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Abstract: A detailed introduction to variogram analysis of reflectance data is provided, 

and variogram parameters (nugget, sill, and range values) were examined as possible 

indicators of abiotic (irrigation regime) and biotic (spider mite infestation) stressors. 

Reflectance data was acquired from 2 maize hybrids (Zea mays L.) at multiple time points 

in 2 data sets (229 hyperspectral images), and data from 160 individual spectral bands in 

the spectrum from 405 to 907 nm were analyzed. Based on 480 analyses of variance (160 

spectral bands × 3 variogram parameters), it was seen that most of the combinations of 

spectral bands and variogram parameters were unsuitable as stress indicators mainly 

because of significant difference between the 2 data sets. However, several combinations 

of spectral bands and variogram parameters (especially nugget values) could be considered 

unique indicators of either abiotic or biotic stress. Furthermore, nugget values at 683 and 

775 nm responded significantly to abiotic stress, and nugget values at 731 nm and range 

values at 715 nm responded significantly to biotic stress. Based on qualitative 

characterization of actual hyperspectral images, it was seen that even subtle changes in 

spatial patterns of reflectance values can elicit several-fold changes in variogram 

parameters despite non-significant changes in average and median reflectance values and 

in width of 95% confidence limits. Such scattered stress expression is in accordance with 

documented within-leaf variation in both mineral content and chlorophyll concentration 

and therefore supports the need for reflectance-based stress detection at a high spatial 

resolution (many hyperspectral reflectance profiles acquired from a single leaf) and may be 

used to explain or characterize within-leaf foraging patterns of herbivorous arthropods. 
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1. Introduction 

There are numerous studies of stress detection in crop leaves based on reflectance data acquired 

with either single sensor devices or imaging devices, including: biotic stress [1–4], salinity stress [5], 

nutrient deficiency [6], and drought stress [3,7]. Carter and Knapp [8] provided a thorough review of 

reflectance based detection of abiotic and biotic stressors (including dehydration, flooding, freezing, 

ozone, herbicides, competition, disease, insects, and deficiencies in ectomycorrhizal development and 

N fertilization) within the 400–850 nm wavelength range when imposed on a wide range of plant 

species (grasses, conifers, and deciduous trees). Irrespectively of abiotic or abiotic stressor, Carter and 

Knapp [8] concluded that in most studies there appears to be an increase in reflectance in response to 

plant stress, and this increase is generally most noticeable near the red edge at 700 nm. A possible 

explanation for such increase in reflectance is that stressors partially compromise the photosynthetic 

efficiency of the plant, so comparatively more radiometric energy is reflected back to the atmosphere 

than from a non-stressed plant. If such increase in leaf reflectance occurs in response to a given 

stressor, then a follow-up question is whether it is due to a general reflectance increase across a given 

leaf (in all pixels) or whether it is associated with proportionally higher reflectance in scattered 

points within each leaf? Several studies have demonstrated within-leaf variation in distribution of 

minerals [9] and chlorophyll [10], so it seems reasonable to assume that there is spatial variability 

within a leaf in terms of expression of stress response. In addition to important questions about the 

spatial distribution of stress expression within leaves, it is also important to address a spectral aspect of 

the findings by Carter and Knapp [8]. From an academic standpoint, it is obviously quite interesting 

that plants tend to have a quase-universal stress reflectance response near 700 nm, but it means that 

practical applications of reflectance based stress detection systems may be limited, unless more 

unique reflectance features can be associated with different abiotic and biotic stressors. That is, under 

real-world/commercial conditions crop plants will likely be adversely affected by several stressors 

simultaneously, and/or there may be important interactions between stressors. Thus, specific stress 

detection tools are needed, so that different stressors can be detected and quantified independently. For 

instance, it is widely known that crops become more susceptible to spider mite (Acari: Tetranychidae) 

infestations (example of biotic stressor), when crops are grown under drought stressed conditions 

(cotton, Gossypium spp. [11], sorghum, Sorghum bicolor (L.) Moench [12], and maize [13–15]). This 

association between spider mites and drought stress suggests that early detection of drought stress can 

possibly serve 2 complementary purposes: (1) to optimize irrigation regimes, and (2) alert growers 

about when pro-active miticide applications may be warranted. It is important to emphasize that 

reflectance based detection of crop stress is mainly of interest if it can be used to detect emerging 

adverse effects of abiotic and/or biotoc stressors, before symptoms become obvious to the Human eye. 

