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Abstract: There is currently high interest in developing automated methods to assist the 

updating of map databases. This study presents methods for automatic detection of 

buildings and changes in buildings from airborne laser scanner and digital aerial image 

data and shows the potential usefulness of the methods with thorough experiments in a  

5 km
2
 suburban study area. 96% of buildings larger than 60 m

2
 were correctly detected in 

the building detection. The completeness and correctness of the change detection for 

buildings larger than 60 m
2
 were about 85% (including five classes). Most of the errors 

occurred in small or otherwise problematic buildings.  

Keywords: building; change detection; updating; mapping; automation; laser scanning; 

aerial image 

 

1. Introduction 

1.1. Motivation 

Operational mapping of topographic objects using remote sensing is today still mainly based on 

visual interpretation and manual digitizing. Updating of map databases requires time-consuming work 

for human operators to search for changed objects and to digitize the changes. There is thus high 

interest in mapping organizations in developing automated tools to assist the update process, for 

example to detect changes in buildings and other object classes automatically (e.g., [1-8]). Up-to-date 
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information on buildings is important for map users, and changes in this class are common as new 

buildings are built and old ones are demolished or changed.  

Our study concentrates on the automatic detection of buildings and changes in buildings. The 

availability of airborne laser scanner (ALS) data and digital aerial images with multispectral channels 

has clearly improved the possibility of developing useful automated tools for these tasks. When 

accurate height information from laser scanning is available, buildings can be distinguished from the 

ground surface, which makes the interpretation task easier and reduces the number of 

misclassifications. Digital surface models (DSMs) created from aerial images or high-resolution 

satellite images can also be used, but their quality for classification is typically lower (e.g., [9,10]). 

Multispectral image data are useful in distinguishing buildings from vegetation, although the use of 

laser scanner data alone can also be sufficient.  

1.2. Previous Studies 

Different automatic change detection approaches for buildings are possible. If both old and new 

datasets are available, change detection between the datasets can be carried out. Murakami et al. [11] 

presented a simple approach based on subtracting one laser scanner derived DSM from another. Vögtle 

and Steinle’s method [12] compared laser DSMs in an object-based manner by analyzing building 

objects that were first extracted from the DSMs. Other studies using multitemporal laser scanner or 

image data have been presented, for example, by Jung [13], Vu et al. [14], Butkiewicz et al. [15], and 

Nakagawa and Shibasaki [16]. 

Another basic approach for change detection is to detect buildings from new data and compare the 

results with the existing building map to detect changes. This approach is needed if laser scanner and 

image data corresponding to the state of the old map are not available. It is also feasible from the point 

of view of a mapping agency that maintains a topographic database and aims to detect changes 

between the database and up-to-date image data [8]. Hoffmann et al. [17] studied segment-based 

detection of buildings from a DSM and multispectral data obtained from digital airborne imagery. 

Change detection was also discussed briefly. Knudsen and Olsen [4,18] presented a method that was 

based on pixel-based spectral classification of image data followed by change detection. Further 

developments of the method include the use of DSM data [19]. In our earlier studies, we used laser 

scanner [20,21] and aerial image [21] data and a segment-based classification approach to detect 

buildings. Change detection between the building detection results and a building map was based on 

analyzing the overlaps of building objects without actual matching of these objects. Vosselman et al. 

also used laser scanner data [22,23], color imagery [22] and a segment-based classification approach. 

The change detection was carried out between building objects. To take into account differences 

between database objects and extracted building objects, the method used morphological operations, 

shifting of objects and mapping rules. The method developed by Rottensteiner [9,24] used a DSM and 

multispectral imagery and included pixel-based and region-based classification steps. A topological 

clarification stage was included to achieve topological consistency between the existing map and 

building detection results before change detection. Holland et al. [8] tested different classification 

approaches for digital aerial image data and a DSM created from the images. A change detection 

approach for detecting demolished and new buildings was also developed. In addition to change 
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detection, existing map data have been exploited in these studies to determine training areas [4,18], to 

give additional support for deciding whether a pixel belongs to a building or not [9,24], and to mask 

out areas where buildings are not likely to occur [8]. 

