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Abstract: Dual pushbroom hyperspectral sensors consist of two different instruments 

(covering different wavelengths) that are usually mounted on the same optical bench. This 

configuration leads to problems, such as co-registration of pixels and squint of the field of 

view, known as the boresight effect. Determination of image-orientation parameters is due 

to the combination of an inertial measurement system (IMU) and global position system 

(GPS). The different positions of the IMU, the GPS antenna and the imaging sensors cause 

the orientation and boresight effect. Any small change in the correction of the internal 

orientation affects the co-registration between images extracted from the two instruments. 

Correcting the boresight effect is a key and almost automatic task performed by all  

dual-system users to better analyze the full spectral information of a given pixel. Thus, the 

boresight effect is considered to be noise in the system and a problem that needs to be 

corrected prior to any (thematic) data analysis. We propose using the boresight effect, prior 

to its correction, as a tool to monitor and detect spectral phenomena that can provide 

additional information not present in the corrected images. The advantage of using this 

effect was investigated with the AISA-Dual sensor, composed of an EAGLE sensor for the 

VIS-NIR (VNIR) region (400–970 nm) and HAWK for the SWIR region (980–2,450 nm). 

During the course of more than six years of operating this sensor, we have found that the 

boresight effect provides a new capacity to analyze hyperspectral data, reported herein. 

Accordingly, we generated a protocol to use this effect for three applications: 

(1) enhancing the shadow effect; (2) generating a 3-D view; and (3) better detecting 
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spectral/spatial anomalies based on sub-pixel edge detection. This paper provides examples 

of these applications and suggests possible uses from an airborne platform. 

Keywords: boresight; dual pushbroom hyperspectral sensor; shadow map; stereo 3-D map; 

anomaly detection 

 

1. Introduction 

Hyperspectral imaging spectrometers produce data with high spectral resolution domains (in the 

range of 5 to 15 nm bandwidths) and continuous band configuration. This gives processors the ability 

to detect subtle spectral features and defined chemical and physical properties of the sensed objects. This 

powerful capability has been successfully used in many applications, such as: geological mapping [1-3]; 

agricultural monitoring and optimization [4,5]; environmental damage assessment [6,7]; forestry 

surveys [8,9]; vegetation monitoring [10,11]; water-quality assessment [12,13]; detection of man-made 

materials [14,15] and more.  

The determination of image-orientation parameters of any sensor during data acquisition is made 

possible by the combined use of an inertial measurement unit (IMU) and global position system (GPS). 

In this integrated system, the GPS antenna, IMU and imaging sensor are located in different positions 

on the airborne carrier. The displacement vectors between sensors therefore have to be determined. 

Similarly, axes of the IMU and imaging sensor are not the same and a misorientation matrix exists 

between them. System calibration includes both calibration of individual sensors and calibration 

between sensors. The IMU calibration for drifts and biases and calibration of the imaging sensor for 

interior orientation parameters are all components of sensor calibration. Alignment between sensors 

includes the determination of a constant displacement vector between them and a constant 

misorientation matrix between the IMU body frame and imaging-sensor frame. The boresight effect is 

a product of different optics and detector matrices between the two sensors. The resulting boresight 

misalignment is treated by using the IMU information and the sensor bundle block. A small change in 

the correction of the interior orientation affects the co-registration between the sensors, generating a 

boresight effect that is proportional to the increase in altitude. When the sensor‟s altitude is different 

from the flight altitude recommended by the manufacturer (for example 6,000 ft, recommended by 

Specim Ltd.), the boresight misalignment increases significantly. To enable geo-matching between the 

two sensors, geo-rectification is performed by conventional methods.  

