), the Simple Ratio (SR) [4,5]. However, recent studies showed 
that these indices can provide good-accuracy results only in canopies with relatively low LAI values 
and small background reflectance [6]. For areas with high background reflectance or high biomass 
values such as forests, the Reduced Simple Ratio (RSR) and the Corrected Normalized Difference 
Vegetation Index (NDVIc), which incorporate additional information from the short-infrared bands, 
are reported to have stronger response to LAI [7–9]. However, empirical models based on the 
relationships between LAI and SVI are site-, time- and biome-specific [7,10]. From these reasons, their 
use may be effective only at the scales from local to regional. 

Another widely used approach for scaling-up LAI bases on the use of physical models. 
This approach has gained particular importance for estimation of the global products of LAI with a 
coarse spatial resolution (1-km and more). In physical models, retrieval of LAI is based on inversion of 
three-dimensional radiative transfer problem. Commonly, the algorithm of radiative transfer models 
employs the look-up-table method using a number of biome-specific constants related to canopy 
architecture, soil and vegetation optical properties [11,12].  

A number of global LAI products are being routinely estimated using data of spatial moderate and 
coarse-resolution from various satellite sensors such as Moderate Resolution Imaging Spectroradiometer 
(MODIS), Systeme Pour l’Observation de la Terre (SPOT) VEGETATION, and Medium Resolution 
Imaging Spectrometer (MERIS). The global LAI products produced from MODIS, SPOT and MERIS 
data have a frequency of 1–2 weeks and cover timely a period of somewhat more than one decade [13–15]. 
For retrieval of the LAI data sets with a temporal cover of longer than one decade, the use of data from 
the Advanced Very High Resolution Radiometer (AVHRR) onboard NOAA 7–14 series of satellite 



Remote Sens. 2012, 4              
 

 

222

platforms is the single possibility. A global LAI product on the base of AVHRR NDVI data in 
combination with a radiative transfer model has been already developed at the end of the 1990s [16]. 
Validation of this LAI product has shown promising results [17]. Research into producing a new 
global multi-decade leaf area index data set for the period 1981 to 2006 derived from AVHRR NDVI 
in combination with the MODIS LAI algorithm is currently being undertaken [18].  

The above LAI products have been widely used for various biophysical models, operating at spatial 
scales from regional to global and temporal scales from an individual growing season to multi-year 
periods. However, the application of the global LAI products is hampered by several restrictions such 
as the lack of regional validation, spatial and temporal discontinuity due to cloud cover and instrument 
problems [19–21]. As a result, despite the fact that the quality of the LAI global products, especially 
that of the MODIS LAI product, is being regularly enhanced [18,21–23], several studies have 
developed either their own multi-year LAI data sets or modified the existing global LAI data sets for 
applications at the national to regional scale [9,24–26].  

The Republic of Kazakhstan is the largest country in Central Asia and the ninth-largest country in 
the world (2.7 million km2). The grassland of Kazakhstan represents one of the world’s hugest carbon 
pools [27–29]. Evaluation of the existing global LAI products in Kazakhstan’s biomes and generation 
of new national and regional LAI products is of great importance with respect to the recent efforts 
towards mapping carbon sequestration in grasslands of Kazakhstan [30–32]. Unfortunately, the area of 
Kazakhstan has been out of scope of the validation efforts of the global LAI products undertaken by 
the international remote sensing community during last 10 years. A small number of new LAI data sets 
for Kazakhstan generated at the Institute of Geography of the University Göttingen [33–35] have 
somewhat narrowed the existing research gap but not closed it entirely. 

In this paper, we describe a new spatial coarse-resolution national-wide LAI data set derived from 
8-km resolution AVHRR NDVI data by implementing a three-dimensional radiative transfer model. 
To obtain better adaptation to real conditions, the developed model is calibrated using ground truth 
data for the precise description of canopy architecture through the determination of the site-specific 
canopy light extinction coefficient at the pixel level. The spatial accuracy of the product was evaluated 
using LAI assessed from spatial high-resolution Landsat ETM+ imagery and ground-based data. The 
spatial and temporal consistency was evaluated against the respective coarse resolution MODIS 
standard products (MOD15A2 LAI) and the global AVHRR LAI product (LAI_PAL_BU_V3). The 
national-wide AVHRR LAI product allows the prediction of more representative LAI values for the 
territory of Kazakhstan and provides the possibility to improve the global AVHRR LAI values in 
Kazakhstan regarding their validity. 

2. Data 

2.1. Ground-Based Leaf Area Index 

2.1.1. Sampling Strategy for Ground-Based Measurements 

In situ measurements of vegetation structure variables including LAI were undertaken during three 
field campaigns in June 2004, June 2008, and August 2008. The sampling strategy organized by plot 
and subplot was based on a stratified sampling. In this sampling strategy, we tried to include as much 
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as possible vegetation types and their variations in the validation campaign. In situ measurements of 
vegetation structure parameters were carried out at 50 sampling plots established within the main 
vegetation types which cover the most part (99.2%) of Kazakhstan’s territory: grassland, cropland, 
shrubland, woodland, mixed forest, deciduous broadleaf forest, and deciduous needleaf forest. 
Establishing plots in each of the validation sites, we made efforts to locate our plots so that their 
location records all possible variations within the vegetation type caused by the terrain and soil 
conditions. Extensive analyses of topographic maps (scale 1:100,000) and fine-resolution satellite 
images (Landsat data) were undertaken in order to determine most favorable locations of sampling 
plots within each of the validation sites.  

