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Abstract: The determination of the orthometric height from geometric leveling has practical 

difficulties that, despite a number of scientific and technological advances, passed a century 

without substantial modifications or advances. Currently, the Global Navigation Satellite 

System (GNSS) has been used with reasonable success for orthometric height determination. 

With a sufficient number of benchmarks with known horizontal and vertical coordinates, it 

is often possible to adjust using the least squares method mathematical expressions that 

allow interpolation of geoid heights. The objective of this study is to present an alternative 

method to interpolate geoid heights based on the technique of Artificial Neural Networks 

(ANNs). The study area is the Brazilian state of São Paulo, and for training the ANN the 

authors have used geoid height information from the EGM08 gravity model with a grid 

spacing of 10 minutes of arc. The efficiency of the model was tested at 157 points with 

known geoid heights distributed across the study area. The results were also compared with 

the Brazilian Geoid Model (MAPGEO2004). Based on those 157 benchmarks it was 

possible to verify that the model generated by ANNs provided a mean absolute error of 

0.24 m in obtaining a geoid height value. Statistical tests have shown that there was no 

difference between the means from known geoid heights and geoid heights provided by the 
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neural model for a significance level of 5%. It was also found that ANNs provided an 

improvement of 2.7 times in geoid height estimates when compared with the MAPGEO2004 

geoid model. 

Keywords: geoid height; earth gravitational model 2008; artificial neural networks 

 

1. Introduction 

Artificial Neural Networks (ANNs) are clusters of processing units (known as neurons or nodes) 

interconnected and structured, whose operation is analogous to a neural structure from intelligent 

organisms [1]. ANNs derive their computing power from their distributed massively parallel structure 

and their ability to learn and generalize, making possible the resolution of complex problems in 

different knowledge areas [2]. 

The operation of ANNs is inspired by the human brain [2]; though ANNs have been used 

successfully in a variety of different application areas. According to [3], due to their non-linear 

structure, ANNs can represent more complex features from data, which is not always possible using 

statistical techniques or traditional deterministic methods. For [1], the major advantage of ANNs over 

conventional methods is that there is no need to know the intrinsic theory of the problem, nor the 

necessity to analyze the relationships that are not fully known among the variables involved in 

modeling. 

In the geosciences area, ANNs have been used to model complex phenomena involving variables 

difficult to obtain. However some ANN applications involve easily obtainable variables for the 

solution of problems, but which are usually difficult to solve using conventional mathematical 

methods. In evapotranspiration and surface temperature modeling [4-10]; geophysics in lithological 

classification [11-17]; soil science—through the concept of pedotransfer function, which consist in 

modeling a problem with easily obtainable laboratory variables—there has been growing interest in 

ANN applications [18-20]. In the case of GPS, for example, a neural model to estimate the L1 and L2 

carrier waves using as input information pseudorange data from the RBMC (Brazilian Network for 

Continuous Monitoring) was proposed [21]; and ANNs have also been used to estimate the value of 

TEC (Total Electron Content) using data from continuous monitoring GPS stations [22]. 

The geoid shape is directly related to the Earth gravity field. However, the ellipsoid is a 

mathematical surface with shape and dimensions close to that of the geoid and used as the reference 

surface for geodetic survey calculations. The geoid and ellipsoid surfaces are not coincident or parallel, 

and the separation between them is called ‗geoid height‘, which can reach 100 m in some parts of the 

world. The relative inclination from these surfaces in extreme cases is of the order of 1‘  

(one arc-minute) [23]. 

The importance of precise geoid modeling has increased in the last years with the advent of satellite 

positioning systems (such as GNSS). As is well known, the heights provided by GNSS are referred to 

the reference ellipsoid instead of the geoid. To convert these ellipsoidal heights to orthometric heights 

knowing the relation between the geoid and ellipsoid surfaces is necessary. 
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There are different methods to determine the geoid based on observed gravity data. Among these 

methods mention can be made of the application of Stokes' integral [24], the method of least squares 

collocation or Fourier transform [25]. These geoid determination methods are based on functional 

and/or stochastic relationships between gravity anomalies and geoid height. Some authors performed 

studies using ANNs for geoid modeling [26-29], with satisfactory results.  