In other words, the true potential of reflectance based detection is associated with an ability to detect 

subtle/emerging stress levels, so that management practices can be adjusted before significant crop 
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yield losses have occurred. In addition, several studies have described reflectance based detection of 

emerging spider mite infestations [1,3,4]. 

Recently, use of variogram parameters has been demonstrated as well-suited for dual-detection of 

abiotic and biotic stress in crop plants [3,4,16]. However, better insight into the relationship between 

reflectance values and variogram parameters is needed in order to interpret and discuss variogram 

parameters as stress indicators in an agro-ecological context and to understand within-leaf stress 

expression. The main purpose of this study was 3-fold: (1) provide a detailed theoretical description of 

variogram analysis when applied to reflectance data from hyperspectral images, (2) identify 

combinations of spectral ranges between 405 and 907 nm and variogram parameters, which may be 

considered suitable for detection of abiotic (experimental irrigation regimes) and biotic [spider mites 

(Acari: Tetranychidae)] stressors, and (3) based on descriptive statistics and visualization of imaging 

data, characterize spectral responses to abiotic and biotic stressors. Thus, this study provides detailed 

insight into the relationships between stressors’ effect on reflectance values within crop leaves and 

between reflectance values and estimated variogram parameters. Due to the interest in detection and 

characterization of subtle/emerging stress levels, maize plants were subjected to fairly modest levels of 

abiotic and biotic stress levels. 

2. Variogram Analysis: A Theoretical Background 

In the 1930’s, geostatistics were conceptually proposed by Dr. Krige as an approach to optimize 

gold ore mining in Southern Africa, and Dr. Matheron developed the mathematical models of this 

concept in the 1960’s and 1970’s [17]. Today with geographic information systems (GIS) being 

applied to epidemiological, ecological, socio-economic, oceanographic, meteorological and many 

other types of studies, geostatistics as a discipline is widely accepted as being 1 of the most powerful 

and robust approaches to spatial data analysis. For more exhaustive descriptions of variogram analysis, 

it is recommended to consult Armstrong [17] and Isaaks and Srivastava [18]. The fundamental 

assumption of geostatistics is that difference (i.e., semi-variance or co-variance) in reflectance values 

between points within the image cube is correlated with the distance between pixels. Furthermore, it is 

assumed possible to develop a model that describes the spatial structure or relationship between 

distance between pixels and variance of reflectance values. This type of spatial structure analysis can 

be conducted with reflectance data from hyperspectral images, because each pixel (hyperspectral 

profile) is in a grid with a set of x- and y-coordinates within each image cube. Importantly, traditional 

applications of geostatistics involve data sets where only a restricted number of point observations are 

known (i.e., drilling holes in an area with high likelihood of gold deposits), and most commonly 1 of 

the principal objectives associated with geostatistical analyses is directly linked to predictions of 

counts at unsampled locations (i.e., to predict the highest likelihood of rich gold deposits). Regarding 

hyperspectral images, the entire “data universe” is known, that is, actual reflectance values are 

available from all geographic positions (pixels), so the objective is not to predict values at unsampled 

locations but to characterize their spatial structure and use the spatial structure as an indicator of the 

target object, in this case stress expression within maize leaves. In other words, it is assumed that 

reflectance data acquired from different target objects (for instance, crop leaves from plants subjected 

to different stress levels) also will have different spatial structures. A semi-variogram analysis 
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characterizes the relationship between distance between paired observations and the semi-variance 

(variance divided by 2) of observations of these paired observations (Figure 1(a)). The spatial structure 

of a given data set is either random or non-random. Random, or lack of spatial dependence, means that 

the variance associated with reflectance values within an image is independent of the distance between 

pixels. The curve fit in the semi-variogram is a straight line denoted “pure nugget variogram” [19]. A 

data set with non-random spatial structure, shows spatial dependence [19,20] or spatial continuity [18]. 

