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Abstract: Mapping ecosystem services (ESs) is an important tool for providing the 
quantitative information necessary for the optimal use and protection of ecosystems and 
biodiversity. A common mapping approach is to apply established empirical relationships 
to ecosystem property maps. Often, ecosystem properties that provide services to humanity 
are strongly related to the land use and land cover, where the spatial allocation of the land 
cover in the landscape is especially important. Land use and land cover maps are, 
therefore, essential for ES mapping. However, insight into the uncertainties in land cover 
maps and how these propagate into ES maps is lacking. To analyze the effects of these 
uncertainties, we mapped pollination efficiency as an example of an ecosystem function, 
using two continental-scale land cover maps and two global-scale land cover maps. We 
compared the outputs with maps based on a detailed national-scale map. The ecosystem 
properties and functions could be mapped using the GLOBCOVER map with a reasonable 
to good accuracy. In homogeneous landscapes, an even coarser resolution map would 
suffice. For mapping ESs that depend on the spatial allocation of land cover in the 
landscape, a classification of satellite images using fractional land cover or mosaic classes 
is an asset. 

Keywords: ecosystem functions; ecosystem services; land cover maps; The Netherlands; 
geometric uncertainty; thematic uncertainty 
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1. Introduction  

Global and continental-scale integrated assessments, like the Millennium Ecosystem Assessment 
and The Economics of Ecosystems and Biodiversity increasingly emphasize the importance of the 
provision of ecosystem services (ESs) for humanity [1,2]. During the past decades, ESs have become 
increasingly important in policies and conservation, and sustainable use of ESs is now part of the 
targets set by the Convention on Biological Diversity (CBD) and the European Union [3].  

Ecosystem services are commonly divided into provisioning services, regulating services, cultural 
services and supporting services [1]. The provision of several regulating, supporting and cultural 
services depends strongly on the spatial allocation of land cover. For example, a network of hedgerows 
can regulate erosion and influences the spatial variability of soil fertility [4,5]. Vegetation and relief 
control the water storage capacity of the landscape [6,7]. Natural elements provide habitats for wild 
pollinators and for predators that prevent or diminish crop pests and diseases [8]. Finally, the landscape 
structure can influence the attractiveness of the landscape for tourists and holidaymakers [9,10]. 
However, land cover provides several services only to the direct surroundings, like erosion protection 
directly downslope of a hedgerow. 

Mapping and modeling of ESs is an increasing field of scientific research at scales varying from 
landscapes [9,11] to the national scale [12,13] and globally [14,15]. As a common approach to 
mapping ESs, relationships between ecosystem properties and ecosystem functions (EFs) or services 
are quantified and applied on a map of the ecosystem properties, often based on a land use or land 
cover map [16]. For example, the distance between (semi-)natural elements and agricultural fields or 
the fraction of (semi-)natural elements in an agricultural area can determine the capacity of the ES 
provision by these natural elements. 

To map ESs that depend on the spatial allocation of land cover, detailed data such as locations of 
hedgerows or small patches of natural growth are needed. At the landscape scale, the spatial organization 
of natural elements can be inventoried in detail [17] and translated into landscape measures. At the 
continental or global scales, direct field inventories are unfeasible, and landscape measures have to be 
calculated from continental or global-scale land cover maps, which are commonly derived from remote 
sensing (satellite imagery). Remote sensing-derived land cover maps are, however, uncertain in two 
ways: the shape or location of objects (geometric uncertainty) and the attribute values of objects 
(thematic uncertainty).  

Geometric uncertainty in land cover maps arises from the spatial data resolution. Global land cover 
maps generally aim to map and monitor the spatial distribution of land cover [18,19]. Because of the 
extent, the resolution is coarse. Major uncertainties caused by a coarse resolution are the poor 
representation of small landscape elements and minor land cover types [20]. Thematic uncertainty 
arises because of errors and problems with translating the reflectance signature of the satellite image 
into a land cover classification [21-23]. Both geometric and thematic uncertainty may propagate into 
erroneous outputs when remote sensing-derived land cover maps are used for ES mapping. 
Additionally, the resolution and extent used for mapping ESs influence the explaining factors and 
mapping patterns for soil organic matter contents and the level of herbivory and parasitism [16,24,25]. 
Upon mapping ESs, the scale of input data should, therefore, match the scale of the processes studied. 
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In reality, especially at larger scales of analysis, the available data define the mapping scale [26]; 
however, the uncertainty and the effects of uncertainties are unclear. General information exists on the 
accuracy of the global-scale land cover maps used in global-scale assessments of ESs. Nevertheless, 
insight into the effects of geometric and thematic uncertainty of these input data for the mapping of 
ESs is lacking. In this study, we assess the utility of global and continental land cover maps by 
analyzing the uncertainties that arise upon mapping ecosystem properties and functions. As an 
example of an EF that depends on the spatial allocation of land cover, we assessed the efficiency of 
pollination by wild pollinators as derived from land cover patterns in the Netherlands. 