Seager et al. [28] using an ANN of back-propagation type, modeled the geoid heights in a certain 

region in Australia, obtaining an average error of 0.166 m and a maximum error of 0.711 m. Tierra et al. 

implemented an ANN method of free-air anomaly interpolation in a region in Ecuador and the results 

were found to be better than using kriging [29]. A similar study was conducted by [27] in an area of 

3° × 3° in the city of Imbituba, in the Brazilian state of Santa Catarina. The results obtained by free-air 

anomaly estimation were similar to using kriging interpolation. Maia [26] developed a neural model to 

obtain geoid heights with errors less than 0.5m in a region in the state of São Paulo, bounded by 

latitude −19° to −26° and longitude −54° to −44°, whose variables were latitude, longitude and free-air 

anomaly from the EGM96 model [30].  

Reinke et al. modeled the geometric geoid employing easily obtainable information [31]. This work 

was developed in the metropolitan region of the Brazilian city of São Paulo and data employed in 

ANNs training were input UTM coordinates, and in the output geoid height in the MAPGEO2004 

system. The developed ANN was tested at 21 vertices with known geoid heights and the mean squared 

error that was obtained was 0.10 m. 

The objective of this study was to evaluate the efficiency of an ANN of the back-propagation type 

for geoid height interpolation in the Brazilian state of São Paulo. The training was of the supervised 

type with geoid height information (on a 10 by 10 arc-minute grid) from the EGM08 model [32], 

validated on 157 benchmarks with known geoid heights distributed uniformly across the whole state. 

2. Data and Methodology 

For a better understanding of the method employed in this work it is necessary to introduce some 

important concepts. 

2.1. Structure of Neural Networks 

ANNs are used in areas as diverse as neurosciences, mathematics, statistics, physics, computer 

sciences and engineering; and their main objective is to solve complex problems based on the structure 

and functioning of the human brain. Also known as conexionism or distributed or parallel processing 

systems, ANN is an alternative technique to conventional algorithmic computing because it is not 

based on rules [2].  

An ANN can be considered as a set of artificial neurons with local processing capacity, a connection 

topology that defines how these neurons are connected, and a learning rule [15].  

The artificial neuron is the information processing unit—the fundamental element for the operation 

of the ANN—but still primitive if compared to those found in the brain [2]. The artificial neurons, as 

well as the biological neurons, have input connections (dendrites), output connections (axons) and an 

internal process that generates an output signal in response to the input signal. 

The artificial neurons (Figure 1) are formed by: 
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 Input signals (x1, x2 and xm) or input information, which might come from the environment or 

from the activation of other neurons.  

 A set of weights (wk1, wk2, wkm), which describe the connection forces; that can be positive, 

representing excitatory junctions; or negative, inhibiting the activation of the neuron. When 

there is no connection between two neurons the synaptic weight is null. 

 Sum function (Σ), which represents the summation of the input signals multiplied by their 

respective weights, constituting a linear combiner. 

 Activation function [φ(.)], which restricts the output amplitude of the neuron, in an interval 

normalized between [0;1] or [−1,1]. 

 Output signal (yk), which is the result generated by the neuron. 

Figure 1. Structure of artificial neurons used in the Artificial Neural Network (ANN) [2]. 

 

Every piece of input information has an associated weight, also known as the synaptic weight, 

which mathematically represents its degree of importance for that neuron [15]. The input signals of the 

neurons are multiplied by their synaptic weight, and the summation of this result added to the bias 

forms the input information of the neuron:  

k

n

j

jkjk bxwu 
1

,             (1) 

where xj are the input signals; wkj is the synaptic weight of the neuron k; bk is the bias; and uk is the 

linear combiner output of the model. The bias is a parameter external to the neuron; and its function is 

to avoid the emergence of errors when the input data is null. In addition, it increases or decreases the 

net input of the activation function by being either positive or negative [2]. 

The output value of the linear combiner (uk or vk) will be compared with the limit value for the 

neuron activation. If the value is higher, the neuron will activate, otherwise it will remain inactive. The 

activation function of internal order of the neuron, is increasing, continuous and working as a 

restraining element to the output amplitude of the neuron [15]. The output of a neuron in terms of the 

induced local field (or activation potential), defined by the activation function, has a normalized 

amplitude in the interval [0;1] or [−1.1] [2].  