Non-random, spatial dependence among observations points may follow an asymptotic curve that 

gradually increases with lag distance up to a certain point by which the variance of counts levels off 

and becomes random, which is the distance by which point observations (i.e., reflectance values in a 

single spectral band) are no longer spatially correlated (Figure 1(a)). As part of developing the 

variogram, a regression curve fit is used to model the spatial structure and estimate 3 standard 

parameters: “nugget”, “range”, and “sill” (Figure 1(a)). The nugget represents an estimate of the  

semi-variance or co-variance between observations collected at “zero lag distance apart” or 2 reflectance 

values from the same pixel. Theoretically the nugget should be zero for semi-variance and infinitely 

high for co-variance, and it equals the noise or stochasticity in the data set. The sill is an estimate of 

the total variance explained by the spatial structure analysis. The range is an estimate of the maximum 

distance at which point observations are spatially correlated, beyond this lag distance interval point 

observations are to be considered spatially uncorrelated. Two regression fits are commonly used in 

regression fits of variogram data: 
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is an exponential curve fit [18], in which “a” denotes the nugget, “b” the sill, and “c” the “range”. 
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is an spherical curve fit [18], in which “a” denotes the nugget, “b” the sill, and “c” the “range”. 

The procedures of spatial structure analysis applied to hyperspectral imaging data are best explained 

with an example, in this case reflectance values from a maize leaf in a single spectral band and with 

100 pixels arranged in a 10 by 10 grid pattern (Figure 1(b)). Accordingly, the distance between paired 

pixels ranges from 1 to 14.1, and the total number of paired distances (N) is 4,950 (Equation (3)). 
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The 4,950 distance combinations are grouped into fixed lag distance intervals, which are projected 

along the x-axis in a variogram, and the y-axis in a variogram depicts either the average semi-variance 

or co-variance for each lag distance interval. Obviously, there are not equal numbers of distance pairs for 

all lag distance intervals, and Figure 1(c) shows semi-variance or co-variance of the data in Figure 1(b) 

when divided into 13 lag distance intervals. It is seen that there are only 2 distance pairs for the longest 

lag distance interval, while there were 850 pairs for lag distance = 4. Average semi-variance and  

co-variance estimates for the first 9 lag distance intervals were based on 340–850 pairs, while 

estimates for the last 4 lag distance intervals were based on <100 pairs and therefore more erratic. 

Thus, it can be argued that these lag distance intervals should be excluded as they are based on 
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comparatively less data than the initial 9 estimates of either semi-variance or co-variance. Figure 1(c) 

also shows that average semi-variance increases and reaches a plateau at a lag distance of about 4, and 

that is also the lag distance at which the co-variance becomes negative. Plateau of semi-variance 

and/or negative co-variance suggests a lag distance by which point observations are no longer spatially 

correlated and that the range value has been reached. Importantly, the range estimate should not exceed 

the shortest distance within the image file. Thus, regarding the data set presented in Figure 1(c), 

variogram parameter estimates should be discarded if the range value estimate exceeds 10. 

Figure 1. Basic description of variogram analysis applied to reflectance data. 
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A very important aspect of regression fits to variogram data is the decision on how many lag 

distance intervals to use when fitting Equations (1) or (2) to the data in Figure 1(b). All regression fits 

with Equation (2) to semi-variance data when 5–9 lag distance intervals were included (excluding the 

last 4) provided highly significant regression fits (P < 0.001), but it was seen that range estimates 

increased with number of lag distance intervals included in the regression fit (Figure 1(d)). In fact, the 

range estimate with nine lag distance intervals (7.9) was almost twice the range estimate with five lag 

distance intervals (4.3), and the nugget value was 1.8 times higher when based on 9 lag distance 

intervals compared to 5. This simple example illustrates how fairly subjective decisions about 

regression fit settings can markedly affect the outcome of a given variogram analysis. Thus, despite the 

widespread acceptance of geostatistics being “BLUE” (best linear unbiased estimate) [18,22], it is also 

sometimes acknowledged that different applicators of this approach may develop highly different 

spatial structure analyses of the same data set, and a significant portion of this “subjectivity” is 

associated with decisions made regarding variogram analyses [18,21]. However, a recent analysis of a 
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wide range of variogram settings demonstrated that this analytical approach had higher robustness 

(radiometric repeatability) than 3 standard vegetation indices (NDVI, SI, and PRI) [16]. 