2. Methods 

2.1. Case Study 

A number of crops providing a significant portion of the human food supply depend on pollination 
performed by insects like Honeybees and their wild relatives. Recently, the European Honeybees in 
Europe and North America have suffered large losses caused by colony collapse disorder [27]. Wild 
pollinators are, therefore, seen as potentially important for the production of food crops [28-30]. For 
efficient wild pollination, a landscape should provide a suitable habitat for wild pollinators. To map 
this EF, we first quantified the relation between the land cover structure and pollination based on a 
literature review. Previous research indicates that the abundance and species richness of wild pollinators 
decreases with increasing distance from the closest edge of natural elements or decreases with a 
decreasing percentage of natural land cover in the landscape. This can be translated into a percentage 
yield loss relative to a situation with optimal pollination [31-35]. 

We mapped the distance to natural elements in agricultural land (ecosystem property) and 
subsequently calculated the pollination efficiency (EF) in the Netherlands based on land cover maps at 
different scales (Figure 1). To analyze the effects of both thematic and geometric uncertainty on EF 
mapping, we used both a series of “real” land cover maps (Table 1) and a series of land cover maps 
based on aggregating the best available land cover map of the study area.  

Table 1. Characteristics of the land cover maps. 

Name 
Resolution 

(m) 
Extent 

Satellite data 
source 

Year of data 
acquisition 

# categories * Remarks Reference

LGN 25 Netherlands 
Landsat, IRS-LII, 
ERS-SAR radar. 

2003–2004 39 Use and cover. [36] 

CORINE 100 Europe Landsat/SPOT 2000 29 
Use and cover.  

Mostly dominant 
classes. 

[37] 

Glob 
Cover 

252 Global ENVISAT/MERIS 2004–2006 15 
Cover. Many  

mixed classes. 
[38] 

GLC2000 825 Global 
SPOT4 

VEGETATION 
1999–2000 8 

Cover. Some  
mixed classes. 

[19] 

PELCOM 1,100 Europe 
NOAA-AVHRR, 

MARS 
1999 10 

Cover. Dominant 
classes only.  

[18] 

* Only the number of land cover categories that occur in the Netherlands is given. 
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Figure 1. (a) Flowchart of the analyses; and (b) Procedure for aggregating the 25-m 
resolution Land Use Map of the Netherlands (LGN). 

 
                                                           (a)       (b) 

2.2. Land Cover Data 

Five land cover maps are available for the Netherlands. The land use map of The Netherlands (LGN) 
was considered the most accurate representation of the actual land cover and was, therefore, used as a 
base map for all analyses. The LGN is a 25-m resolution map, based on a stratified multi-temporal 
classification of satellite imagery from several sources (Table 1). Ancillary data were used to classify 
agricultural land into land use. The overall classification accuracy of LGN at class level is 85–90% [22] 
(Table 1). The other maps that were analyzed are continental or global-scale maps (Table 1). All maps 
attribute a dominant land cover type to each grid cell. The extent of the Netherlands was extracted 
from each map, and the maps were projected using the Dutch National grid coordinate system. 

To analyse the effects of geometric uncertainty, we created aggregated versions of the LGN with 
100, 250, 825, and 1,100-m resolutions. First, we reclassified the LGN into a map indicating nature (1) 
and other land (0) and a map indicating agricultural land (1) and other land (0) following the 
classification in Table 2. Then, the area percentage of nature and agriculture were calculated for each 
grid cell at the output resolution (100, 250, 825, and 1,100 m). Grid cells with over 60% of nature or 
agriculture were classified as such. Grid cells with 20%–60% nature and agriculture were classified as 
mixed land. These thresholds are consistent with the description of mixed land cover classes in 
GLOBCOVER and GLC2000 (Table 2). The remaining area was classified as other land (Figure 1). 
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Table 2. Classifications of land cover maps into main land cover types. For the mixed land cover types, the percentage nature is given 
between brackets. 

Main land 
cover type LGN CORINE GlobCover GLC2000 PELCOM 

Agriculture 

Grassland; Maize; Potatoes;  
Sugar beets; Cereals; Other crops;  
Orchards; Flower bulbs;  
Fen meadow areas. 