AISA-Dual is an airborne imaging spectrometer designed by Specim Limited as a research sensor 

that is capable of producing medial to high-fidelity hyperspectral remote sensing (HRS) data across the 

400 to 2,400 nm wavelength range. The system consists of a sensor head, containing a pair of 

co-boresighted grating spectrometers VNIR sensor EAGLE and SWIR sensor HAWK, two electronic 

racks, and a digital data recorder. It simultaneously acquires images in 198 contiguous spectral bands 

with spectral resolution in the range of 12 nm in the VNIR region, and 6 nm in SWIR region. Each 

spectrometer consists of a set of refractive foreoptics that image the scene onto a slit. Light passing 

through the slit is dispersed perpendicular to the slit by a flat rating and then imaged onto a 2-D focal 

plane array. One dimension of the array along the slit provides spatial scene information. The second 
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dimension of the array, along which the light from any given point in the slit has been dispersed, 

provides spectral information. An image is generated by moving the instrument across a scene in 

pushbroom fashion, perpendicular to the instrument‟s slits, and recording frames of spectral and spatial 

information detected by the VNIR and SWIR sensors. The system is usually operated on an aircraft at 

an altitude of 10,000 ft which, together with an instant field of view (IFOV) of 1 mrad (for both 

sensors) provides a spatial resolution of 1.5 m. A standard AISA-Dual dataset is a 3-D data cube in a 

non-earth coordinate system (raw geometry). It has 286 pixels in the cross-track direction and 

hundreds of pixels in the along-track direction. Operational performance requires an instrument with 

fair signal-to-noise ratio (SNR), co-registered spectral bands taken simultaneously by different 

detectors, accurate location for each pixel, and accurate radiometric calibration. Since the AISA-Dual 

instrument that was used for this study has no available GPS/INS (global position system/internal 

navigation system), it is incapable of performing pixel-by-pixel geo-location and rectification of the 

images generated in the HRS dataset. The idea behind this study is that the boresight effect does not 

always need to be corrected as it may provide additional, never before considered information to the 

analysis. To test this notion, three practical applications are suggested and discussed: (1) enhancing the 

shadow effect; (2) generating a 3-D view; and (3) better detection of borderline anomalies. 

2. Boresight Effect in a Multisensor System 

Sensor orientation, defined by the transformation between image coordinates specified in the sensor 

and the geodetic reference frame, requires knowledge of the interior and exterior sensor parameters. 

The interior parameters, such as focal length and optical distortions, are provided by the manufacturer. 

The exterior parameters are defined by the position and orientation of the sensor at the time of 

exposure and are acquired by a recording system during the flight.  

The pushbroom system, whose perspective geometry varies with each scan line (along-track), 

depends on integrated GPS/INS to achieve operationally effective products. In the multisensor 

pushbroom system, the direct platform orientation is related to the sensor‟s reference frame, while in 

traditional airborne systems, it is related to the INS frame. A GPS/INS calibration is required to 

resolve the misalignments between the INS frame and the imaging sensors with sufficient accuracy. 

Since a crucial part of the direct platform orientation is the rigidity of the sensor, no rotation or 

movement can occur during data acquisition and every rotational component has to be related to the 

INS frame and transformed to the sensor frame [16]. The boresight transformation is usually resolved 

by comparing the GPS/INS position/orientation with an independent aero-triangulation solution. 

However, the boresight transformation can be treated only if no rotation or movement has occurred. 

The direct geo-referencing of images is described in Equation 1 by a collinearity concept rearranged 

for object coordinates [17]: 

𝒓𝑮
𝑴 = 𝒓𝑬

𝑴 𝒕 + 𝒔𝒈𝑹𝒄
𝑴𝒓𝒈

𝒄 (𝒕)      (1) 

where 𝒓𝑮
𝑴 is the vector of coordinates of an arbitrary point in the line frame, 𝒓𝑬

𝑴 𝒕  is the vector of 

coordinates of the exposure station, 𝒔𝒈 is a scale factor per point per image for each sensor, 𝑹𝒄
𝑴(𝒕) is a 

matrix to rotate each sensor frame into the line frame 𝒓𝒈
𝒄  utilizing the three photogrammetric rotation 

angles, 𝝎, 𝝋, 𝜿 [2].  
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Since the sensors, the GPS antenna, and the INS are not fixed on the same coordinate, Equation (1) 

can be modified to include orientation offsets:  