3. Materials and Methods 

3.1. Greenhouse Plant Material 

The greenhouse maize plants have been described elsewhere [3,16]. In brief, we planted 2 maize 

hybrids (Hybrid 1: Triumph 1416, 2004 and Hybrid 2: Pioneer 3223, 2006) October 2007 (data set 1) 

and February 2008 (data set 2) in individual 11L plastic pots, and each plant was maintained under 1 

of 3 water regimes. Spider mite infestation consisted of placing a heavily infested leaf piece on each 

maize plant. Maize plants in data set 1 were infested 4 December 2007, while maize plants in data set 

2 were infested 25 March 2008. 

Table 1. Data sets (total of 229 hyperspectral images) included in this study. 

    Non-Infested  Infested  
  DAI None Moderate High None Moderate High 

Data set 1 
8 Dec 3.00 6 6 6 6 6 6 

12 Dec 7.00 6 6 6 6 6 6 
14 Dec 9.00 6 6 6 6 6 6 

Data set 2 

28 Mar 3.00 5 5 6 4 5 6 
31 Mar 6.00 5 5 6 4 5 6 

2 Apr 8.00 5 5 6 4 5 5 
5 Apr 10.00 5 5 6 4 4 5 

“DAI” denotes days after infestation of maize plants with spider mites, and non-infested/infested refers to 

whether the maize plants were infested with spider mites. 

3.2. Hyperspectral Imaging  

A push broom line-scanning hyperspectral camera with 640 sensors in a linear array (PIKA II, 

www.resonon.com) was used. This hyperspectral camera acquires reflectance data in 160 spectral 

bands in wavelengths from 405 to 907 nm. Dark calibration was conducted at the beginning of the data 

acquisition. White Teflon was used for white calibration immediately before each image acquisition to 

account for subtle changes in light conditions. Each hyperspectral image was 6 cm long and 2.5 cm 

wide (15 cm2) from mid portion of 7th or 8th leaf without damaging the maize plant (leaf not excised). 

A hyperspectral image consisted of 160,000 reflectance profiles (640 sensors × 250 frames) or pixels. 

The imaging device was mounted about 45 cm from imaged leaves and the reflectance data were 

acquired at a spatial resolution of 106 hyperspectral profiles or pixels per mm2 inside a greenhouse 

with sunlight as the only light source. Similar to [16], PC-ENVI 4.7 (www.ittvis.com) was used to 

conduct 4 × 4 spatial averaging so that each hyperspectral image from greenhouse plants was reduced 

to 10,080 (160 × 63) pixels. Thus, after spatial averaging of hyperspectral imaging data from 

greenhouse plants, the spatial resolution was equivalent to 6.7 hyperspectral profiles (pixels) per mm2.  
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3.3. Variogram Settings 

All hyperspectral image files were imported into PC-SAS 9.2 (Cary, NC, USA) for data processing 

and statistical analyses. Variogram analyses (PROC VARIOGRAM) were conducted of all 

combinations of spectral bands (160) and hyperspectral images (229) (total = 36,640 variogram 

analyses). Based on a previous study [4], the following variogram settings were used: semi-variance 

data with a lag distance of 2 and 15 lag distance intervals. Non-linear regression (PROC NLIN) was 

used to conduct spherical regression (Equation (2)) of semi-variance data and to estimate the 3 

variogram parameters, nugget, sill, and range. Variogram parameter estimates from a hyperspectral 

image file were discarded if the regression fits failed to converge or the predicted range value 

exceeded 63. This threshold of 63 was chosen as it represented the width of the imaging data cube and 

a range value higher than 63 meant that the sill was reached at a lag distance that was longer than the 

width of data set. Due to the range value threshold, there was a slight variation in the number of 

variogram data observations used in statistical analyses of each of the spectral bands. Each of the 3 

variogram parameters, nugget, sill, and range, were examined individually in an analysis of variance 