Change detection approaches concentrating on the verification of map data have also been 

developed. Similar to the methods discussed above, these methods use existing map data and new 

remotely sensed data, but they use the map data more directly as a starting point, for example, by 

analyzing building boundaries [7,25]. New buildings are then extracted separately. Recently  

Bouziani et al. [26] presented a knowledge-based change detection method for the detection of 

demolished and new buildings from very high resolution satellite images. Different object properties, 

including possible transitions and contextual relationships between object classes, were taken into 

account. Map data were used to determine processing parameters and to learn object properties.  

For the task of automatic building detection from ALS, or ALS and image data, a large number of 

different methods have been presented ([22,27-43] and many others). Among these methods, step-wise 

classification approaches exploiting many different input features are typical. The input features can 

include, for example, height difference between a DSM and a digital terrain model (DTM) (also called 

a normalized DSM, nDSM), height difference between first pulse and last pulse laser scanner data, 

height texture or surface roughness, reflectance information from images or laser scanning, and shape 

and size of objects. New methods for both building detection and change detection are presented 

constantly (see, for example, [44]). The newest methods include, for example, the use of  

full-waveform laser scanner data for classifying urban areas [45]. Compared with conventional laser 

scanner data, full-waveform data offer new and potentially useful features for classification. Recently, 

interest has also turned to comparison of different methods and input features [10,46-48].  

The previous studies have demonstrated that automatic detection of buildings and changes in 

buildings is possible and relatively good results can be achieved, although false detections of changes 

are also typical [4,10]. Quality evaluation of the results has received special attention, especially in 

recent studies (e.g., [10,47,49]). On the other hand, test datasets, especially in change detection studies, 

have been rather limited in size. Simulated changes rather than real ones have often been used to 

evaluate the accuracy (e.g., [9,10,24]). A larger production test was carried out by Holland et al. [8], 

who tested their change detection method for two test sites, covering 23 km
2
 and 25 km

2
. Many false 

detections also occurred in that study, but generally the test results were promising. Overall, however, 

it seems that research is still needed to develop useful change detection methods. In particular, to be 

able to develop better methods and evaluate their feasibility for practical use, detailed information is 

needed on the quality of the results and typical errors. 

1.3. Contribution of Our Study 

Since multitemporal laser scanner and digital aerial image datasets are not yet in common use, our 

change detection method is based on comparison of an existing building map and building detection 

results, i.e., it belongs to the second category of approaches discussed above. The idea is that the 

results could be utilized in further steps of the update process, which could be either manual or 

automatic. The methods presented in this article are improved versions of those presented in [20,21]. 

The improved building detection method uses the classification tree method, which is a highly 
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automated method and is easier to apply to new input data than the classification rules used in the 

earlier method. The change detection method is based on matching and comparison of building 

objects. It includes two alternative methods for detecting changed buildings and some additional rules 

relying on existing map data in cases where misclassifications are likely. The processes are unique and 

carefully planned, although similar tools and ideas have also been utilized in some other studies in 

recent years, as described above and in the Methods Section (see 3.1.1 and 3.2.1). The methods were 

tested by applying them to laser scanner and digital aerial image data from a suburban study area 

covering about 5 km
2
. The quality of the results was thoroughly evaluated by using two real building 

maps of the area, which provided a large reference dataset with many real changes and was different 

from previous change detection studies. We expect that such an analysis can increase knowledge on 

the performance of automated building detection and change detection methods and highlight 

problems for further development. 

2. Study Area and Data 

2.1. Study Area 

A suburban study area of Espoonlahti was used in the method development and testing (see Figure 

1). The area is located in the city of Espoo on the southern coast of Finland and belongs to the 

metropolitan region of Helsinki. It contains buildings of different sizes from small houses and sheds to 

large industrial buildings. The roofs of the buildings have various shapes, colors and material types. 

High-rise and industrial buildings have usually flat roofs, while saddle roofs are typical of smaller 

buildings. Typical roof materials include roofing felt, tiles and roofing sheet. The topography of the 

area is varied, and there are many small hills (the altitude varies between 0 m and 55 m above sea 

level). There is also plenty of coniferous and deciduous vegetation in the area, which is partly covered 

by forest. The most common tree species are spruce, pine and birch, but there are also many other 

species, especially in built-up areas.  