In all cases, the plot size for the in situ measurements was 90 × 90 m2 corresponding to an area 
observed by 3 × 3 Landsat ETM+ pixels [36]. The measurements were made in a 30-m transect raster 
spacing within each plot. Totally, 14 measurements were completed at subplots within each of the 
sampling plots which were than averaged to mean values over corresponding plots. The information 
about test sites, the measurements time, measurement methods, and measured values is listed in Table 1. 

Table 1. In situ measurements of leaf area index (LAI) in Kazakhstan used in this study. 
For location of the test sites (see Figure 1).  

Test Site and Number  
of Sampling Plots 

Date Vegetation Type 
Measurement  

Method 
LAI Range 

Shetsky 1, 
14 plots 

June 2004 
Grassland 
Cropland 

Direct contact 
destructive 

0.25–1.12 
0.31–0.85 

Shetsky 2, 
20 plots 

June 2008 
Grassland 
Cropland 
Shrubland 

Indirect non-
contact optical 

0.30–1.55 
0.21–0.75 
0.84–2.06 

Almaty, 
16 plots 

June 2008 

Mixed forest 
Deciduous 

broadleaf forest 
Deciduous needleaf 

forest 
Woodland 

Indirect non-
contact optical 

3.30–5.90 
3.10–5.10 

 
4.35–7.24 

 
2.42–4.10 

2.1.2. Computations of Leaf Area Index from Ground-Based Measurements 

Direct contact destructive and indirect non-contact optical methods were used to acquire  
ground-based vegetation structure variables. The direct contact destructive method uses data from 
biomass harvesting to calculate LAI [2]. This method is time-consuming and expensive. However, the 
advantage of this method is a very high accuracy of LAI estimation. Often, results from direct LAI 
estimations serve as reference for estimations by indirect non-contact methods [1,2]. Among other 
approaches for LAI estimation, indirect non-contact optical methods are the most widely used during 
last two decades because of their effectiveness and low time- and cost-consumption [1–3]. These 
methods use hemispherical photography to obtain the canopy closure (vegetation cover fraction) which 
is a parameter strongly correlated with LAI. With regard to application in Kazakhstan, hemispherical 
photography was tested for LAI estimation in grassland and shrubland in recent studies [33,34]. These 
studies reported very good appropriateness of the optical methods for the use in these vegetation types. 
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In the field campaigns in 2008, hemispherical photos were made using a WinScanopy Image 
Acquisition instrument developed by REGENT INSTRUMENTS [37]. For the processing of 
hemispherical photographs and retrieval of vegetation structure variables we used the Can Eye 
software [38]. Gap fraction, the proportion of unobstructed sky, was calculated at 5° zenith angle 
intervals and used for additional calculations. LAI and other vegetation structure indices were 
calculated using routine procedures included in the Can Eye software. Calculating formulae and 
operation of Can Eye are described in detail in the Can Eye manuals following the methods described 
by [1,3]. The LAI is corrected for non-random distribution of foliage elements based on the clumping 
index, which is calculated using the logarithmic gap averaging technique given by [39].  

For a number of plots measured in June 2004, the direct contact method was employed to obtain 
LAI. By this method, LAI was converted from harvested biomass by multiplying it by specific leaf 
area (SLA, projected leaf area per kg leaf carbon). Dry matter content was measured by drying 
samples of aboveground biomass (AGB) in an oven. The proportion of carbon in AGB was assumed to 
be 0.47 [40]. SLA was assumed to be a biome-dependent variable which standard values for individual 
biomes were taken from [41]. LAI was then estimated as: 

LAI = AGB (g C/m2) × SLA (m2/g C)  (1) 

The suitability of the direct contact approach for estimation of LAI was assessed by comparing the 
obtained LAI values with the LAI values computed from the hemispherical photography [33]. The 
results of this comparison revealed general associations between the indirect optical and direct contact 
measured LAI. For a deeper insight into the methodology and results of this comparison, please see the 
study by [33].  

2.2. Satellite Data 

2.2.1. Spatial Coarse-Resolution AVHRR Data 

For this study we used the Global Inventory Modelling and Mapping Studies (GIMMS) NDVI data 
set compiled at 8-km spatial resolution from the NOAA AVHRR satellite data by the GIMMS research 
group [42] covering the period 1982 to 2008. The GIMMS NDVI data are freely distributed over the 
Internet as 30-day maximum value composites to minimize effects of cloud contamination [43].  
Pre-processing includes minimization of noise resulting from residual atmospheric effects, orbital drift 
effects, inter-sensor variations, and stratospheric aerosol effects by a series of corrections, including 
temporal compositing, spatial compositing, orbital correction, calibration for sensor drifts, and 
atmospheric correction [42]. In order to remove some non-vegetated artifacts remaining in the GIMMS 
NDVI data set, we carried out an additional calibration of the data set against three invariant desert 
targets located in Taklimakan desert using a method described by [44].  

2.2.2. High-Resolution Satellite Data 

Four Landsat scenes covering the ground data collection sites at the time of the in situ 
measurements of LAI were downloaded from the Landsat archive [45]. The Landsat imagery was used 
to create high-resolution maps of LAI which were afterwards applied for validation of the coarse-
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resolution LAI product (see Section 4.5). The location and characteristics of each scene are listed in 
Table 2.  