(PROC MIXED) with 4 treatment effects (data set, hybrid, abiotic, and biotic stressors) and day after 

infestation as random variable. Abiotic stress was assigned a value from 1 to 3 with: no drought stress 

(abiotic stress = 1), moderate (abiotic stress = 2), or high (abiotic stress = 3). These water regimes were 

imposed by watering highly drought stressed plants one-third as much as the no drought stressed 

plants, and moderately drought stressed plants received two-thirds of the water given to no drought 

stressed plants. Spider mite infestations were grouped into the following 3 classes: (1) biotic stress = 1 

(0–10 spider mites per plant) (50% of data), (2) biotic stress = 2 (10–480 spider mites per plant) (25% 

of data), and (3) biotic stress = 3 (>480 spider mites per plant) (25% of data). These ranges were 

chosen to obtain similar numbers of observations in the 2 classes with spider mite induced stress. For 

each analysis of a variogram parameter, F-values associated with each of the treatment factors were 

used as indicators of how well a given combination of spectral band and variogram parameter 

responded to the examined stress factors. 

4. Results and Discussion 

4.1. Dual Stress Detection 

For each of the 480 combinations of spectral bands and variogram parameters (160 spectral bands × 3 

variogram parameters), the relative effects of data set, maize hybrid, abiotic stress (irrigation regime), 

and biotic stress (spider mite infestation) were examined. The main purpose was to identify 

combinations of spectral bands and variogram parameters that could be considered reliable/unique 

stress indicators without showing significant response to difference between maize hybrids and/or 

between the 2 data sets. Several important observations could be made from this initial analysis 

(Figure 2): (1) most of the combinations of spectral bands and variogram parameters were found 

unsuitable as stress indicators mainly because of significant difference between the 2 data sets, 

especially in analyses of sill values, (2) nugget values (Figure 2(a)) from 645–675 nm and 766–826 nm 

(multiple spectral bands in each spectral range) responded significantly to abiotic stress without 

responding significantly to other treatment factors, (3) sill values (Figure 2(b)) showed a highly 
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consistent response to biotic stress in spectral bands from 592 to 668 nm, but the same spectral bands 

also responded significantly to difference between data sets, so they were not considered further, 

(4) range values (Figure 2(c)) from 579 to 661 nm (multiple spectral bands) responded significantly to 

abiotic stress without responding significantly to other treatment factors, and (5) range values at 

715 nm responded significantly to biotic stress without responding significantly to other treatment 

factors. Thus, it was demonstrated that there is considerable variation in the stress response by 

variogram parameters derived from different spectral bands, and that unique responses to abiotic and 

biotic stressors could be detected. It is suspected that more spectral bands responding significantly to 

abiotic stress than to biotic stress because the range of abiotic stress was likely wider than that of biotic 

stress. Variogram parameters derived from several of spectral bands near 700 nm responded 

significantly to the imposed stressors, so the data analysis presented here corroborate findings 

published elsewhere [4,8]. Based on results presented in Figure 2 and identification of highest F-values 

from all 480 analyses of variance, 4 spectral bands, (683 and 775 nm as abiotic stress indicators and 

715 and 731 nm as biotic stress indicators) were selected for further analyses (Figure 3). It was seen 

that there was an increase in both nugget and sill values at 683 nm (Figure 3(a)) and 775 (Figure 3(b)) 

and that range values at 683 nm decreased in response to abiotic stress. Regarding variograms at 731 nm 

(Figure 3(c)) and 715 nm (Figure 3(d)), it was seen that range values increased in response to biotic 

stress, and sill values at 731 nm increased considerably. 

Analysis of variance was used to identify statistical differences in variogram parameters in response 

to the imposed stressors (Figure 4). Figures 4a and b suggested that nugget values at 683 nm 

(Figure 4(a)) and 775 nm (Figure 4(b)) increased significantly when maize plants are subjected to 

severe drought stress compared to maize plants without drought stress. Regarding detection of biotic 

stress, nugget values at 731 nm (Figure 4(c)) and range values at 715 nm (Figure 4(d)) also showed 

significant responses. 