Each neuron has an activation function associated with it, responsible for the intensity of the signal 

to be transmitted by the connections to the neurons of the adjoining layers [2]. The linear and sigmoid 
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activation functions are most frequently used. The linear activation function is the one that does not 

limit the network output and is used only to store data input and output. The linear function is 

presented as: 

vkv .)(                (2) 

where k is a constant. 

The sigmoid activation function is the most popular, and assumes a continuous value interval 

between 0 and 1. In addition it has an adequate balance between linear and non-linear behavior [2].  

The sigmoid activation functions are used in the Multilayer Perceptron [2]. The logistic function, 

described by Equation (3) and the hyperbolic tangent function represented by Equation (4), are also 

examples of sigmoid functions [2]. The difference between them is that the logistic function adopts 

values between 0 and 1, whereas the hyperbolic tangent function adopts values between −1 and +1. 

 va
v




exp1

1
)(              (3) 

)tanh()( vv                (4) 

in which vk is the linear combiner output of the model and a is the inclination parameter of the 

function. 

Among the different ANN models, the Multilayer Perceptron Model (MLP) is particularly popular. 

In the MLP there is an input layer (those neurons receive external stimulation), one or more 

intermediary layers, and the output layer (which provides the network result). The structure of such an 

ANN is indicated in Figure 2. 

Figure 2. Multilayer Perceptron Model (MLP) network example. 

 

The lack of internal layers in a MLP network limits its application to the treatment of linearly 

separable problems. Only by adding at least one intermediary layer does it become possible to treat 

non-linear problems. The internal layers, inherent to the MLP model, transform the problem described 

by the set of network input data into a representation suitable for the output layer [2]. 

Error back-propagation is an algorithm for supervised ANN training (when the network output 

values are known) which has been often used for the solution of complex problems [2,15]. The 

learning of a network basically consists of an adjustment of the synaptic weights in order to match the 

knowledge acquired by the network. In simple terms, the algorithm works by comparing the acquired 

output for a determined input pattern with the desired output (value provided to the network during 

training) and, in a second phase, adjusts the network weights to match the obtained errors. This process 

Input Layer 

Internal Layer 

Output Layer 
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repeats until a predefined acceptable error is obtained (average quadratic error) according to 

Equation (5) or the maximum number of defined iterations is reached [15]. 

  



p

i

ii

d xwyJ
1

2

2

1
,             (5) 

where ix  is the input information, i

dy is the output information, and w is the synaptic weight. 

MLP with supervised training—using the back-propagation algorithm—has been successfully 

employed in solving several problems [16]. In some applications, such as complex problems involving 

large networks, the training process using the back-propagation algorithm is slow. Because of this 

limitation several modifications have been proposed to accelerate the training time and to increase its 

performance. The most employed variations of the back-propagation algorithm are: back-propagation 

with momentum, Quickprop, Levemberg-Marquardt, second order momentum, Newton, and Resilient 

Back-propagation. More details about those algorithms can be found in [2]. 

For geoid modeling the most employed algorithm is the Levemberg-Marquardt variety. Training by 

Levenberg–Marquardt results in the network being slower to perform more calculations, but with a 

reduction in the number of iterations [8,26,31]. 

The development of an ANN involves the training and validation stages. Network training consists 

of calculating the outputs from input data based on weight adjustments. The validation stage consists 

of providing the trained network with a set of input-output pairs, different from those used during the 

learning process [15]. 

In order to obtain good results in the training and validation stages, the input and output data must 

undergo some preprocessing, which consist mainly of data normalization. Data normalization is 

required so as to prevent variables with values of a higher magnitude order from dominating or 

distorting the network weights. The most common normalization intervals are [0;1] and [−1;+1], and 

the interval definition depends on the type of activation function to be employed (linear, sigmoid, etc). 

After the validation and training stages, the network can be used to generate responses to other 

information sets, since all information of the training set are stored in the neurons after the adjustment 

of their synaptic weights. 

The implementation of the ANN to estimate geoid heights was based on criteria established by [9], 

where the author specifies that the definition of the best ANN framework is empirical, via a trial and 

error process where tested input variables, number of intermediary layers, number of neurons per layer, 

the learning algorithm and the number of training cycles, are each trialed. Among the many 

possibilities the ANN with the smallest error in the training and validation stages is the one with the 

most probable structure to solve the problem which is being modeled.  