𝒓𝑮
𝑴 =  𝒓𝑮𝑷𝑺

𝑰𝑵𝑺

𝑴  𝒕 + 𝑹𝒃
𝑴 𝒕 𝒂𝑬

𝒃𝒃𝒃 + 𝒔𝒈 𝑹𝒃
𝑴 𝒕 𝑹𝒄

𝒃  𝒓𝒈
𝒄 (𝒕)     (2) 

where 𝒓𝑮𝑷𝑺

𝑰𝑵𝑺

𝑴  𝒕  is the vector of coordinates of the INS in the line frame, 𝑹𝒃
𝑴 𝒕  is a matrix to rotate each 

sensor frame into the line frame 𝑹𝒄
𝒃 , 𝒂𝑬

𝒃  is an offset vector between INS and the sensor exposure 

station and 𝒃𝒃  is an offset vector between the INS and the GPS antenna that is processed during 

decoding of the GPS/INS data. 

A constant boresight is ensured in the static terrestrial mode, where the sensors and the INS are 

tightly coupled in a metal frame. Thus, the boresight estimation is limited by the quality of the direct 

platform orientation components. The boresight estimations are performed by comparing aerial 

triangulation, GPS/INS position and attitude estimation [18]. The resulting boresight standard 

deviations for the linear displacements and for the rotation angle can be calculated. However, possible 

variations in the mechanical structure of the sensor or the INS during the flight might explain the rather 

fair quality of the boresight estimation.  

As mentioned earlier, in practice, the AISA-Dual system is operated with no GPS/INS data 

available. Consequently, it was impossible to geo-locate or rectify the EAGLE and HAWK (VNIR and 

SWIR image) sensors. Figure 1 shows the spatial/spectral boresight effect of the AISA-Dual sensor 

used in this study taken from a representative image. 

We suggest converting the boresight shift into additional spectral/spatial information by calculating 

a simple band ratio between the last band of the VNIR sensor and the first band of the SWIR sensor. 

We calculate a simple ratio and not a different (normalized) index, since the latter is not dynamic 

enough (being similar to NDVI (Normalized Difference Vegetation Index) and SR (Simple Ratio) of 

vegetation [19-23]) to be suitable for an estimation of the boresight shift, which is defined on an 

image-by-image basis. The boresight “band ratio” is calculated based on Equation (3). 

𝐵𝑜𝑟𝑒𝑠𝑖𝑔𝑕𝑡 𝑏𝑎𝑛𝑑 𝑟𝑎𝑡𝑖𝑜 = 𝑏1010𝑛𝑚 /𝑏920𝑛𝑚   (3) 

The result is presented in Figure 2. We used the descriptive statistics to summarize the boresight 

data in a clear and understandable way (Table 1, Figure 3). The exact tests of significance are known 

when the samples are drawn from a normally distributed dataset [24]. The tests of significance for 

exponentially distributed data are related to all skew distributions of special cases. In referring to the 

shape of the frequency or probability distributions, skewness refers to asymmetry of the distribution, 

which is zero in the normal distributions. Karl Pearson [25] was the first to suggest measuring 

skewness by standardizing the difference between the mean and the mode. The most commonly used 

measure of skewness is defined with respect to the third moment about the mean (Equation (4)), which 

is simply the expected value of the distribution of cubed z scores. The investigation of outliers is 

prompted by large skewness scores.  

𝜸𝟏 =
  𝑿−𝛍 𝟐

𝒏𝛔𝟑  (4) 

where 𝛍 is the mean, 𝛔  is the standard deviation, and 𝒏 is the number of data points. 
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Figure 1. Schematic demonstration of the boresight effect. Images I-VNIR and II-SWIR 

illustrate the boresight: I is the target in the VNIR region and II is the target in the SWIR 

region, and the spectrum of the target (black dot) indicates that region I is pavement 

asphalt (spectrum in VNIR matches the asphalt (red) spectrum) and II is concrete roof 

(spectrum in SWIR matches the concrete (blue) spectrum). 

 

Figure 2. Additional boresight band (31 October 2009, 10:00 GMT, midlatitude summer 

model, 28.2° solar zenith, 137.6° azimuth angle): (A) the 948 nm band, (B) the 1,010 nm 

band, (C) calculated band ratio (920 nm/1,010 nm) interpreted as boresight band. 