Non-irrigated arable land; Fruit 
and berry plantations; Pastures; 
Complex cultivation patterns. 

Rainfed croplands;  
Closed-open grassland.  

Herbaceous cover, 
closed-open; 
Cultivated and 
managed areas. 

Grassland; 
Non-irrigated 
arable land. 

Mixed - 
Land principally occupied by 
agriculture, with significant 
areas of natural vegetation (50). 

Mosaic cropland-grassland-
shrubland-forest (40);  
Mosaic forest-shrubland- 
grassland (60); Mosaic  
grassland-forest-shrubland (40). 

Mosaic: 
Cropland/Shrub or 
Grass Cover (50). 

-  

Nature 

Deciduous/coniferous forests,  
inside/outside urban area with high  
housing density; Marshes; Open/closed  
dune vegetation; Open drift sands;  
Heathland in dunes with no/some/strong 
invasion of grasses;Peat moors; Forest on  
peat moors; Other swamp vegetation; 
Reedlands; Forest in swamps; Other open 
natural vegetation; Bare soil in nature areas. 

Green urban areas;  
Broad-leaved/Coniferous/Mixed 
forest; Natural grasslands; 
Moors and heathland; 
Transitional woodland-shrub; 
Beaches, dunes, sands; Inland 
marshes; Peat bogs; Salt 
marshes. 

Forest: closed broadleaved 
deciduous; Closed needleleaved 
evergreen; Open needleleaved 
deciduous or evergreen; Closed 
to open mixed broadleaved and 
needleleaved; Sparse 
vegetation; Closed-open 
vegetation on regularly flooded 
waterlogged soil. 

Tree Cover: 
broadleaved, 
deciduous, closed; 
needle-leaved, 
evergreen; mixed 
leaf type.  

Coniferous/ 
deciduous/ 
mixed forest; 
Wetlands. 

Other 

Greenhouses; Fresh/saline water; Built-up 
urban/rural/agricultural; Grassland in urban 
area; Bare soil in built-up rural areas; Major 
roads and railroads. 

Urban fabric 
continuous/discontinuous; 
Industrial/commercial units; 
Roads and  railroads; Ports; 
Airports; Mineral extraction 
sites; Dump sites; Construction 
sites; Sport/leisure facilities; 
Intertidal flats; Water; Estuaries. 

Artificial surfaces; Bare areas; 
Water bodies. 

Water bodies 
Artificial surfaces. 

Inland 
waters; Sea; 
urban areas. 
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The effects of geometric and thematic uncertainty are analyzed using area fractions of the main land 
cover types (Table 2) and the patchiness of natural areas. Patches of natural land were identified and 
the number of nature patches and the average patch size were calculated. For the LGN map, 
additionally, the median patch size and the number of patches were calculated for 10 × 10 km grid 
cells to provide a picture of the actual pattern of the land cover structure across the Netherlands. 

2.3. Mapping of Ecosystem Properties and Functions 

Pollination efficiency was mapped as a function of the distance to nature in agricultural land 
(Dnature), using each “real” land cover map (Table 1) and each aggregated LGN map (Figure 1(b)). To 
map the pollination efficiency, we classified the land cover maps into agricultural land, nature, mixed 
land and other land (Table 2). To map the Dnature, each land cover map was reclassified into a map 
indicating nature (1) and other land (no data) and a map indicating agriculture (1) and other land (no 
data). Mixed land cover classes (Table 2) are included in both the nature map and the agriculture map. 
Then, the Euclidean distance to the centre of the nearest nature grid cell was calculated. In mixed land 
cover, the Dnature was assumed to be zero. 

Pollination efficiency was defined as the yield loss caused by diminished pollination compared to a 
situation with optimal animal pollination conditions. Klein et al. [29] provide a conceptual model of 
the relation between the Dnature and the pollination efficiency, indicating maximum pollination 
efficiency close to nature. The pollination efficiency decreases to an asymptote with increasing Dnature. 
To quantify this relation, we recalculated data on the percentage of fruits set as a function of Dnature [33] 
into an average percentage yield loss relative to the yield at a zero Dnature (yield reduction fraction, 
YRF): 

YRF (%) = 100 − (1.7 × SQRT(DNature)) (1)

We used data for crops that depend on 25% of total pollination by animal pollination [39]. The data 
given by Steffan-Dewenter and Tscharntke [33] range to 1,200 m. Beyond 1,200 m, the YRF is kept 
constant at 40%, based on the conceptual model of Klein et al. [29]. Equation (1) explains 51% of the 
variance in the data [33]. 