The study area was divided into a training area of about 0.8 km
2
 and five test areas covering about 

4.5 km
2
 in total. The test areas represent four different types of suburban area: high-rise, low-rise, 

industrial areas, and a new residential area with both high-rise and low-rise buildings. This definition, 

however, is not strict. For example, some low-rise buildings occur in the high-rise areas and vice versa. 

The training area was defined so that it includes many different types of buildings and land cover. The 

five test areas were processed separately. If a building was located on the boundary between the areas, 

it was treated as two (or more) separate buildings. 

2.2. Data 

ALS data, an aerial color ortho image mosaic and two building maps were used in the study. All 

these data were processed into raster format with a pixel size of 30 cm × 30 cm in the Finnish  

ETRS-TM35FIN coordinate system (ETRS is European Terrestrial Reference System, and TM is 

Transverse Mercator).  
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Figure 1. Minimum DSM from different subareas of the study area. The training area was 

used for creating classification rules and the other areas were used for testing the methods. 

 

2.2.1. Laser Scanner Data 

The laser scanner data were acquired on 12 July 2005 with the Optech Airborne Laser Terrain 

Mapper (ALTM) 3100 laser scanner from a flying altitude of about 1,000 m. The point density in areas 

covered by single strips is about 2–4 points/m
2
. The classification routines of the TerraScan  

software [50] were used to classify the laser points into ground points and points clearly above ground 

(threshold value 2.5 m). The ground classification routine is based on a filtering algorithm developed 

by Axelsson [51]. Two raster DSMs (maximum and minimum DSMs) were created in TerraScan by 

selecting the highest or lowest height for each pixel and interpolating the values for pixels without 

laser points. First and last pulse points were not separated, but the maximum and minimum DSMs 

should approximately correspond to a first pulse and last pulse DSM, respectively. Many buildings 
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were generally missing from the laser data, i.e., there were only few reflections from the roofs of these 

buildings, and there were thus gaps in the laser data. Typically, these gaps were caused by low-rise 

buildings with dark saddle roofs. The missing buildings were excluded from the training data by using 

a manually defined mask. In the test areas, masks were defined automatically and they included empty 

pixels in the interpolated DSMs. Pixels under the mask were excluded from building detection. Map 

buildings containing any pixels under the mask were also excluded from change detection.  

2.2.2. Aerial Image Data 

The ortho image mosaic with red, green, blue and near-infrared channels was created from digital 

aerial images acquired with the Intergraph Digital Mapping Camera (DMC) on 1 September 2005. The 

flying altitude was 500 m. Image Station Base Rectifier (ISBR) [52] and ERDAS IMAGINE [53] 

software were used to create the ortho images and the mosaic. A laser scanner derived DSM was used 

in the rectification, which ensures that roofs of the buildings are approximately correctly located. 

Areas behind buildings or trees in the original image data, however, could not be corrected, and there 

are thus some distortions in the shapes of the buildings, especially for the highest buildings. This did 

not cause major problems in the study, because the geometry of the detected objects was determined 

on the basis of segmentation of the laser scanner derived minimum DSM. There are also some 

brightness variations in the digital numbers (DN) of the ortho mosaic because no radiometric 

corrections were applied to the data during the image postprocessing and mosaicking. The difference 

in the acquisition time between the laser and image data was about 1.5 months, and small differences 

thus occur in the datasets, for example in a few buildings under construction. Considering the entire 

study area, however, the effect of this is likely to be negligible. Trees were in full leaf in both datasets.  

2.2.3. Map Data 

Building vectors of the Topographic Database from 2000, produced by the National Land Survey of 

Finland (NLSF), were used to create an old map to be updated (this was not the newest version of the 

database but was used to obtain realistic circumstances for the study). The Topographic Database 

contains the basic topographic data covering the entire country of Finland. The required positional 

accuracy for buildings in the database is 3 m [54].  