(A)     (B)    (C) 
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Table 1. Descriptive statistics. 

N Mean Std. Variance Skewness 

Statistic Statistic Std. Error Statistic Statistic Statistic Std. Error 

255 

255 
2,706.325 569.6115 9,095.966 8.3E + 07 4.132 0.153 

Figure 3. Distribution of the boresight values. 
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In the suggested method, the skew is treated as an important characteristic of the variable. We used 

the SPSS statistical package to estimate the skewness and its standard errors. This test divides the 

distribution of the variable (boresight ratio) by its standard error to obtain a z test of the 𝑯𝟎  null 

hypothesis that the skewness is zero (as would be expected in a normal population). A reliable rule is 

that with a nominal 95% confidence interval for the mean of a skewed variable, the interval will have 

at least 94% coverage if the sample size is at least 25 times the absolute value of the (third-moment) 

skew [26]. For example, in Table 1, if the 255 samples are even enough, the skew can be as large as 

four. Based on simple data-analysis techniques, we find that boresight rates conform better to  

non-normal distribution than normal distribution and the patterns of skewness. A suitable measure of 

the suggested boresight rate variability is based on the extreme observations (more than three standard 

deviation units from the mean of probability distributions). The estimation for each boresight rate, the 

descriptive statistics is first computed, and then the mean and variance of normally distributed data are 

calculated. In contrast to the normally distributed variances, the non-normally distributed variances are 

consistently larger. This suggests that with the presence of skewness in the distribution, the boresight 

variance is likely to interpret the outliers' variability. 

3. Boresight Applications: Results and Discussion  

Three applications were investigated: (1) enhancing the shadow effect; (2) generating a 3-D view; 

and (3) better detection of border anomalies.  
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3.1. Enhancing the Shadow Effect 

The effects of apparent shadows on the sensor response depend on both the materials present in the 

image (shape and content) and the wavelength in question. Current implementations of the ATCOR-4 

model de-shadowing process use image statistics to gain knowledge on the darkened area, in order to 

correct for the shadow effect. This routine is not suitable for datasets acquired on cloud shadows as the 

inter-comparison process lacks the diffuse light conditions. The de-shadowing algorithm consists of a 

sequence of eight processing steps: atmospheric correction, cloud masking, water-body masking, and 

five additional statistical manipulations including covariance matrices and matched filters to define a 

core shadow mask, and the final step of de-shadowing which is applied exclusively to the pixels in the 

shadow mask [27[. 

We suggest using the boresight band ratio to produce an internal shadow map for AISA-Dual 

images. An interpretation of the boresight band identifies core shadow areas with high values of 

boresight. In Figure 4, a scatter plot computed from the boresight band ratio and VNIR band (941 nm) 

is displayed. The clusters are spread out and slanted due to the scene-unmixing pixels. However, the 

isolated cluster is representative of shadowed areas in the selected scene. We simulated geometric 

landscape and structure by implementing 3-D buildings into the Digital Terrain Model (DTM) using a 

Kriging interpolation model [28] to create a representative 3-D map of the investigated site. This map 

provides the ability to simulate illumination sensed at the sensor level for each pixel by calculated 

hillshade map and shadow model according to the illumination geometry and surface model of the 

investigated site. The produced shadow map serves as a ground truth map.  

Figure 4. Scatterplot (286 × 400) computed from the boresight band ratios (boresight 

value) and VNIR band (941 nm). The isolated cluster (circled in red) represents the shadow 

regions in the image (validated by ground truth map).  
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We determined the relationships between the shadow fraction (mapped as ground truth) and the 

boresight band ratio values. While only a general indistinct relationship emerged (𝑅2 = 0.173) between 
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radiance response of the image and the shadow‟s algorithm provided in ATCOR-4 (Figure 5(A)), there 

were strong negative correlations for selected scenes between shadowed areas and boresight values 

(Figure 5(B)).  

Figure 5. Relationship between shadow fraction and (A) radiance spectra (550 nm) 

detected by ATCOR-4 algorithm (𝑦 = 944𝑥 + 1411; 𝑅2 is 0.173), (B) boresight values of 

detected shadow areas (𝑦 = −0.74𝑥 + 1.31; 𝑅2 is 0.913).  