The network topology employed in this study belongs to the class of multiple layer networks. In the 

input layer, the number of neurons was defined using geodesics (latitude and longitude). The number 

of intermediary layers and neurons in each layer was also defined through experiments. Successive 

refinements were performed to obtain the final structure of the most adequate network, that is, the one 

showing a good performance in the training stage and a good generalization capacity, evaluated by the 

network performance in the validation stage. The output layer was formed by only one neuron, having 

as output information the geoid height calculated from EGM08 [32].  
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2.2. Geoid Height for Training and Simulation of Neural Network 

The study area is São Paulo, as presented in Figure 3, where all benchmarks used in ANN 

simulation have GPS coordinates in the SIRGAS (Geocentric Reference System for the America) 

reference system. Geoid heights are from Brazilian Geography and Statistic Institute (IBGE) database, 

which has an accuracy of ±0.10 m [33]. 

Figure 3. Study area and distribution of GPS leveling points. 

 

South A merica

Location of Study Area 

B razil

São Paulo State

 

For ANN training the geoid height information from the EGM08 model was used. The data 

generated on the 10′ × 10′ grid consisted of 2,035 points. The EGM08 model contains the spherical 

harmonic coefficients of the Earth‘s gravity field complete to degree and order 2,159, a total of 

2,401,333 coefficients [32]. 

The training stage was performed using the Neural Network Toolbox module of the program 

MATLAB 7.0.1, and the number of intermediary layers, number of neurons per layer, the learning 

algorithm and the number of training cycles were empirically tested until the best network topology 

was found. 

After the training stage, the tests were conducted with 157 GPS leveling data points. The geoid 

heights that were obtained were compared with the known values provided by the Brazilian Geoid 

Model (MAPGEO2004). According to [34], MAPGEO2004 has a resolution of 10‘ and was computed 

using the modified Stokes integral and the Fast Fourier Transform technique (FFT), using the 

following data: 

 Average Helmert Anomalies on a 10′ × 10′ grid in continental areas, obtained from Brazilian 

Geography and Statistic Institute (IBGE) and other organizations in Brazil or neighboring 

countries. 

 Free-air anomalies derived from satellite altimetry data in oceanic areas. 

 Digital terrain model with 1′ × 1′ resolution obtained from topographic map digitisation. 

 The EGM96 geopotential model to degree and order 180 [33]. 
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3. Results and Discussion 

The authors performed 350 training and validation tests to determine the best topology network for 

estimating the geoidal height for the state of São Paulo. During the training and simulation stages 

different network topologies were tested, altering the number of intermediary layers, the number of 

neurons, the activation function and the training algorithm. In general, the best results were obtained 

with the values normalized between [0;1] and consequently with the logistic sigmoid activation 

function (Equation (3)) that assumes values between 0 and 1. The sigmoid activation function is the 

most commonly employed in geoid modeling studies [8,26,29,31], and is usually associated with 

training algorithms of the back-propagation type [8].  

During the performance of the tests, the best performance in the training stage did not always 

correspond to the best results in the validation stage. This might happen when the network memorizes 

the training data but loses its generalization capacity, a phenomenon called ‗overfitting‘. This might 

happen because the network topology is not adequate for representing the physical complexity of the 

problem, or because the training set is not representative of the field [2]. 

The best network was obtained by using the Levenberg-Maquart learning algorithm, which is a 

variation of the back-propagation algorithm. Regarding the number of cycles, experiments were 

performed using a maximum of 1,000 cycles in the training stage. However with 600 good results were 

obtained in the validation stage. The ANN that exhibited the best result in the validation stage was the 

one of [2-2-1] type with 5 neurons in the first intermediary layer and 4 in the second intermediary layer 

(see Figure 4). 

Figure 4. Structure of the Artificial Neural Network (ANN) used for geoid height modeling. 

 

The values of known geoid heights and those obtained by the ANNs for the 157 points are plotted in 

Figure 5. 



Remote Sens. 2011, 3                            

 

 

676 

Figure 5. Known geoid heights and those estimated by the Artificial Neural Networks 

(ANNs) for the 157 GPS leveling points of the validation set. 