The Landsat scenes were pre-processed using the common steps of satellite image processing such 
as geometric and atmospheric corrections, and geo-referencing. The geo-referenced scenes were 
registered using ground control points obtained from 1:100,000 topographic maps. The registration 
was accurate to within ±1 pixel. Atmospheric corrections were made to convert the radiance 
measurements at the top of the atmosphere to the surface-level reflectance. The dark-object subtraction 
(DOS) method was adopted to account for contradicting effects of both path radiance and atmospheric 
transmittance. DOS approach bases on the assumption of the existence of dark objects (zero or small 
surface reflectance) throughout a Landsat scene and a horizontally homogeneous atmosphere [46]. The 
minimum reflectance value in the histogram from the entire scene is thus attributed to the effect of the 
atmosphere and is subtracted from all the pixels. For pre-processing of our Landsat data we used clear 
water as the dark object to derive atmospheric optical information for radiometric normalization. On 
this way, we determined a minimum reflectance value for each scene and subtracted it from all the 
pixels in the scene. The terrain slope and aspect effects on reflectance values have been addressed 
using topographic normalization methodology based on the non-lambertian Minnaert model [47]. This 
approach seeks to approximate bidirectional reflection characteristics by introducing empirically 
derived constants. The empirical constants for this correction were computed for each Landsat scene 
according to the non-lambertian reflection behavior of the surface.  

Table 2. The location and acquisition time of the Landsat images used in this study.  

Location Name/Test Site Scene Date Landsat Path/Row 

Shetsky 1 June 16 2004 
153/26 
153/27 

Shetsky 2 June 19 2008 153/26 
Almaty July 30 2008 149/30 

2.2.3. Land Cover Data 

A land cover classification data set over the region was taken from the global land cover data 
derived from the 8-km spatial resolution AVHRR data by the Global Land Cover Facility group [48]. 
This data set is accessible in the Global Land Cover Facility archive centre [49]. There are 11 vegetation 
types in the study region (Figure 1). The largest area is covered by grassland (2.12 × 106 km2), 
following by open shrubland (0.213 × 106 km2) and cropland (0.157 × 106 km2). 

Using this land cover data in our study, we were aware that the map represents a distribution of the 
land cover classes corresponding to the period 1981–1994. As the study period spanned over 30 years, 
land cover parameters could be inconstant during the whole study period and may exhibit some 
alterations from decade to decade and even from year to year. However, with respect to our modeling 
approach, we suggested that such changes would not significantly affect our results. The reason is that 
most of the model’s input parameters are vegetation type-specific; the parameters are assigned as 
constants for four vegetation types: grass, shrubs, bushes, and woody vegetation. Bearing this in mind, 
our long-year experience in this region, recent published studies, and extensive discussions with 
country’s experts gave us evidences that most changes are associated with vegetation dynamics within 
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a certain vegetation type; they do not lead to any transitions from one vegetation type to another (for 
instance: from forest to grassland or vice versa). This means that the spatial distribution of vegetation 
types remains more or less stable throughout the period of our study. For example, if any area of 
cropland has been abandoned and is undergoing a restoration process, this area belongs further to grass 
vegetation.  

Figure 1. Classification of current vegetation for the Republic of Kazakhstan based on the 
8-km Advanced Very High Resolution Radiometer (AVHRR) LANDCOVER 1981–1994 
global map [45]. Test sites for in situ measurements are presented by squares and names. 

 
3. Methods 

3.1. Radiative Transfer Model to Derive Satellite-Based LAI 

A radiative transfer model based on an inverse method for solving the Beer-Lambert law, taking 
into account the effect of zenith angle on the extinction coefficient and clumping index, was employed 
to produce satellite-based LAI. The used model was explained in details by [26] so only a short 
illustration is provided here.  

In the model LAI is defined as follows and has evolved from [50]: 

)(
)1ln(

θk
fCLAI −−=  (2) 

where fC is fractional vegetation cover and k(θ) is the light extinction coefficient for a solar zenith 
angle θ. 

3.2. Fractional Vegetation Cover 

Fractional vegetation cover was estimated based on application of spectral mixture analysis (SMA) 
method to NDVI data. A simple SMA model assumes that the value of vegetation index of a given pixel 
is the proportion-weighted combination of the two-endmembers spectra (green vegetation and bare soil) 
[51,52]. Such a model interprets the NDVI value of a given pixel as the sum of contributions from 
canopy and background reflectance. SMA models have been widely used with various satellite data to 
produce time-series of fractional vegetation cover for use in numerical biogeochemistry models [53,54]. 
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The formulation of a SMA can be based on a linear relationship between NDVI and fractional cover 
where fC is simply scaled between the lower and upper limits of bare soil and maximum NDVI [50]. 
Otherwise, a SMA model can assume a non-linear relationship between the variables [52,55].  

For our purpose, we examined both linear and non-linear approaches between NDVI and fC and 
found that the following non-linear equation was most appropriate at the regional scale in Kazakhstan: 

b

sv

v

NDVINDVI
NDVINDVI

fC ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−= 1   (3) 

where v and s denote values of NDVI over fully vegetated area (fC = 1.0) and bare soil (fC = 0.0).  
Determination of values used for NDVIs and NDVIv was based on the techniques thoroughly 

described in the recent literature [51–54]. Parameter NDVIs is typically 0.05 for all land covers and is 
considered not to vary much from year to year [53,54]. NDVIv was determined by means of a detailed 
analysis of the histogram of annual maximum NDVI for each vegetation cover category. The use of 
ground truth data on fC in our study has made the selection of NDVI value for completely vegetated 
areas in the histogram maximally objective. 