Figure 2. Analysis of variance of nugget (a), sill (b) and range (c) values in 160 spectral 

bands between 405 and 907 nm in response to 4 treatment factors: (1) difference between data 

set 1 and 2 (Table 1), (2) difference between hybrid 1 and 2, (3) response to abiotic stress, and 

(4) response to biotic stress. Horizontal bars represent spectral regions with significant 

response to either abiotic (dashed) or biotic (non-dashed) stressor at the 0.05-level. 
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Figure 3. Variograms of reflectance data at 683 nm (a) and 775 (b) in response to abiotic 

stress, and at 731 nm (c) and 715 nm (d) in response to biotic stress. 
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4.2. Relationship between Reflectance Data and Variogram Parameters 

Table 2 shows that none of the examined descriptive statistics revealed trends consistent with the 

identified variogram parameter responses, and that none of them could be considered reliable stress 

indicators. Thus, the findings in this study are not in agreement with Carter and Knapp [8], who, based 

on an extensive review, concluded that most plant stressors induce an increase in reflectance, 

especially in spectral bands near 700 nm. One possible explanation for the discrepancy between the 

results presented in this study and those by Carter and Knapp [8] is that this study was based on a 

heterogeneous composite of 2 data sets and 4 treatment factors (data set, maize hybrids, abiotic and 

biotic stressors). Furthermore, it is important to mention that spider mite infestation levels were 

generally low with highest count on a single maize plant equal to about 700 spider mites. Based on 

sampling of spider mite infested maize plants from greenhouse cultures and field plots, over 300 spider 

mites may be found on single maize leaves [23], which may amount to several thousand spider mites 

on a single plant (a fully developed maize plant typically has 15–20 leaves). Thus even though abiotic 

stress was referred to as ranging from “none” to “severe”, and biotic stress ranged from “none” to 

“moderate”, the imposed stress levels were quite subtle.  

Table 2. Descriptive statistics of average reflectance values at 683, 715, 731, and 775 nm. 

   Standard  Confidence Limits 
 Average Median Error Lower Upper Width 
Response to abiotic stress at 683 nm     
None 0.091ab 0.087ab 0.000030 0.090 0.091 0.000118 
Moderate 0.089a 0.083a 0.000034 0.089 0.089 0.000132 
High 0.093b 0.088b 0.000035 0.093 0.093 0.000136 
Response to abiotic stress at 775 nm     
None 0.836ab 0.840ab 0.000121 0.836 0.836 0.000474 
Moderate 0.823a 0.825a 0.000137 0.823 0.824 0.000539 
High 0.856b 0.859b 0.000132 0.856 0.856 0.000519 
Response to biotic stress at 715 nm     
None 0.370 0.366 0.000084 0.370 0.370 0.000331 
Few 0.372 0.371 0.000087 0.372 0.373 0.000341 
Moderate 0.389 0.386 0.000129 0.389 0.389 0.000504 
Response to biotic stress at 731 nm     
None 0.638ab 0.640ab 0.000088 0.638 0.638 0.000345 
Few 0.633a 0.639a 0.000098 0.633 0.634 0.000385 
Moderate 0.66b4 0.663b 0.000148 0.664 0.664 0.000581 

Different letters across stress levels (vertical comparison) denote difference at the 0.05-level. 

This low spider mite infestation level was intentional, as the objective was to test variogram based 

analysis on a challenging model system, and variogram parameters did respond significantly despite 

the fact that analysis of average reflectance values in the same spectral bands yielded no consistent 

trends. A recent study involving experimental manipulation of reflectance data (adding 2.5% or 5.0% 

to reflectance values in all or random subsets of pixels) showed that increase in reflectance especially 
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affected sill values and to some extent also effected nugget values but had negligible effect on range 

values [24]. Thus, if mainly sill values respond to increases in reflectance values, it is not surprising 

that this study showed negligible increase in average reflectance and non-consistent response by sill 

values to the 2 stressors. 