2.4. Analyses 

Each Dnature map and each YRF map resulting from each land cover map was aggregated to 
average values for a 10 × 10 km grid, only considering the grid cells within agricultural land. Then, 
each 10 × 10 km map was compared with the base map, i.e., the Dnature and YRF maps calculated from 
the original LGN map. Also, for each resolution a comparison was done between the Dnature or YRF 
map based on the real land cover map (Table 1) and the Dnature or YRF map based on an aggregated 
LGN map. Maps were compared visually, and a fuzzy numerical similarity statistic was calculated 
with the Map Comparison Kit (MCK; [40]). For each grid cell, the similarity between map a and map 
b was calculated as: 

|)||,max(|
||1),(
ba

babasimilarity −−=  (2)
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Fuzzy numerical similarity is considered the best method to distinguish the spatial patterns of 
similarities and errors between maps [41]. The overall similarity between a pair of maps was 
calculated as the average similarity statistic over all grid cells. A similarity statistic of 0.7 or higher 
was judged as good [42]. 

3. Results 

3.1. Land Cover Characteristics 

The Dutch land cover is dominated by agricultural land, although approx. 15% of the country is 
covered by natural or semi-natural areas (Table 3). Large areas of agricultural land are grasslands used 
as pasture or under rotation with arable crops. The land cover pattern is strongly related to the soil and 
parent material. The clay areas (Figure 2(a)) are characterized by homogenous, open landscapes with 
few, small patches of nature. In the sand areas, traditionally, mixed agriculture occur, which has 
resulted in a highly heterogeneous land cover. Peatlands are mainly used as fen meadow areas and are 
characterized by a high density of very small patches of nature. Main natural areas are found in the 
sand areas. Here, patch size and density are highly variable (Figure 2(b,c)). 

Table 3. Characteristics of land cover and ecosystem properties and functions for the study 
area in all land cover databases. 

Map/ 
Resolution 

Land cover area (%) Number 
of nature 
patches 

Median 
patch size 

(ha) 

Mean (StDev) 
Dnature (m) 

Mean (StDev) 
YRF (%) Agriculture Nature Mixed Other 

LGN 52% 14% 0% 34% 77,931 0.3 538 (262) 63 (11)
           

Aggregated LGN maps 
100 m 52% 12% 1% 35% 33,574 1.0 696 (353) 59 (11) 
250 m 53% 10% 2% 34% 5,397 12.5 943 (419) 54 (10) 
825 m 53% 8% 5% 34% 838 136.1 1,723 (854) 48 (10) 

1,100 m 52% 8% 6% 34% 601 200.0 1,928 (960) 47 (10) 
           

Real land cover maps 
CORINE 58% 17% 3% 23% 1,489 65.0 1,824 (1,450) 50 (11) 

GLOBCOVER 45% 23% 7% 25% 2,558 19.1 416 (177) 69 (7) 
GLC2000 72% 6% 0% 22% 647 136.1 3,580 (1,995) 41 (4) 
PELCOM 71% 5% 0% 24% 316 200.0 4,088 (2,156) 40 (4) 

For the aggregated LGN maps, the percentage of nature decreases upon coarsening resolution 
(Table 3), while the percentage mixed land increases. The number of patches decreases and patch size 
increases. 

In the “real” land cover maps (i.e., CORINE, GLOBCOVER, GLC2000 and PELCOM), the same 
trend is seen, but the decrease of patchiness is stronger than for the aggregated LGN maps. Additionally, 
the effects of thematic differences are observed. In GLOBCOVER, the percentages of nature and mixed 
land are large because some pasture areas are classified as a mosaic of shrubs and sparse vegetation. 
Consequently, more and smaller patches are seen in GLOBCOVER compared to the other maps. 
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Figure 2. Landscape characteristics of the Netherlands. 

 

3.2. Distance to Nature in Agricultural Areas  

Large values of Dnature are observed in the clay and fen meadow landscapes (Figure 2(a)) and in the 
northeast of the Netherlands (Figure 3). For the aggregated LGN maps, both the average Dnature in 
agricultural areas and the variance increase with coarsening resolution (Table 3). 