3.3. Modelling Light Extinction Coefficient 

The light extinction coefficient k for a solar zenith angle θ was calculated as a function the canopy 
projection factor (G), the clumping index (Ω) and cosines of the solar zenith angle θ using the equation 
from [56,57]: 

( )
( )θ

θθ
cos

)(Ω×= Gk   (4) 

The parameter G takes the value of 0.5 for all solar elevation angles, if the leaves are distributed 
uniformly over the surface of a sphere. Values of G for non-uniform leaf distribution for varying solar 
zenith angles were calculated using the equation from [58]: 

 
(5) 

In this equation, x is the ratio of vertical to horizontal projection of canopy elements. The value of x 
can be estimated using an empirical equation relating x to the canopy leaf inclination angle Θ [59]: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

Θ
Θ−

Θ
Θ−

=
0053.01087.97

0107.01515.151
x  

°<Θ

°≥Θ

57.4   if

57.4   if

 (6) 

For spherical canopies Θ = 57.4°, for planophile canopies 0° < Θ < 57.4°, and for erectophile canopies 
57.4° < Θ < 90°. For our purpose, average values of the canopy leaf inclination angle for individual 
vegetation types were retrieved from hemispherical photos by the Can Eye software. 

The clumping factor a solar zenith angle θ was modeled using the equation from [59]: 
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)2.2exp(1
)( max

pc θ
θ

×−×+
Ω=Ω   (7) 

where Ωmax is the maximum clumping index for a canopy, c is a canopy-specific coefficient to be 
defined, and p is a function of x, given as 

⎪
⎩

⎪
⎨

⎧
+−=

34.3
8.3/461.0

0.1
xp  

0.1 if
0.1164.0 if

164.0 if

≥
<<

≤

x
x

x

 (8) 

3.4. Retrieval of 8-km Spatial Resolution Data Set of LAI for the Area of Kazakhstan 

The national-wide 8-km AVHRR LAI product over the Republic of Kazakhstan for the period 
1982–2008 was derived using the following steps: 

(1) The fC model (Equation (3), Section 3.2) was applied to 1-month composite GIMMS NDVI 
images from 1982 through 2008. The input parameters NDVIs and NDVIv were obtained for each 
vegetation class respectively. 

(2) Vegetation class-specific parameters x, Ωmax, c, and Θ for modeling the light extinction 
coefficient (Equations (4–8)) were determined. The average leaf inclination angle Θ for each 
individual vegetation class was modeled from hemispherical photos using the routine procedure 
included in the Can Eye software. After that, the ratio of vertical to horizontal projection of canopy 
elements x for individual vegetation types was calculated using Equation (6). The maximum clumping 
index for an individual vegetation type was assumed to be equal to the highest Ω among all test sites 
within this vegetation type. The parameter c for Equation (7) was obtained by inverting this equation 
for a known value of the clumping index which was retrieved from hemispherical photography.  

(3) The algorithm for the light extinction coefficient was applied at the 8-km pixel scale using a 
combination of vegetation class-specific input parameters, the gridded data set of mean monthly solar 
zenith angle, the NOAA AVHRR Land Cover and GTOPO30 elevation data sets [60] to retrieve maps 
of the light extinction coefficient for the whole area of Kazakhstan. Temporally, the monthly maps of 
the extinction coefficient covered the period 1982–2010.  

(4) LAI maps were estimated for each 1-month composite period from January 1982 through 
December 2008 employing the above LAI retrieval algorithm (Equation (2)) using the data sets 
produced by the processing steps 1 and 3.  

3.5. Validation of the 8-km Spatial Resolution Kazakhstan-Wide AVHRR LAI Product 

3.5.1. Comparison with Ground-Based Data 

The new national-wide AVHRR LAI product was first validated directly with ground-measured 
LAI data over Kazakhstan. However, there are problems that we face when we try to compare spatial 
coarse-resolution products with ground measurements. Recent studies revealed that the direct 
comparison between ground measured parameters and coarse resolution satellite data cannot be 
efficient because the coarse pixel scale is much greater than a plot’s scale and results of such a 
comparison would be poor. Local variance of ground measurements is always much more than that at a 
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coarse scale making a direct comparison problematic. Therefore, the up-to-date direct validation 
approach consists of using transfer functions and high-resolution imagery to scale up the ground 
measurements to the spatial resolution of the product [22,61]. In this approach, a spatial high-resolution 
map of the variable of interest is introduced. When aggregated to coarse resolution, this map serves as 
the ground-truth information.  

In the presented study, the 8-km LAI product was compared with the LAI estimated from Landsat 
ETM+ imagery on the basis of regression analysis. Nevertheless, we should be aware that there are 
possible uncertainties that we face as we generalize the fine-resolution LAI map to 8-km spatial 
resolution blocks because most of the environmental processes are scale-dependent [62]. LAI is a 
highly variable local characteristic; through a spatial degradation to a coarse-resolution blocks LAI 
loses its spatial heterogeneity. However, the problem of scaling up data can be adequately treated using 
a geostatistical approach such as block kriging [62]. Block kriging can estimate a spatial variable over 
scales or domains larger than that of the original observations. In the present study, we used block 
kriging to re-scale data from the fine-resolution (30-m Landsat ETM+) to the coarse resolution (8-km 
AVHRR data).  