 

The geoid heights and those obtained by the ANNs (Figure 4) are similar. When working with 

neural networks it is usual to perform a linear regression to check if the ANN was able to learn with 

data provided in the validation stage. Almost always the determination coefficient (R
2
) calculated value 

is close to 1, but, independent from the correlation, what is analyzed is how the dispersion of the dots 

happens along the adjusted straight line. For an efficiently trained neural network, the linear regression 

will show—in the validation stage—a very homogeneous dispersion of the dots almost coincident with 

the straight line.  

The similarity between the values of geoid heights calculated by the ANNs (y) and the known values 

(x) can be seen from the results obtained with simple linear regression (Table 1). The equation obtained 

is of the type y = a + bx and the nearer to 1 the regression determination coefficient (R
2
) is, the better 

is the capacity of the ANN to estimate the geoid height.  

Table 1. Results of the simple linear regression between known geoid heights and those 

estimated by the Artificial Neural Networks (ANNs). 

Equation
(1)

 R
2 (2)

 SQR
(3)

 

y = 1.061x + 0.2545 0.9865 18.86 

(1) Linear regression performed for a confidence interval of 95% for the linear coefficient. 

(2) Determination coefficient. (3) Sum of squared differences between known geoidal heights values and 

geoidal heights obtained by ANNs. 

The line angular coefficient (1.061) and the determination coefficient (R
2
) are near the value of 1 

(see Figure 6) indicating that the model generated by the ANN had a good performance in the training 

stage and, consequently, a good capability of estimating geoid heights during the validation process. 

GPS-levelling points 
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Figure 6. Linear regression between values from known geoid heights and those modeled 

by the Artificial Neural Networks (ANNs). 

 

The differences (discrepancies) between known geoid heights and those obtained by the ANNs are 

shown in Figure 7. It can be observed that the distribution of discrepancies is more or less 

homogeneous, in positive and negative values. A tendency analysis using the ―t-Student‖ test was 

performed, confirming that for a 10% significance level the neural model did not present a tendency in 

the discrepancies. The largest error generated by the network in the validation stage was for benchmark 

number 47 where the discrepancy between the known geoid height and the one determined by the ANN 

was 0.97 m. The RMS of the 157 GPS leveling point validation set was 18.86. A hypothesis test was 

conducted in order to determine if the average geoid height at the 157 GPS levelling points is the same 

as the average of known geoid heights. The t-Student test, for a 5% significance level, has shown that the 

averages between known geoid heights and those determined by the ANNs are statistically the same. 

Figure 7. Discrepancies (differences) between known geoid heights and those obtained by 

the Artificial Neural Networks (ANNs) at the 157 GPS leveling points. 

 
GPS-levelling points 

 

 



Remote Sens. 2011, 3                            

 

 

678 

All results presented here indicate that there is a consistency of the ANN in obtaining geoid heights. 

The authors also analyzed how much the model represented by the ANNs is more efficient than the 

Brazilian Geoid Model (MAPGEO2004). The geoid height values obtained from the 157 GPS levelling 

points were compared with the known geoid heights (Figure 8) and it was observed that the results 

were less consistent than the results obtained by the ANNs. 

Figure 8. Known geoid heights and those estimated by MAPGEO2004 for the 157 GPS 

leveling points of the validation set. 

 

The linear regression analysis (Table 2) between known geoid heights and geoid heights obtained by 

MAPGEO2004 has demonstrated that MAPGEO2004 might have a systematic error for geoid heights 

for the state of São Paulo. 

Table 2. Results of the simple linear regression between known geoid heights and those 

estimated by the Brazilian geoidal model (MAPGEO2004). 

Equation
(1)

 R
2 (2)

 SQR
(3)

 

y = 0.9918x – 0.6087 0.9607 92.39 

(1) Linear regression performed for a confidence interval of 95% for the linear coefficient. (2) Determination 

coefficient. (3) Sum of squared differences between known geoidal heights values and geoidal heights obtained by 

MAPGEO2004. 

By analyzing only the determination coefficient (R
2
) in Table 2 it is not so evident that the model 

represented by the ANNs is more efficient than MAPGEO2004. However, when an analysis is made of 

the differences between the known geoid heights and the ones obtained by MAPGEO2004 it can be 

seen that the Sum of Squared Differences (SQR) has increased compared to the model of the ANNs. 