(A)                                                             (B) 

 

On a scene-by-scene basis, we conclude that the boresight band ratio values are much more 

sensitive to the shadow fraction than the ATCOR-4 shadow detector (Figure 6). In addition, we 

evaluated „darkening‟ for each pixel in the produced shadow map using spatial matching between the 

boresight band ratio values and the shadow fraction in the ground truth map (Table 2). Based on 

overlapping/spatial matching between these images (ground truth and boresight band ratio), the 

boresight band ratio values were classified according to the shadow fraction. 

To validate our results, we examined classification of the shadow fraction using the same 

(predefined) classes for different scenes (Figure 7). The results show that the suggested classes are 

suitable for the shadow fraction classification and scene independently, despite the fact that the 

boresight values are calculated in image-by-image mode. These results prove that the suggested 

method is fully automatic and scene independent. 

Table 2. Boresight ratio value correspondence to shadow fraction (ground truth). 

Class ID Boresight value (band ratio) Shadow fraction (ground truth) 

#1 (maroon) 4–3.4 80–100% 

#2 (magenta) 3.4–2.5 50–80% 

#3 (cyan) 2.5–2.1 20–50% 

#4 (yellow) 2.1–1.9 10–20% 
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Figure 6. Shadow  masks as generated from the original AISA-Dual image: (A) RGB 

natural color composite AISA-Dual image (18 December 2009; 11:30 GMT; 15 km 

visibility; midlatitude winter model; 60° solar zenith; 205.8° azimuth angle), (B) boresight 

shadow mask, (C) boresight shadow estimation (#4 (yellow) 10–20%, #3 (cyan) 20–50%, 

#2 (magenta) 50–80% and #1 (maroon) 80–100%), (D) ATCOR-4 shadow mask. 

(A)   (B)    (C)    (D) 

       

Figure 7. Shadow  masks as generated from the original AISA-Dual image: (A) RGB 

natural color composite AISA-Dual image (09 Nov 2008; 09:00 GMT; 25 km visibility; 

midlatitude winter model; 30.8° solar zenith; 161° azimuth angle), (B) boresight shadow 

mask, (C) boresight shadow estimation (#4 (yellow) 10–20%, #3 (cyan) 20–50%, #2 

(magenta) 50–80% and #1 (maroon) 80–100%), (D) ATCOR-4 shadow mask. 

(A)                                                   (B) 
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Figure 7. Cont. 

(C)                                                   (D) 

    

We conclude that the suggested technique provides a shadow map for the de-shadowing algorithm 

as in ATCOR-4, while skipping all of the shadow-identification steps. The proposed fully automatic 

method was successfully tested on AISA-Dual images. The advantage of the presented method is that 

it does not depend on human interpretation, it is automatic and it is a fast-processing algorithm that 

relies exclusively on the calculated boresight band ratio. 

3.2. Stereo 3-D Map 

Stereo-viewing of images is a very useful technique for mapping and is widely used in 

photogrammetry and remote sensing. Traditional vision systems generally use laser systems or 

calibrated cameras with different viewing angles to enable triangulation in order to extract 3-D 

metrical information on the surface. Another branch of vision research aims to recognize complex 2-D 

objects on the scene. This is usually based on a single image of the scene and a model database. The 

matching between the scene and database information is generally solved via probabilistic 

methods [29-35] or neural networks, among others. Nonetheless, 2-D object-recognition methods are 

not used to calculate the geometrical relationships (position, orientation) between 3-D surfaces and 

hence do not provide a stereoscopic view or 3-D information. 