Although the spatial pattern of Dnature remains largely intact, Dnature increases throughout the 
Netherlands upon aggregating the LGN (Figure 3), resulting in large absolute differences with the base 
map. The Dnature map based on an LGN aggregation at 100 m shows a high similarity with the base 
map throughout the country (similarity statistic 0.78; Table 4). Whereas, for the map based on 
aggregating the LGN to 250 m, the similarity is high in the clay landscapes and in the northeast of the 
study area (Figure 4(a)). In the heterogeneous land cover on the sand soils, areas with a large Dnature 
emerge at a resolution of 250 m or coarser. 

Table 4. Fuzzy numerical similarity statistics for comparison with the base map. 

Map/Resolution Similarity with the base map 
Dnature YRF 

Aggregated LGN maps 
100 m 0.78 0.94 
250 m 0.57 0.86 
825 m 0.33 0.77 

1,100 m 0.30 0.76 
Real land cover maps 

CORINE 0.38 0.80 
GLOBCOVER 0.69 0.89 

GLC2000 0.18 0.65 
PELCOM 0.18 0.63 
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Figure 3. Distance to nature in agricultural areas. (Top left) Base map; (Top) Maps based 
on aggregated LGN; (Bottom) Maps based on real land cover. 

 

In the real land cover maps, Dnature is larger and more varied than compared to the aggregated LGN 
maps, except for GLOBCOVER (Table 3). The CORINE map results in spatial patterns similar to the 
base map (Figure 3), but values of Dnature deviate strongly, resulting in a lower overall similarity 
statistic (Table 4). GLOBCOVER is more similar to the base map than the LGN aggregated at 250 m 
(similarity statistic 0.69). Overall, at each resolution the similarity between the real map and the 
aggregated LGN map is around 0.50, which is reasonable (Table 5). In the sand areas, GLOBCOVER 
performs better than the aggregated LGN, whereas in the fen meadow areas the aggregated LGN is 
more similar to the base map. GLC2000 and PELCOM result in large Dnature values throughout the 
country and low similarities to the base map. Especially in the fen meadow areas and southwestern 
clay areas (Figure 2(a)) the Dnature pattern from the base map are poorly reproduced by GLC2000 and 
PELCOM (Figure 3). 



Remote Sens. 2011, 3                            
 

2066

Figure 4. Number of maps that show a high similarity to the basemap. (a) Dnature, 
aggregated LGN maps; (b) Dnature, real maps; (c) Yield reduction fraction, aggregated LGN 
maps; (d) Yield reduction fraction, real maps. 

 

Table 5. Fuzzy numerical similarity statistics for comparison between real maps with 
aggregated LGN at each resolution. 

Resolution Maps Dnature YRF 
100 m CORINE–LGN100 0.47 0.85 
250 m GLOBCOVER–LGN250 0.47 0.79 
825 m GLC2000–LGN825 0.51 0.84 

1,000 m PELCOM–LGN1100 0.46 0.83 

The differences in the Dnature patterns between the real maps are influenced by thematic differences. 
GLOBCOVER classifies parts of the fen meadow area as sparse vegetation or shrubland, resulting in a 
Dnature that can be somewhat lower than the base map. Many heterogeneous areas in the sand landscape 
are classified as mosaic land cover in CORINE and GLOBCOVER, resulting in small Dnature values. 

3.3. Yield Reduction Fraction 

In the base map, the YRF is low (indicating potential yield loss caused by a lower level of 
pollination) in the clay and fen meadow landscape, whereas a higher YRF is expected in the sand 
landscape (Figure 5). For the aggregated LGN maps, the average YRF decreases with coarsening 
resolution (Table 3; Figure 5), following the change in Dnature upon coarsening resolution (Figure 3). 
As the YRF remains constant beyond a Dnature of 1200 m, the increasing variance upon coarsening 
resolution in Dnature (Section 3.2) is not seen in the YRF maps.  
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Figure 5. Yield reduction fractions. (Top left) Base map; (Top) Maps based on aggregated 
LGN; (Bottom) Maps based on real land cover. 

 

In most of the Netherlands, all YRF maps based on aggregating the LGN compare well with the 
base map (Similarity statistic >0.7; Table 4; Figure 4(c); Figure 5). In the east of the study area, the 
825 m and 1,100 m resolution maps show a lower similarity to the base map (Figure 4(c)). 

In the real land cover maps, the decrease of the YRF with coarsening resolution is strong compared 
to the aggregated LGN maps (Table 3). Similarities with the base map also decrease with coarsening 
resolution. For GLOBCOVER, the high similarity of Dnature results in a highly similar YRF (Table 4). 
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Furthermore, the average YRF is high (Table 3). At each resolution, the similarity between the real 
land cover map and the aggregated LGN map is high. The similarities are all within the same order of 
magnitude (Table 5).  