Without significant increase in average reflectance and/or width of 95% confidence limits, 

a remaining objective was to characterize the spatial distribution (scattering) of reflectance responses 

to imposed stressors. In this context, it is very important to mention that crop leaves are “never 

clean”—that dust, pollen, and discolorations will invariably be present, and they can obviously 

compromise classification accuracy of reflectance based approaches. Figure 5 shows a typical maize 

leaf image and 4 hyperspectral image files, which were selected based on their nugget and 

range values derived from the spectral band at 683 nm. Average reflectance values varied within 10% 

(0.82–0.91) with the vast majority of pixels having reflectance values between 0.05 and 0.10, and all 

4 images were acquired near the leaf mid rib (white line of excluded pixels in the middle of each 

image). Comparing images a and b, it is seen that mainly due to a single large “spots” of increased 

reflectance in the top right corner caused a 4-fold increase in nugget values, while sill and range values 

remained fairly constant. Comparing images c and d, it is seen that a few scattered “spots” of increased 

reflectance caused a 2-fold increase in range values, while these scattered spots had negligible effect 

on nugget and sill values. The subtle variation in reflectance values among these 4 images emphasize 

the marked sensitivity of variogram analysis and how it may be used to amplify variations in data 

spatially organized data sets, which otherwise could not be differentiated. 

Figure 5. Maize leaf images: an actual RGB image and 4 images based on reflectance 

values at 683 nm with each image representing 10,000 pixels.  

Image a
Nugget = 0.000041 
Sill =  0.000254
Range =  21.01

Image b
Nugget = 0.000166 
Sill =  0.000231
Range = 21.75

Image c
Nugget = 0.000115 
Sill =  0.000117
Range =  22.25

Image d
Nugget = 0.000140 
Sill =  0.000177
Range = 46.08

Average  = 0.082 
Median =  0.079

Average  = 0.090 
Median =  0.087

Average  = 0.085 
Median =  0.083

Average  = 0.091 
Median =  0.088

0.05-0.10

0.10-0.15

0.15-0.20

0.20-0.25

Actual maize leaf

 

Based on the findings in this study and results published elsewhere, it is hypothesized that if an 

imposed stress level is sufficiently high, it will lead to a significant increase in average reflectance, 

especially near 700 nm, and especially sill values will respond to such an increase [4,8]. However, 

even before a significant increase in average reflectance, stress expression in crop leaves may 
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predominantly consist of scattered increases in reflectance within a given leaf, and that may lead to 

significant increases in both nugget and range values. In a theoretical model analysis of the relationship 

between chlorophyll distribution and leaf reflectance, Barton [25] concluded that: (1) Even small and 

subtle stress signs of chlorosis can significantly influence the reflectance of a leaf and that sensitivity 

of reflectance to chlorosis varies with wavelength. (2) Within-leaf variation in chlorophyll concentration 

due to stressors may markedly increase leaf reflectance and lead to underestimation of chlorophyll 

concentration. In addition, Barton [25] highlighted the importance of studying plant stress response 

based on individual leaves and also to incorporate spatial distribution information into the analysis. 

5. Conclusions 

This study confirmed results from previously published studies [4,8], that analysis of reflectance 

data near 700 nm show a strong stress response, but it was also shown that this spectral region may not 

be suitable for stress detection, when crop plants are subjected to more than 1 stressor and when other 

treatment factors are included in the analysis. With focus on variogram parameters, it was shown that 

especially nugget and range values increased significantly in response to the imposed stressors. Nugget 

values at 683 and 775 nm responded significantly to abiotic stress, and nugget values at 731 nm and 

range values at 715 nm responded significantly to biotic stress. Based on qualitative characterization of 

actual images, it was seen that even subtle changes in spatial patterns of reflectance values can elicit 

several-fold changes in variogram parameters despite non-significant changes in average and median 

reflectance values and in width of 95% confidence limits. Furthermore, it was hypothesized that, rather 

than causing a gradual increase in reflectance in all pixels, emerging plant stress expression 

predominantly elicit increases in reflectance in scattered pixels within a crop leaf. Such scattered stress 

expression is in accordance with documented within-leaf variation in both mineral content and 

chlorophyll concentration and therefore supports the need for reflectance-based stress detection at a 

high spatial resolution (many hyperspectral reflectance profiles acquired from a single leaf) and may 

be used to explain or characterize within-leaf foraging patterns of herbivorous arthropods. 
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