Stereoscopy consists of simultaneous vision (with two eyes/sensors) that produces a visual 

experience of the third dimension, that is, a vivid perception of the relative distances of objects in 

space. Two solutions can be obtained: along-track stereoscopy and across-track stereoscopy [36]. The 

simultaneous across-track stereo-data acquisition has a strong advantage in terms of radiometric 

variations. Traditional stereoscopic photography consists of creating a 3-D illusion starting from a pair 

of 2-D images. The easiest way to enhance depth perception in the brain is to provide the eyes with 

two different images, representing two perspectives of the same object, with a minor deviation exactly 

equal to the perspectives that both eyes naturally receive in binocular vision. Relative sizes, positions 

and depths of objects can be perceived from the region of overlap between our eyes, while rotation is 

derived from both overlapping and non-overlapping regions. The configuration of the eyes/cameras 

provides a large total field of view (FOV) for the combined system while at the same time allowing the 

scale to be fixed based on triangulated features in the camera‟s region of overlap. 

Our method is based on the observation of a visible feature in both images (EAGLE and HAWK) 

and spectral dimension. The boresight band ratio (which sets together spatial and spectral dimensions) 
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constrains the relative pose of the stereo model to a particular feature, as shown in Figure 8. The same 

feature, appearing in a different 2-D position in the right and left projections can be projected as a 3-D 

scene. Therefore, the particular feature has a known position relative to the boresight ratio values 

(which are pose values). Since the EAGLE and HAWK sensors are part of the same system, and are 

installed on the same bench, the rotation in the tangent plane might not need to be considered. Thus, 

the three-view (spatial right and left projections and spectral boresight values) feature leaves two 

degrees of freedom: one degree for the location and one for the relative pose.  

Generation of a Digital Elevation Model (DEM) includes the following processing steps: 

stereo-model setup, 3-D stereo intersection captured by image matching, and DEM editing [37]. The 

main objective of the application suggested herein is to generate and evaluate relative pixel-based 

DEMs from the boresight VNIR and SWIR images.  

In Figure 8, any point T(x, y, z) in a 3-D space that is visible in both the left (VNIR) and right 

(SWIR) images will be projected on the left and right image planes, producing two image-intensity 

pixels A(x, y) and B(x', y'). If the point T(x, y, z) is elevated with respect to the ground and is visible in 

both images, then an assumption of stereo analysis is that the 2-D regions around the projection points 

A and B will produce a high boresight value. Using this principle, the 3-D stereo intersection is 

performed using a computed geometrical model to convert the pixel coordinates in both images 

determined in the image matching of the stereo pair to 3-D data with OrthoEngine
SE

 v7.0 of the PCI 

Geomatics Group [38]. The non-earth coordinates are determined for the measured point with the 

least-squares intersection process based on the geometric model equations and parameters. The result 

is an irregular grid in the map projection system, which is transformed to a raw regular DEM. 

Figure 8. Projection of 3-D scene points on the image (in VNIR and SWIR regions) planes. 

 

In our application, the stereo-model setup is computed with an iterative least-squares bundle 

adjustment. The first step in a traditional stereo-analysis system is to extract a disparity map from the 

stereo-image pair. Since an error of ±3 pixels along-track and ±1 pixel across-track for the parallax 

measurements in the automated matching process has been achieved with these different datasets 

(along-track and across-track), the potential accuracy for the across-track stereo-derived local DEM 

from AISA-Dual can be on the order of ~3 m (1.5 × 1.5 pixels). The next stage is calculation of 

relative DEM, in which the lowest region (represented by small boresight values and no stereo 
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information) is defined as 0 and other regions are defined relative to 0. Each pixel represents an 

interpolated ratio between lowest and highest boresight value and a disparity map is extracted by 

stereo-analysis. Thus, it is important to note that the suggested method does not produce absolute 

elevation (above sea level) of the surface, but relative scene-by-scene DEM data.  

We used the Kriging [28] model to interpolate the DEM onto a 3-D surface (Figure 9) as described 

further on. In general, the Kriging model is a combination of a polynomial model with departures of 

the form suggested as a modeling response [39,40]. 

Figure 9. Digital Elevation Model (DEM). (A) AISA-Dual image (22 October 2006; 08:55 

GMT; midlatitude summer model; 46.4° solar zenith; 164.6° azimuth angle), (B) 3-D stereo 

model, (C) boresight-calculated band, (D) relative DEM (black border = cloud-masked) 

modeled with the Kriging algorithm (0 m  30 m), (E) AISA-Dual image in 3-D 

view (x axis 1,500 m, y axis 500 m, z axis (relative to the scene elevation) 30 m). 