The spatial patterns of the YRF base map remain intact but become more pronounced in the 
CORINE map (Figure 5). Moreover, GLOBCOVER shows a similar pattern, except for the high YRF 
in the fen meadow areas (Figure 2(a)). In the YRF map calculated using GLC2000, some areas with a 
high YRF can still be identified, although the absolute YRF clearly deviates from the base map. The 
YRF map based on PELCOM shows hardly any spatial variation. 

In most of the clay and fen meadow area, all YRF maps based on real land cover maps are similar 
to the base map (Figure 4(d)). In the remainder of the Netherlands, two of the maps (CORINE and 
GLOBCOVER) are similar to the base map. These patterns are opposite to the similarity patterns of 
the Dnature maps. In large parts of the study area, aggregating the LGN did not affect the YRF maps 
(Figure 4(c)), while using another real map resulted in a considerably different YRF (Figure 4(d)). 
Only in the eastern part of the sand area (Figure 2(a)), using another map had the same effects as 
aggregation. 

4. Discussion 

4.1. Effects of Resolution 

The consequences of the input data resolution for mapping ecosystem properties and functions are 
derived by comparing Dnature and YRF maps calculated from the series of aggregated LGN maps. 
For an accurate reproduction of the patterns of Dnature in the base map, in heterogeneous landscapes a 
100-m resolution map was required, while in homogeneous landscapes a resolution of 250 m was 
sufficient (Figure 4(a)). For an accurate YRF map, a high resolution was required only in the eastern 
part of the Netherlands (Figure 4(c)). These different input data requirements are caused by the variation 
in land cover structure throughout the study area and the process range of pollination. 

Generally, when aggregating high-resolution land cover data, minor land cover types will disappear, 
while major land cover types will expand [43]. Moody and Woodcock [44] found, however, that this 
effect is moderated by the spatial organization of the landscape. Minor but highly clustered land cover 
types will disappear more slowly upon aggregation than a dispersed class of the same size. Especially 
linear landscape elements, like ditch banks and tree rows, are sensitive to rapid disappearance in 
aggregation of land cover data [17,20]. 

In the clay and fen meadow areas, Dnature is, in reality, large because natural land is organized into 
small, mainly linear, patches (Figure 2(c)). Consequently, natural elements quickly disappear upon 
aggregating in the landscapes, resulting in an increasing Dnature. In the clay areas, the patch density is 
low (Figure 2(b)); thus the real Dnature is large. The relative change of Dnature upon aggregation is 
therefore small, resulting in high similarities up to a resolution of 250 m. In the fen meadow areas, 
patch density is higher (Figure 2(b)), resulting in a lower real Dnature. Because the natural elements are 
too small and isolated to be supported at a coarser resolution, many natural elements disappear, 
resulting in considerable changes of the Dnature. Therefore, only the 100-m resolution map had a high 
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similarity. Throughout the sand area, Dnature is very small because of the high percentage of natural 
area. This results in relatively large changes of Dnature upon aggregation. 

The YRF is less sensitive to map aggregation, as a consequence of the process range of 
pollination [26]. Wild pollinators have a maximum foraging range of approx. 1.5 km; therefore, wild 
pollination is assumed to be only effective within this range [29,45]. Consequently, increases of Dnature 
beyond 1,200 m will not propagate into changes of the YRF. 

In the clay and fen meadow landscape, the Dnature, in reality, sometimes exceeds 1,200 m. In these 
areas, the YRF does not change very much when Dnature increases because of the aggregation of the 
land cover map. Based on the land cover structure, the sand area can be subdivided in two parts; in the 
east natural elements are small and highly dispersed while in the north, south and central sand area 
nature is more clustered into large patches. In the eastern sand area, the small natural elements are only 
sufficiently supported for mapping the YRF up to a resolution of 250 m. In the remainder of the sand 
area, the larger natural elements are supported to 1,000 m resolution upon aggregation. Consequently, 
a coarser land cover map suffices for mapping the YRF. 

4.2. Effects of Satellite Imagery Resolution and Classification  

The spatial resolution of the real land cover maps used in this study is defined by the resolution of 
the satellite images used for producing the maps and ranges from 25 m to 1,100 m (Table 1). At a 
coarser resolution, there is a larger chance that within one pixel more land cover types are found in 
reality. In such pixels, the dominant land cover type will dominate the reflectance characteristics and, 
consequently, classification into dominant land cover classes will result in the underrepresentation of 
minor land cover types. This explains the high percentages of agricultural land in GLC2000 and 
PELCOM. The underrepresentation is stronger than when aggregating a map with a higher resolution 
(Table 3) because small natural landscape elements in landscapes dominated by agriculture are 
supported in the original pixels. Upon aggregating, the small natural elements are partly included in 
the mixed land cover. The better match between Dnature and YRF maps based on aggregated LGN maps 
with the base map suggests that capturing small natural elements is of great importance for mapping 
ecosystem properties and functions and that this can easily be achieved by including such elements 
into mixed land cover classes. 