For our purpose, we produced high-resolution maps of LAI using 30-m resolution Landsat imagery 
which were than aggregated to the 8-km resolution and compared with the AVHRR retrievals of the 
LAI product. Landsat-based estimations of LAI were generated using empirical models between the 
ground measurements and reflectance in Landsat bands as transfer functions. For validation of the 
coarse-resolution LAI retrievals for the years 2004 and 2008, we applied the available high-resolution 
LAI data sets which had been developed using empirical models in previous studies by the 
authors [33,34]. For direct validation of the AVHRR LAI at the Almaty test site for August 2008, we 
developed a new empirical model based on the relationship between the ground measurements of LAI 
in this year and the corresponding Landsat ETM+ image. These high spatial resolution LAI maps were 
degraded to 8-km spatial resolution of AVHRR data and compared using pixel-by-pixel approach with 
the corresponding AVHRR LAI values. 

3.5.2. Comparison with Other LAI Products 

Finally, the produced AVHRR LAI data set was suggested to compare with other independent 
satellite-based LAI data sets: (1) the MODIS collection 5 LAI product (MOD15A2) and (2) the global 
AVHRR LAI product (LAI_PAL_BU_V3). The MODIS LAI products (collection 5) are available for 
the public from the Earth Observing System Data Gateway [63]. Thorough description of MOD15A2 
is given by [12,13]. The global AVHRR LAI product is available on-line at 
http://cybele.bu.edu/modismisr/products/avhrr/avhrrlaifpar.html. For a detailed description of 
LAI_PAL_BU_V3 see [16] and [18].  

4. Results 

4.1. The New National-Wide 8-km Spatial Resolution AVHRR LAI Data Set 

Figure 2 shows the modeled national-wide AVHRR LAI for June 2008. It demonstrates a large 
spatial LAI variability. The values of LAI vary from 0 in the south of Kazakhstan to more than 6 in the 
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northern and north-eastern parts of Kazakhstan. The spatial distribution of LAI over the area of 
Kazakhstan generally reflects the pattern of vegetation classes in the republic (compare to Figure 1). 
Areas of bare soil and some areas of shrubland in the desert zone are characterized by zero values of 
LAI. Low values of LAI are observed in the shrubland of the desert/semi-desert zones in the southern 
and central parts of Kazakhstan. High values of LAI correspond to the forest zones, broadleaf and 
needleleaf forests, whereas especially high LAI values (>6) are observed in the needleleaf forests in 
the mountain regions located in the north-east and south-east parts of Kazakhstan. 

Figure 2. Distribution of the AVHRR LAI for June 2008 over the Republic of Kazakhstan.  

 
Figure 3. Monthly courses of the area-averaged LAI derived from the national-wide 
AVHRR LAI data set for the period 1982–2008.  
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Figure 3. Cont. 

 

In Figure 3 the monthly courses of the LAI for the 6 main landcover classes (needleleaf 
forest, broadleaf forest, woodland, shrubland, grassland, and cropland) in Kazakhstan during the years 
1982–2008 are plotted. The area-averaged LAI values were created for pixels with the same landcover 
class within the area of Kazakhstan. The LAI profiles demonstrate that the LAI product reproduces 
adequately the inter-annual and intra-annual variability of LAI. In all vegetation types, the plant 
growth starts up in March–April when air temperature rises above zero. In the shrubland, grassland, 
and cropland classes, the maximum LAI is commonly achieved in the late May–early June, whereas 
the forests and woody areas demonstrate the LAI peak in July (Figure 3) The LAI of the shrubland, 
grassland, and cropland decreases earlier than that of the forest classes, reflecting the earlier 
senescence of vegetation due to drought-like conditions caused by the decreased precipitation and high 
temperatures in July–August. Outside of the growing season, all the presented vegetation classes have 
generally a LAI value of zero.  

4.2. Validation 

4.2.1. Validation at the Grassland Site in Central Kazakhstan (Shetsky Region) 

The fine-resolution RTM algorithm and the relationship between field measured LAI and 
empirically based models for the ETM+ images were used to produce 30-m maps of LAI for the whole 
Shetsky region. The fine-resolution algorithm differs from the algorithm used to generate the AVHRR 
LAI product in that uses fine-resolution inputs data sets corresponding to the ETM+ spatial resolution. 
This was run with the fC map derived from the corresponding ETM+ NDVI data. The LAI-NDVIc 
relationship derived from field measured LAI and ETM+ image was used to produce a regression-based 
30-m LAI map for June 2004 [34], while Canonical Correlation Analysis Index was employed for June 
2008 [33].  

As first, we compared the results of the fine-resolution RTM LAI with field measurements. A good 
agreement between the Landsat ETM+ LAI and field measured LAI is observed for both validation 
years. Thus, for 2008 (Figure 4(a)), the fine-resolution RTM LAI explained 79% of spatial variation in 
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ground based LAI (R2 = 0.79 and RMSE = 0.08). The relationship between modeled LAI and ground 
based LAI for 2004 is somewhat weaker but also sufficiently strong (R2 = 0.69 and RMSE = 0.13) 
(Figure 4(b)). Second, we carried out a pixel-by-pixel comparison of the 30-m spatial resolution LAI 
maps produced by the RTM algorithm and the regression-based algorithm (Figure 4(c)). The retrievals 
from both algorithms correlate strongly at the per-pixel scale (R2 = 0.69, RMSE = 0.22). These results 
demonstrate that the used RTM algorithm works effectively at the 30-m spatial resolution. 