(A)                          (B)                           (C)                           (D) 

          

(E) 
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Comparing the retrieved DEM (Figure 9(D)) with the topographic map (Figure 10) shows a high 

similarity in the height differences between the two datasets. Since the presented scene is occupied by 

Negev dunes, which are geomorphologically highly dynamic, and since the referenced topographic 

map is from 1979 (with no updates available), we could not complete a quantitative validation of the 

retrieved DEM.  

Figure 10. Topographic map (from 1979) presented on aerial digital photo (national 

orthophoto 2002) with a resolution of 2 m.  

 

Our method uses a novel combination of image correspondences to determine the relative pose of a 

dual airborne system. The method described here uses feature correspondences in 2-D to boresight 

band ratio values, which determine the relative pose.  

3.3. Unmixing and Anomaly Detection 

Most of the pixels collected by HRS airborne sensors contain mixed spectra from the reflected 

surface radiation of various materials in the sub-pixels. As a result, mixed pixels may exist when the 

spatial resolution of the sensor is not sufficient to separate the different pure-signature classes. The 

resulting spectral measurement is a composite of the individual pure spectra weighted by a set of scalar 

endmember-abundance fractions [41]. Under such conditions, target detection may be carried out at the 

sub-pixel level. An anomaly indicator enables detecting targets whose signatures are spectrally distinct 

from their surroundings with no prior knowledge. In general, such anomalous targets are of low 
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dispersion and relatively small size compared to the surrounding pixels. Two approaches are of 

particular interest: (1) RXD (Reed-Xiaoli Detector), which refers to the RX indicator after Reed and 

Yu [41,42], and detects spatial/spectral anomalies using the sample covariance matrix. It detects 

“interesting target” pixels which occur with low probability in the data relative to the Gaussian 

distribution of the background [41]. The Gaussian Mixture RX algorithm is fitted to the background 

model by employing a mixture of Gaussians to estimate the multimodal nature of the background [43]. 

However, the number of required components is not known, so in practice the background model is 

inaccurately estimated, resulting in poor detection performance (Figure 11(B)). (2) The Support Vector 

approach, SVDD, is a non-parametric method with several advantages, including a non-Gaussian 

modeling basis that can model arbitrarily shaped and multimodal distributions, scarcity and high 

generalization ability [44]. The SVDD approach does not require a covariance matrix inverse 

computation and is linear with respect to spectral dimensionality [44]. A processed SVDD with kernel 

statistics is expressed in Equation (7). 

𝑆𝑉𝐷𝐷  𝑦 = 𝑅2 − 𝐾 𝑦, 𝑦 + 2  𝛼𝑖𝐾(𝑦, 𝑥𝑖)𝑖   (7) 

where R is the radius of the minimum enclosing hypersphere after optimizing with respect to 𝛼𝑖  and K 

is a kernel function: 

𝐾 𝑥, 𝑦 =< Φ x ,Φ(y) >  (8) 

As suggested in Banerjee and Burlina [45], we used a Gaussian radial basis function for the kernel 

function. Thus, the SVDD function is expressed as: 

𝑆𝑉𝐷𝐷  𝑦 = 𝐶 +  𝛼𝑖𝑖 𝐾(𝑦, 𝑥𝑖)  (9) 

where C is a constant offset since 𝐾 𝑦, 𝑦  = 1. The Gaussian radial basis function includes 𝜎2 which 

controls how well the SVDD generalizes the support boundaries of the unseen data. As a result, SVDD 

is well suited for global background characterization, achieving high detection performance and low 

false-alarm rates (Figure 11(C)).  

We suggest using the boresight band ratio as a spectral/spatial anomaly indicator. Since any 

anomaly is defined as a small target with a distinct spectrum, an accurate pixel-by-pixel classification 

of boresight values (band ratios) may accentuate the targets in question (Figure 11(D)).  