If no single land cover type dominates the reflectance characteristics of a pixel, classification is 
problematic. In the Netherlands, the land cover is highly heterogeneous with cropland and pasture 
being strongly intertwined [22]. Consequently, in satellite images with a coarse resolution, a large 
amount of pixels will have a high level of heterogeneity. This effect is excluded when aggregating the 
finer data from the LGN map [43] and is the reason that the real coarse-resolution maps have a higher 
percentage of agricultural land and less patches of nature than the aggregated LGN maps. These 
differences in classification result in an additional deviation from the base map as can be seen in the 
lower similarity with the base map for both Dnature and the YRF for CORINE, GLC2000 and PELCOM 
(Table 4). The magnitude of the deviations is similar for all the maps, as can be derived from the 
similarity statistics that are all in the same order of magnitude (Table 5). However, the direction of the 
effects might differ. Classifying heterogeneous areas with a lot of small nature patches as mixed land 
cover, as is done in GLOBCOVER, avoids both the underrepresentation of minor land cover types and 
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avoids incorrect classification of pixels that are difficult to classify. This is demonstrated by the higher 
similarity of Dnature maps based on GLOBCOVER and to a lesser extent CORINE with the base map in 
the highly heterogeneous landscape in the east of the Netherlands. 

The real land cover maps used in this study differ in definition and classification of the land cover 
types (Table 2). In GLC2000 for example, forest is defined as areas with a tree cover of over 15%, 
while CORINE uses a 30% tree cover threshold [46]. The classification is related to the extent of the 
map. Global-scale maps have a generalized legend where details on the land cover at the landscape 
scale are lost, while the LGN classification is specific to the Netherlands. To calculate landscape 
measures and pollination efficiency, the land cover maps have been classified into the main land use 
classes (Table 2). This decreases the thematic differences between the maps [21]. The correct 
reclassification of the land cover map into the main classes required knowledge of the land use and 
land cover to correct errors. For example, many Dutch grasslands are classified as natural land cover in 
GLOBCOVER and GLC2000 while they are, in reality, used as agricultural pasture. The required 
knowledge of the study area might be unavailable at the global scale and might be location-specific. 

Furthermore, the maps have different goals and priorities that influence the classification procedure. 
For example, CORINE is strongly ecology and landscape oriented [18]. In the interpretation 
procedure, first, landscape units are delineated in classification, and ecological features are given 
priority [47]. This results in a large area of nature (Table 3) that is organized in few, but large patches. 
Consequently, Dnature is large and in large parts of the study area a low YRF is expected.  

4.3. Methodological Issues 

We assumed the LGN land cover map to be an adequate representation of the Dutch landscape. 
Although the LGN has an accuracy of 92% [36], small landscape elements are not correctly mapped at 
a 25-m resolution. In the fen meadow area, structures like ditches are underrepresented [17]. Similar 
behavior is expected for hedgerows and tree lines. The “real” Dnature might be smaller than calculated 
from the LGN.  

All land cover maps have accuracy issues related to the satellite imagery equipment used for data 
acquisition. Additionally, there are differences in the time of data acquisition between the maps 
(Table 1) that will have caused deviations because of land use changes between the mappings. The 
global area-weighted accuracy of GLC2000 is 68.6%, and the accuracy is low especially in shrubland 
and herbaceous cover [21]. Consequently, especially isolated heath areas have been wrongly classified 
in GLC2000. Because such areas are important habitats for wild pollinators, good classification is 
important for accurate mapping of pollination efficiency. This error has probably caused the 
underestimation of the Dnature and YRF in the centre of the Netherlands. Clevers et al. [22] evaluated 
MERIS satellite images for land cover mapping for the Netherlands. Particularly arable land was very 
difficult to classify from MERIS data and was confused with all other land cover types, particularly 
grassland and built-up area. This might be a result of the lack of a short-wave infrared spectral band in 
the MERIS satellite; A SWIR band could improve the distinction of barren and sparsely vegetated 
areas. MERIS data have been used for the GLOBCOVER map. We suspect that parts of the areas 
wrongly classified in the study by Clevers et al. [21] are included in the mosaic land cover in the final 
GLOBCOVER map. Schmit et al. [26] assessed the accuracy of CORINE and PELCOM in Belgium, 
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by comparing the maps with detailed land cover inventory data. CORINE had an agreement of almost 
80%, whereas the accuracy of PELCOM was 50–60%. 