Figure 4. Validation of fine-resolution radiative transfer model (RTM)-based LAI products 
at the grassland test site in Shetsky region. (a) LAI retrievals from the fine-resolution RTM 
algorithm versus ground measured LAI for 2008. (b) LAI retrievals from the fine-
resolution RTM algorithm versus ground measured LAI for 2004. (c) LAI retrievals from 
the fine-resolution RTM algorithm versus retrievals by the regression-based algorithm for 
2008 in a pixel-by-pixel comparison (n = 64,000).  
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Figure 4. Cont. 

R² = 0.6854 
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Next, we degraded the 30-m LAI maps to the spatial resolution of AVHRR using the block  
kriging-based re-scaling procedure [62]. After that, we compared the degraded maps with the coarse 
resolution LAI product over the Shetsky region. The AVHRR LAI shows strong correlation at the 
pixel level both with the RTM-retrieved and regression-retrieved Landsat LAI products (Figure 5):  
R2 = 0.83 and RMSE = 0.20 for the RTM-retrieved LAI, compared to R2 = 0.82 and RMSE = 0.22 for 
the regression-derived Landsat LAI. The slope of the regression line was 1.17 for the comparison of 
the RTM-based Landsat LAI (Figure 5(a)) and 1.36 for the regression-based Landsat LAI. These small 
slope values mean that the AVHRR LAI somewhat overestimates high values and underestimates low 
values of the ETM+ LAI. However, in both cases, the regression line falls very close to the 1:1 line, 
indicating that the compared LAI products are very similar. 

Finally, we examined the frequency distribution of the LAI modeled using 30-m Landsat (both 
RTM and regression-based algorithms) and 8-km AVHRR data (Figure 5(c)). The histograms reveal 
that the LAI distribution of the AVHRR data sets is generally consistent with that of the Landsat data 
sets. However, the AVHRR LAI histogram shows a slight trend to higher values in comparison to the 
Landsat histograms, while the LAI classes at the left range are not occupied. As anticipated, the 
coursing of the spatial resolution by modeling LAI increases general homogeneity of the area occupied 
by a pixel. The increased homogeneity exposes then a lower spatial variation of the LAI variable [9,22]. 
On the other hand, the results of the comparisons illustrate that a sufficient amount of the information 
on spatial distribution of LAI is retrievable by coarse spatial resolution AVHRR imagery; even though 
a quantity of information is lost in comparison to the Landsat ETM+ results.  
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Figure 5. Validation of AVHRR LAI product in the grassland biome in the Shetsky test 
region. (a) Pixel-by-pixel (n = 1,215) comparison of the aggregated fine-resolution LAI 
map retrieved using RTM algorithm and the AVHRR LAI for 2008. (b) Same as in panel 
(a), but retrievals from the regression-based Landsat ETM+ LAI for 2008. (c) Frequency 
distribution of LAI modeled from Landsat ETM+ data using the RTM and regression 
algorithm, and AVHRR data. 
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4.2.2. Validation at the Almaty Wood/Forest Site 

A Landsat ETM+ image acquired on 30 July 2009 was used to generate the fine-resolution LAI map 
for validation procedure. 30-m maps of LAI produced by the RTM algorithm is suggested to compare 
with the produced AVHRR LAI data at the Almaty wood/forest site. In order to obtain the model with 
the best prediction power, we tested several vegetation indices such as the Simple Ratio (SR), the 
Normalized Difference Vegetation Index (NDVI), the Reduced Simple Ratio (RSR), and the Soil 
Adjusted Vegetation Index (SAVI) [64]. The SR and NDVI were found to be not suitable for the 
generation of fine-resolution LAI map because of high amount of understory vegetation in the test 
forest site. The SAVI and the shortwave infrared incorporating index RSR showed high correlation 
with the ground measured LAI. However, the best correlation with field measurements was obtained 
by using the SAVI as predictor (Figure 6(a)). The regression model was selected to generate the  
fine-resolution LAI map over the wood/forest area in the region of Almaty (R² = 0.75, RMSE = 0.38). 
The map was re-projected to geographic latitude/longitude system and degraded to 8-km resolution 
using the block kriging-re-sampling procedure. Using the NOAA AVHRR land cover map, areas 
covered by woodland and forest were extracted from the LAI map and used for further comparison 
with the AVHRR LAI product. Figure 6(b) shows the pixel-by-pixel comparison between the AVHRR 
LAI and the reference Landsat LAI values. The AVHRR LAI explains 55% of the spatial variance in 
the Landsat LAI. Histograms in Figure 6(c) demonstrate some discrepancies in the LAI frequency 
obtained from the Landsat and AVHRR data sets. Thus, the AVHRR LAI has lower frequency in the 
left- and right-range classes (0.5 < LAI < 1.5, and LAI > 4.0), while the middle-range classes 
(1.5 < LAI < 4.0) are characterized by considerable higher frequency. Nonetheless, the comparison 
shows that differences between Landsat LAI and AVHRR LAI are lower than 0.5 LAI in terms of 
RMSE fulfilling the general accuracy requirement for LAI estimates from multiple sensors.  