An up-to-date map used as reference data was created from building vectors of a city base map 

obtained from the city of Espoo. The map data originally represented the situation in 2008 but were 

modified, to represent the situation in 2005, by removing the newest buildings and adding some 

demolished buildings from an older version of the map. Buildings smaller than 20 m
2
 were also 

removed, because they were not considered in the study. The city base map is a large-scale and 

detailed topographic map used, for example, for city planning. In printed form, it is available on scales 

between 1:1,000 and 1:4,000. The map presents the buildings in more detail and generally has higher 

accuracy than the Topographic Database. It also includes more small buildings. In an earlier study we 

estimated the positional accuracy of buildings to be 0.5 m or better. Coordinate transformation and 

processing into raster format may have added some uncertainty to both maps. It is also very important 

to note that buildings appear different on the maps and in remotely sensed data. An obvious difference, 

in addition to generalization, is that the maps represent the bases of the buildings instead of roof edges. 
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A 100% correspondence between building detection results and map data would thus not be reached in 

a pixel-based comparison even if the detection process worked perfectly. On the other hand, the use of 

real maps provides realistic information on the performance of automated methods compared with 

current map data.  

3. Methods 

3.1. Building Detection 

3.1.1. Building Detection Method 

The main idea of the building detection method is to firstly segment a laser scanner derived DSM 

into homogeneous regions using the height information and then to classify the segments on the basis 

of their properties in the laser scanner and aerial image data. The first classification step is conducted 

to distinguish high objects, i.e., buildings and trees, from the ground surface. The remaining task is 

then to distinguish building segments from tree segments. Finally, neighboring building segments are 

merged to obtain one segment for each building. Postprocessing of the classification results is possible, 

for example by eliminating small regions classified as buildings. A large majority of non-building high 

objects in our study area are trees, and we thus prefer to use the class name ―tree‖, but for the purpose 

of building detection, other high objects, such as poles, are also ideally included in the tree class. 

Similarly, all low areas are assigned to the ground class, even if there are objects, such as cars or low 

vegetation, in the data. 

For segmentation and calculation of the attributes of the segments we have used the Definiens 

Professional software [55-57]. The segmentation method is based on bottom-up region merging [58]. 

Other steps of the building detection method were implemented in Matlab [59]. The classification of 

the segments into high objects and ground is based on the preclassified laser points (see Section 2.2.1). 

For each pixel, the highest or lowest point is considered, depending on the DSM used. If most of the 

points within a segment have a height value clearly above ground (2.5 m in this study), the segment is 

classified as a high object, and otherwise it is classified as ground. Alternatively, the height difference 

between the DSM and a DTM for the segments could be used. Some more details of the segmentation 

and first classification step can be found in [60].  

Buildings and trees are distinguished from each other by using the classification tree method [61], 

which has many useful properties for the analysis of remotely sensed data (see, for example, [62-64]). 

Classification trees (also called decision trees) can be created automatically with data mining or 

statistical software tools from a large number of input attributes. The method is non-parametric and 

does not require assumptions on the distribution of the data. It is thus easy to adapt for new datasets, 

and the classification process is highly automated. In the context of ALS and aerial image data 

analysis, classification trees have been used, for example, by Hodgson et al. [65] for mapping of urban 

parcel imperviousness, Ducic et al. [66] to classify full-waveform laser data, and Jung [13], 

Matikainen [67], Zingaretti et al. [68], Holland et al. [8] and Im et al. [69] to classify buildings and 

other classes. The classification tree tools available in the Statistics Toolbox of Matlab were used to 

implement the classification.  
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In the classification tree method, the most useful attributes and splits for the tree are selected 

automatically by using training data and a splitting criterion. In our method, training segments for 

buildings and trees are defined on the basis of map data. As the splitting criterion, we have used Gini’s 

diversity index, which is a measure of node impurity and is defined as [61]: 

)()()( tjptiptimpurity
ji




,  
(1)  

where t is a node, and p(it) is the proportion of cases xn  t which belong to class i (x is a 

measurement vector, i.e., a vector of attributes for a training segment). At each node of the tree, a 

search is made for the split that reduces node impurity the most. A node has to contain at least 10 

training segments to be split (the default value). The original classification tree is normally large and 

can overfit the training data. Pruning is thus needed to obtain a set of smaller subtrees. Training data 

and 10-fold cross-validation are used to estimate the best level of pruning by computing the costs of 

the subtrees. The costs are based on misclassifications produced by the trees. The best level of pruning 

is the level that produces the smallest tree within one standard error of the minimum-cost subtree. For 

further details of the method, see [61,70].  