Finally, a challenge in mapping EFs is distinguishing both land cover and land use. Satellite-derived 
land cover maps provide information about the actual cover of the land and not about the way the land 
cover is used [48]. Although there is often a strong overlap between land cover and land use, it is not 
possible to make a one-to-one translation of land cover into land use. The use of the land, e.g., the 
intensity of management or the choice for a certain crop type, can influence the capacity of a land 
cover to provide an EF. For a more detailed mapping of EFs, thus, spatial information on both the land 
cover and the land use is needed. In our study, the lack of distinction between land cover and land use 
posed particular problems in classifying the grassland areas. An area that is classified as grassland 
based on satellite imagery can be natural grassland that provides pollinator habitat, while many Dutch 
grasslands are intensively managed and grazed.  

4.4. Consequences for Mapping Ecosystem Services at a Global Scale 

We mapped one ecosystem property and one EF for a small case study that does not contain the full 
variety of land cover as displayed on global land cover maps. We do, however, consider the case 
study representative of a larger area and for other EFs and ESs that depend on the spatial organization 
of the land cover within a landscape for several reasons. First, the Dutch land cover is highly 
heterogeneous [22], and, although not all land cover types occur in the Netherlands, the variation in 
Dnature might be representative for larger areas. Second, in our model of pollination, we only 
distinguished between natural land cover and agricultural land cover and used a simple relation with 
distance to nature for mapping pollination. Although this is a strong simplification of the processes 
controlling pollination, it does capture the main effects of land cover on pollination efficiency 
correctly [28-35]. A similar model applies for other EFs and ESs that depend on the spatial organization 
of the land cover, including pest control, mitigation of erosion and floods and air quality regulation. 

Heterogeneous landscapes are hotspots for the provision of pollination. For mapping EFs that 
depend on the land cover structure, this heterogeneity should be captured in the land cover maps used 
for mapping EFs. Currently, the heterogeneity of a land cover map is strongly related to the accuracy 
and accurate mapping of heterogeneous areas is seen as a key challenge in land cover mapping [21]. 
GLOBCOVER might be a map that gives an accurate picture of the heterogeneity; the GLOBCOVER 
map in Africa shows high levels of patchiness and heterogeneity [49]. In this study, GLOBCOVER 
performed well in areas that are, in reality, heterogeneous. 

To translate maps of EFs into maps of ESs, a link to human use of the EFs needs to be made [16]. 
Thus far, we only included this by mapping the pollination efficiency in agricultural land. For a 
complete model the dependency of the crops on pollination by animals needs to be included, along 
with other factors that influence pollination like pesticide use and weather conditions. 

5. Conclusions and Recommendations 

In this case study, GLOBCOVER was the best land cover database for mapping ESs that depends 
on the land cover structure. GLOBCOVER has a patchier land cover in areas that are, in reality, highly 
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heterogeneous, resulting in a large variety in Dnature that matches the spatial pattern of Dnature and YRF 
that is seen in the base map in most of the Netherlands. 

For mapping the Dnature, in a heterogeneous landscape, high-resolution maps were needed. In a more 
homogeneous landscape, the requirements for the resolution were somewhat lower. To distinguish 
between heterogeneous and homogenous landscapes, however, a high-resolution map was needed. 

To identify areas that risk insufficient pollination, resolution was less important. In highly 
heterogeneous landscapes, a resolution of 250 m was sufficient for accurate mapping of both Dnature 
and YRF. In homogenous landscapes for the YRF, a coarser resolution sufficed. Additionally, 
differences in input satellite data and goals of the map propagate into the utility of the land cover maps 
for mapping ecosystem properties and functions.  

In our study, heterogeneous areas are hotspots for the provision of pollination. In heterogeneous 
areas, the natural land cover that provides EFs and the agricultural land use that uses the services are 
strongly intertwined. For accurate mapping of ecosystem services, the land cover map should 
accurately distinguish the different land cover types in heterogeneous areas or should, alternatively, 
provide a measure of the heterogeneity. Therefore, a classification with fractional land cover or 
including mosaic land cover classes or measures for patchiness would be an asset for mapping 
ecosystem functions and services at a global scale. 
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