Figure 6. Validation of AVHRR LAI product at the Almaty forest test site. 
(a) Relationship between field-measured LAI and the Landsat ETM+-derived SAVI. 
(b) Pixel-by-pixel comparison of the aggregated fine-resolution LAI map and the AVHRR 
LAI product. (c) Frequency distribution of the Landsat ETM+ regression-based LAI and 
AVHRR LAI. 
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4.3 Comparison with LAI_PAL_BU_V3 Monthly Composite LAI Data 

4.3.1. Spatial Consistency of the Data Sets 

The comparison of AVHRR LAI and LAI_PAL_BU_V3 for July 2008 indicates a significant 
consistency with an overall performance about 0.65 in terms of RMSE, despite of a relatively high 
scattering around the regression line (Figure 7(a)). The comparison reveals that LAI_PAL_BU_V3 
values exceed the AVHRR LAI values for the greatest part of pixels. However, sometimes, the 
AVHRR LAI is greater, especially for LAI ranges of 1 to 3. In the other months of 2008, pictures are 
similar. These discrepancies are partially due to different algorithm specifications, and differences in 
auxiliary data, particularly land cover map. In comparison to the LAI_PAL_BU_V3 values, the 
estimated AVHRR LAI show stronger variations in spatial and temporal dimensions, especially in the 
areas with very low and very high vegetation density. Thus, LAI_PAL_BU_V3 product has 
significantly shorter value variety, the values range from 0.12 to 6.0, while values of the AVHRR 
product range from 0 to more than 6.0. The LAI = 6 threshold determines the possible highest value in 
LAI_PAL_BU_V3 product. This threshold is associated with the highest possible vegetation density 
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and is employed to the forest areas with closed vegetation canopy [16]. Pixels with the vegetation 
fractional cover less than 0.2 have LAI = 0 assuming generally no green vegetation in such areas [16]. 
However, for similar pixels, the AVHRR LAI product calculates LAI values greater than 0 assuming 
the presence of green vegetation in these areas despite of the very infrequent vegetation cover. For 
areas with very high vegetation density, the LAI_PAL_BU_V3 algorithm signs a LAI value of 6.0 
neglecting both spatial and temporal variability. On contrary, the AVHRR LAI reproduces the 
variability of LAI between pixels within such areas. The discrepancies in the prediction of the LAI 
range values are also reflected in the histograms (Figure 7(b)). The histogram produced from the 
AVHRR LAI shows the classic random distribution with a right skewenness, whereas in the 
LAI_PAL_BU_V3 distribution the range LAI classes (0–0.2 and 5.5–6.0) have too high frequency 
exposing the non-random distribution. 

Figure 7. Comparison of the AVHRR LAI to LAI_PAL_BU_V3. (a) Pixel-by-pixel 
comparison of the AVHRR LAI map and the LAI_PAL_BU_V3 product over the whole 
area of Kazakhstan for July 2008. (b) Frequency distribution of the AVHRR LAI and 
LAI_PAL_BU_V3. 
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The slope of AVHRR LAI versus LAI_PAL_BU_V3 was significantly lower than the 1:1 line 
suggesting that the LAI_PAL_BU_V3 algorithm overestimates LAI values. The overestimation of LAI 
values by the LAI_PAL_BU_V3 product also has impact on the predicted mean value. The spatially 
averaged LAI in July is 1.52 for the AVHRR LAI versus 1.85 for the LAI_PAL_BU_V3 estimation.  

4.3.2. Temporal Consistency of the Data Sets  

To compare the main features of the temporal behavior of the coarse-resolution LAI products, the 
30-day LAI time series for a single year are drawn in Figure 8 for the major vegetation classes—
shrubland, grassland, woodland, broadleaf forest and needleleaf forest, forest types—over the test 
areas. In Kazakhstan and other countries of Central Asia, the vegetation variability is generally 
associated with intra-annual seasonality of green leaf area. Among the shown biomes, only needleleaf 
forest shows high-consistent dynamics between the Kazakhstan-wide AVHRR LAI and 
LAI_PAL_BU_V3 LAI. For other shown biomes, there are some differences in capturing the seasonal 
dynamics of leaf production by the data sets. The profiles derived from the LAI_PAL_BU_V3 product 
are generally characterized by significantly higher LAI values throughout the growing season. In all 
cases, the LAI estimations provided by the Kazakhstan-wide AVHRR LAI product were closer to the 
ground-based LAI values than that by the LAI_PAL_BU_V3 product. For shrubland, grassland, 
woodland and broadleaf forest, the LAI estimates provided by the LAI_PAL_BU_V3 product are also 
characterized by unrealistically high values outside the growing season, when green vegetation is 
generally absent. For the needleleaf forest biome, the LAI_PAL_BU_V3 algorithm assigns fixed 
values of LAI = 6.0 for the summer months, whereas the broadleaf forest profile shows a fixed value 
of LAI = 6.0 during the most part of the growing season. In contradiction to this, the Kazakhstan-wide 
AVHRR LAI algorithm provides temporally-varying estimates of LAI indicating better capturing of 
the temporal patterns in LAI throughout the growing season.  

Figure 8. Temporal profiles of LAI estimates from the LAI_PAL_BU_V3 product, the 
Kazakhstan-wide AVHRR LAI product and ground-based measurements at test sites.  
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Figure 8. Cont. 

 

 

4.4. Comparison with MODIS Monthly Composite LAI Data 

To assess the consistency and discrepancies between the produced AVHRR LAI data set from the 
MOD15A2 LAI product, scatter plots of LAI estimates are analyzed over different areas: the Shetsky 
grassland test site, the wood/forest Almaty site. For this comparison, the 1-km monthly MODIS LAI 
data set was converted to the geographic coordinate system and degraded to 8-km grid of the AVHRR 
LAI. Discrepancies between LAI estimates are quantified by the amount of explained variance (R2), 
slope and offset of the linear regression, and the RMSE value. 