3.1.2. Building Detection Experiments 

In the building detection experiments of this study, the minimum DSM was segmented and high 

objects were distinguished. Training segments for buildings and trees were defined automatically by 

using the up-to-date building map of the training area. If over 80% of a high segment was covered with 

buildings on the map, the segment was selected as a training segment for buildings. If over 80% was 

empty, i.e., not covered with buildings, the segment was selected as a training segment for trees (the 

percentage threshold was selected heuristically, which also applies to other threshold values if not 

mentioned otherwise). The number of tree segments obtained in this way was much larger than the 

number of building segments. To obtain approximately equal numbers for both classes, only every 

12th tree segment was selected. Visual checking of the training segments was also carried out, and 

some segments were discarded. The final number of training segments was 1,057 for buildings and 

1,099 for trees. 

Altogether 47 attributes were determined for the training segments (see Table 1). In addition to the 

DSMs and image channels, the difference between the two DSMs and a morphologically filtered slope 

image calculated from the minimum DSM were used as input data for calculating the attributes. The 

attributes were given as input data for the classification tree method, which created a classification tree 

automatically. The script created for the construction of the tree was run five times to find the best 

level of pruning. The estimated level may vary slightly between the runs because the subsamples for 

cross-validation are selected randomly. Two different levels were suggested in these runs. The tree 

with the nodes shown in Figure 2 was selected because it led to a slightly more complete detection of 

buildings in the training area (pixel-based completeness 0.5 percentage units higher, correctness 0.5 

percentage units lower). Attributes in this tree included the Normalized Difference Vegetation Index 

(NDVI), mean slope, Grey Level Co-occurrence Matrix (GLCM) homogeneity calculated from the 

maximum DSM, and GLCM homogeneity calculated from the near-infrared channel of the  

aerial image.  
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Table 1. Attributes used in the construction of the classification tree. The attributes, except 

the plane fitting mean squared error (MSE), were obtained from the Definiens software. 

The Grey Level Co-occurrence Matrix (GLCM) homogeneity is a texture measure 

originally presented by Haralick et al. [71]. 

Data source Attributes for segments 
Minimum DSM Standard deviation, GLCM homogeneity, MSE obtained when 

fitting a plane to the height values  

Maximum DSM Standard deviation, GLCM homogeneity 

DSM difference Mean, standard deviation 

Slope image Mean 

Aerial image Separately for all channels: mean, standard deviation, GLCM 

homogeneity 

 Normalized Difference Vegetation Index (NDVI) calculated from 

the mean values in the red and near-infrared channels 

Segments and shape 

polygons [55] derived 

from the segments 

 

26 shape attributes [56]: *) area, area excluding inner polygons (p.), area 

including inner polygons (p.), asymmetry, average length of edges (p.), border 

index, border length, compactness, compactness (p.), density, edges longer than 

20 pixels (p.), elliptic fit, length, length of longest edge (p.), length/width, number 

of edges (p.), number of inner objects (p.), number of right angles with edges 

longer than 20 pixels (p.), perimeter (p.), radius of largest enclosed ellipse, radius 

of smallest enclosing ellipse, rectangular fit, roundness, shape index, standard 

deviation of length of edges (p.), width  

*) Polygon-based attributes were marked with ―(p.)‖. Parameter values for shape polygons and 

edge length were selected by testing different alternatives and comparing attribute histograms of 

the training segments. 

 

The mean slope and GLCM homogeneity calculated from a DSM were also selected in 

classification trees automatically in our previous study with a different dataset [72]. They thus seem to 

be useful attributes for distinguishing buildings from trees. The near-infrared channel and NDVI were 

not available in the previous study, but they are obviously useful, especially when there are leaves in 

deciduous trees. The classification of the dataset used in the present study was also tested by excluding 

attributes calculated from the aerial image data, but the quality of the results was lower (pixel-based 

completeness and correctness 0.6 and 4.4 percentage units lower, respectively) [73].  