The spectral investigation of the detected anomalies (RX, SVDD, boresight) is performed by linear 

unmixing analysis [46], which compares the ground-based reflectance spectra (targets and 

background) with image spectra. We used an image subset (286 × 192 pixels) taken from a 

Mediterranean forest by the AISA-Dual airborne image spectrometer (flight and sensor configuration 

are detailed in the introduction). This scene is part of a designated study region located in a glade 

containing 24 gray plastic (artificial) bags (35 × 55 cm).  

In the linear mixture analysis (Equation (10)), the composite reflectance spectrum 𝜌(𝜆) can be 

written as a linear sum of N endmember spectra 𝑎𝑛 𝜆 . 

𝜌 𝜆 =   𝑓𝑛𝑎𝑛 𝜆 + 𝜙𝑁
𝑛=1  (10) 

which is constrained by: 

 𝑓𝑛 = 1.0 𝑎𝑛𝑑 𝑓𝑛 ≳ 0.0 𝑁
𝑛=1   (11) 
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In Equations (10) and (11), 𝑓𝑛  represents the fractional abundance for the n
th

 endmember, and 𝜙 

provides a measure of the error in the unmixing. For this study, the mixed-pixel spectrum is simulated 

by summing together resampled (for AISA-Dual spectral configuration) ground truth spectra of the soil 

and plastic bags. Figure 12 shows ROC curves of the probability of detection and false alarm for linear 

unmixing analysis of global RX, SVDD and boresight band ratio detectors.  

Figure 11. Anomaly detection on a bare-soil field: (A) R(630 nm) G(550 nm) B(430 nm) 

AISA-Dual image (31 October 2009; 10:10 GMT; midlatitude summer model; 30.2° solar 

zenith, 141.2° azimuth angle, 1.5 m spatial resolution, 198 spectral bands), (B) RXD 

product, (C) SVDD product, (D) boresight band ratio product  

(A)      (B) 

    

(C)      (D) 

    

Figure 12. ROC performance for the global RX, SVDD and boresight band detectors. 
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4. Discussion 

The purported disadvantage of the boresight effect was transformed into a useful tool for: 

(1) enhancing the shadow effect, (2) generating a 3-D view, and (3) better detection of border 

anomalies. We show that the boresight band ratio provides an internal shadow map for AISA-Dual 

images. In some cases, where dark targets other than shadow areas are included within bright 

surroundings, the statistical distribution of the boresight (band ratio) values will show two main groups 

(bright and dark) with no outliers, and thus, will not emphasize the shadowed pixels. Commonly used 

methods might overestimate the spatial distribution of shadow areas, as in most cases they spectrally 

identify dark targets as shadows. Dark targets may be corrected by the de-shadowing algorithm, 

resulting in erroneous spectra. Therefore, it is preferable to underestimate the shadow areas.  

In addition, we show that the boresight band ratio provides an internal relative DEM. This 

application is useful for atmospheric correction and natural 3-D surface presentation without the need 

for external elevation data and geo-referencing. When GPS/INS data are unavailable, geometric 

correction by other means might lead to spatial distortions and as a result, spectral disruptions. Thus, 

using the boresight band ratio as an internal relative DEM is preferable. 

Finally, the boresight band ratio constitutes a simple novel method to indicate spectral/spatial 

anomalies. It provides reliable detection of anomalies and does not require further external algorithms.  

5. Conclusions 

The boresight effect, considered a defect in the system, is automatically corrected prior to data 

analysis. Here we show that this effect, rather than being a defect, can actually deliver useful 

information. Accordingly, three applications were investigated and demonstrated: (1) enhancing the 

shadow effect; (2) generating a 3-D view; and (3) better detection of sub-pixel anomaly targets. The 

first application provides an external shadow map for any de-shadowing algorithm. It enables skipping 

the steps of shadow identification, which are occasionally misidentified with high-contrast dark 

targets. This application was found to perform better than a routine application suggested by  

ATCOR-4. The second application deals with the extraction of 3-D information. This application was 

tested against known topographic information and found to yield promising results. The third 

application detects spectral/spatial anomalies. Comparison with two well-known anomaly indicators 

(RXD and SVDD) showed favorable results. We suggest that the boresight effect can play an 

important role in analyzing HRS data. Thus, we propose the above applications as useful tools to be 

taken advantage of prior to this effect's automatic correction.  
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