Scatter plots in Figure 9 show the per-pixel comparison of the LAI estimates for June 2008 and July 
2009 at the grassland test site in Shetsky raion and at the wood/forest test area in Almaty region. In 
both scatter plots, we found a significant consistency between the compared LAI products: R2 = 0.56 
and RMSE = 0.16 (0.23 LAI) for grassland and R2 = 0.80 and RMSE = 0.57 (0.42LAI) for 
woodland/forest). The values of RMSE were considerably below the value of 0.5LAI established as 
the common accuracy guide for LAI estimates from satellite-based models. However, the scatter plots 
also expose discrepancies between the compared LAI data sets. In both plots, the linear regression 
between the AVHRR and MODIS estimates is somewhat different from the 1:1 line demonstrating a 
value of the slope <1 and a positive value of the offset. This means that the AVHRR LAI dataset 
slightly overestimates lower LAI values in comparison to the MOD15A2 product and underestimates 
higher LAI values. Since the MODIS LAI is also known for its overestimation of grass and wood 
vegetation because of algorithm deficits [19,22,35,65], we assume that these slight 
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under/overestimations of the MODIS LAI estimates by the AVHRR LAI data set produced in this 
study is not an shortcoming but an advantage. 

Figure 9. Comparison of the AVHRR LAI and MODIS LAI product. (a) LAI estimates 
over the grassland test area in Shetsky raion for June 2008. (b) LAI estimates over the 
wood/forest test area in Almaty region for July 2008.  
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5. Conclusions 

The enhanced 8-km-resolution LAI data set covering the whole area of the Republic of Kazakhstan 
was developed using coarse-resolution AVHRR satellite data, auxiliary information and in situ 
measurements of canopy structure and canopy architecture. The algorithm was based on interpretation 
of satellite-measured Normalized Difference Vegetation Index (NDVI) using numerical inversion of an 
analytical canopy radiative transfer model (RTM) that accounts for major effects of surface 
reflectance, view-illumination conditions, optical properties of vegetation and parameters 
characterizing canopy architecture. The in situ canopy structure data were collected during several 
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field survey campaigns in major vegetation biomes of Kazakhstan using contact destructive and non-
contact optical methods and provided a consistent data set for calibration of the model and validation 
of the Kazakhstan-wide LAI product. The enhancement of the employed RTM algorithm is calculation 
of all input parameters individually for each pixel accounting for spatial and temporal patterns.  

The coarse-resolution LAI product was validated using fine-resolution LAI images aggregated to  
8-km spatial resolution. These fine-resolution LAI images were derived from empirical models 
between ground-based LAI and Landsat ETM+ data. The results of the validation demonstrate that 
LAI modeled from fine- and coarse-resolution satellite data is strongly correlated at the per-pixel level 
suggesting a good feasibility of the produced coarse-resolution LAI data set. In all validation tests, the 
error in LAI (in terms of RMSE) in individual coarse-resolution pixels is found to be about 0.15 LAI to 
0.4 LAI indicating that the general accuracy requirement (<0.5 LAI) for remote sensing-based LAI 
estimates was fulfilled. Analysis of scatterplots and histograms of resulting LAI distributions in 
different test areas within the main biomes of Kazakhstan indicate that the overall distribution of LAI 
was consistent for the Landsat-derived and AVHRR-derived LAI images and remains close to being 
normally distributed.  

The produced Kazakhstan-wide LAI data set was also evaluated with respect to the global 8-km 
AVHRR LAI product (LAI_PAL_BU_V3) for the area of Kazakhstan. On the one hand, the results 
showed a general good spatial and temporal consistency of the produced LAI data set with the 
LAI_PAL_BU_V3 product. On the other hand, the calculated LAI values are mostly lower than the 
LAI values of the LAI_PAL_BU_V3 data set. As a consequence, the LAI_PAL_BU_V3 product is 
characterized by a significantly higher mean value of LAI throughout the studied period. The 
differences in LAI values are more considerable for areas with either very infrequent or very dense 
vegetation cover. For all pixels within such areas, the LAI_PAL_BU_V3 algorithm assigns fixed 
values of LAI (0 or 6), while the AVHRR LAI produces a pixel-individual LAI value maintaining 
heterogeneity in the algorithm output. Due to fixed LAI values, the resulting LAI histogram calculated 
from the LAI_PAL_BU_V3 product reveals highly non-random distribution with extremely high LAI 
frequency in the left- and right-range classes. On contrast, the LAI histogram from the AVHRR LAI 
product demonstrates the near normal distribution. Another difference is that the LAI_PAL_BU_V3 
product sustains high values of LAI during the months outside the growing season. The base level LAI 
values of the LAI_PAL_BU_V3 product were too high for the months characterized by no green 
vegetation.  

Our simulated LAI values were very close to the LAI values from the MOD15A2 LAI product. A 
comparison of these products over the Almaty and Shetsky test sites revealed a strong spatial 
association at the per-pixel scale. This result is very positive and supports the above conclusions about 
good accuracy of the produced national-wide AVHRR LAI data set. Carrying out the comparison 
between the retrieved national-wide AVHRR LAI and the MODIS LAI product, we did not aim to do a 
qualitative assessment of the second product. An evaluation of the MODIS LAI product over the 
grassland test area in Shetsky region can be found in a previous study by the authors [35]. In the 
presented study, the aim of the comparison was to evaluate the appropriateness of the produced 
AVHRR LAI estimations against other independent data sets. 

Generally, the results of validation and comparison with other independent satellite-derived LAI 
data sets consider the good ability of NOAA AVHRR-derived LAI data set for further use in the 
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Kazakhstan-wide models for assessment of carbon sequestration throughout the period of three 
decades (1982–2008).  
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