This fact can be explained because MAPGEO2004 has been found to have a systematic error in all 

Brazilian regions [8,26,31]. This fact can also be confirmed from the linear regression plot in Figure 9. 

GPS-levelling points 
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Figure 9. Linear regression between values from known geoid heights and those modeled 

by MAPGEO2004. 

 

Unlike the linear regression obtained by the ANNs model, the geoid height dispersions are less 

uniform along the adjusted line. To better illustrate this fact, see the dispersion graph in Figure 10, 

displaying the differences between the known geoid heights and the ones obtained by MAPGEO2004. 

A systematic error in the Brazilian geoid model for the state of São Paulo can be clearly seen.  

Figure 10. Discrepancies (differences) between known geoid heights and those obtained by 

MAPGEO2004 at the 157 GPS leveling points. 

 

The discrepancies between known geoid heights and those obtained by MAPGEO2004 had a higher 

concentration of positive values than negative values. From a tendency analysis using the ―t-Student‖ 

test it was observed that, for a 10% significance level, MAPGEO2004 exhibited a tendency in the 

GPS-levelling points 
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results, already confirmed in Figures 9 and 10, which confirms a systematic error in geoid height from 

this model for the state of São Paulo.  

The same test was applied to the ANNs model and no tendency for a systematic error was observed. 

The systematic error detected in the MAPGEO2004 might be associated with data errors such as: 

systematic errors in Helmert average anomalies in continental areas obtained from gravimetric 

information from the Brazilian Geography and Statistic Institute, systematic errors in the digital model 

of the terrain obtained from the topographic charts, or errors in the anomalies derived from satellite 

radar altimetry in oceanic areas. 

In absolute values, the average geoid height discrepancy obtained by the ANNs was 0.24 m, with a 

standard deviation of ±0.26 m; while MAPGEO2004 gave an average discrepancy of 0.64 m, with a 

standard deviation of ±0.42 m. From these results it can be seen that there was a significant 

improvement, with an error reduction of approximately 2.7 times. 

The superiority of the ANNs, with respect to MAPGEO2004, in estimating geoid heights might be 

attributed to the fact that ANNs can approximate some relations between the input and output variables 

that many times are unknown or not perceived. Furthermore, the ANNs are less vulnerable to 

approximate data and/or the presence of distorted data. 

4. Conclusions 

This paper proposes a geoid height determination method for the Brazilian state of São Paulo 

based on an ANN trained in a supervised manner using information from the EGM08 model. Data 

from a 10′ × 10′ grid were employed, a total of 2035 points. The variables involved in the ANN model 

were positional information such as ANN input (latitude and longitude), and geoid height was the 

ANN output. 

The network with the best performance in the training and validation stages was obtained 

employing the Levemberg-Marquardt algorithm (which is a variation of the back-propagation 

algorithm), the logistic sigmoid activation function in all layers and data interval normalized 

between [0;1]. The training stage was concluded with 600 cycles. The network structure was formed by 

two intermediary layers, the first formed by 5 neurons and the second by 4 neurons.  

To validate the model the authors employed 157 GPS leveling points with known geoid heights 

distributed uniformly across the state of São Paulo. The ANN model was also found to be more 

efficient for obtaining geoid heights in comparison to the Brazilian Geoid Model (MAPGEO2004). 

Comparing the absolute errors generated by the artificial network model and by MAPGEO2004, on 

average, the proposed method improved the estimated geoid height accuracy by a factor of 

approximately 2.7.  

Linear regression analysis has shown that the model generated by the ANN had a good performance 

in the training stage and, consequently, a good capacity in estimating geoid heights during the 

validation process. The t-Student test, for a significance level of 5%, has shown that the averages of the 

known geoid heights and those determined by the ANNs for the 157 GPS leveling points were 

statistically the same. 
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Using the t-Student test, with a significance level of 10%, it was observed that the ANN model did 

not have a systematic error tendency. On the other hand, MAPGEO2004 has an error tendency that 

might be due to the information employed in its development.  

This is a preliminary study, and new experiments are being performed in order to improve the 

ANN efficiency in the geoid height determination process. Thus, new neural models are being 

evaluated, including the thickening of the grid of points. In the network simulation and training stages, 

new algorithms are being tested.  
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