The selected tree was applied to classification of the test areas. In postprocessing of the building 

detection results, two slightly different algorithms were tested for each area. The first one removed 

buildings smaller than 20 m
2
. The second one also removed buildings smaller than 30 m

2
 if they had a 

solidity value lower than 0.8 (the solidity is a shape attribute from Matlab, representing the ratio 

between the area of the region and the area of the smallest convex polygon that can contain the region). 

After visual and numerical quality evaluations, the results of the first approach were selected for the 

low-rise area and the results of the second approach for other areas (differences in pixel-based 

completeness and correctness between the methods were less than 1 percentage unit in each area).  
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Figure 2. Classification tree used in the building detection tests. GLCM hom. of max. DSM 

is GLCM homogeneity calculated from the maximum DSM, and GLCM hom. of NIR ch. is 

GLCM homogeneity calculated from the near-infrared channel of the aerial image. 

 

3.2. Change Detection 

3.2.1. Change Detection Method 

The change detection method is based on comparison of the existing building map with the building 

detection results. The method was implemented in Matlab. It uses input data in raster format, but it is 

object-based, i.e., individual building objects are analyzed. Before comparison, buildings in the two 

datasets are matched to each other. Matching and comparison of map objects are topics that have wide 

use in the field of geographical information system (GIS) data processing and updating, and many 

studies related to the topic can be found in the literature (e.g., [74-76]). In our case, relatively simple 

methods, capable of using the building detection results as a basis for change detection, were 

developed. The methods use overlap analysis and buffers created around the objects by using 

morphological operations. Similar tools have also been utilized in some other change detection  

studies [3,9,22].  

It was assumed that the positional accuracy of the map and remotely sensed data is so good that 

matching and comparison of building objects can be based on their overlap. Small differences in the 

location and appearance of the buildings are allowed by the change detection rules. Larger differences 

are considered as changes or errors that need further attention in the update process. It was also 

assumed that buildings are detached objects because this is normally the case in Finland. If there are 

blocks of buildings connected to each other, these are treated as one building object.  

If there is any overlap between a pair of buildings on the map and in the building detection results, 

these are considered as corresponding buildings. Change detection is based on these correspondences 

(for examples of the different cases, see Figure 3): 

 One building on the map corresponds to one in the building detection (1-1). This is an 

unchanged (OK, class 1) or changed building (class 2). 
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 No buildings on the map, one in the building detection (0-1). This is a new building (class 3). 

 One building on the map, no buildings in the building detection (1-0). This is possibly a 

demolished building (class 4).  

 One building on the map, more than one in the building detection (1-n), or vice versa (n-1). 

This can be a real change (e.g., one building demolished, several new buildings constructed), or 

it can be related to generalization or inaccuracy of the map or problems in building detection. 

These buildings are assigned to class 5: 1-n/n-1. 

Figure 3. Examples of different change classes. The minimum DSM and old building map 

are presented on the left, the building detection result in the middle and the change 

detection result on the right (overlap approach used). (a) Unchanged buildings, changed 

buildings and a 1-n building. (b) New buildings, changed buildings and an unchanged 

building. (c) A demolished building and an unchanged building. (d) An n-1 building. (e) 
Buildings under trees (tree cover examined), unchanged buildings and new buildings. (f) A 

low car park (DSM examined) and an unchanged building. New and changed buildings for 

the change detection results were taken from building detection, others from the old map. 

Buildings of the old map  The National Land Survey of Finland 2001, permission 

number MML/VIR/MYY/219/09. 

 

Map buildings and new buildings smaller than a threshold value (20 m
2
 in this study) and buildings 

including outside pixels (e.g., missing data) are excluded from the analysis and assigned to class 6: not 
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analyzed. For the detection of changed buildings (class 2), two different alternatives are possible: 

overlap percentages or a buffer approach. The user can select which of these is used and determine 

threshold values. If the overlap approach is used, the percentage of overlapping area is considered both 

for the building on the map and the detected building. Both of these percentages must be at a required 

level to label the building as unchanged, i.e.,  

Thr
A

A

buildingmap

overlap


_

100 , and  (2)  

Thr
A

A

buildingdetected

overlap


_

100 , 
(3)  

where A is area and Thr is a threshold value. 

If the buffer approach is used, a buffer is created around the boundary of the building on the map by 

using the morphological operations dilation and erosion. The building is considered unchanged if the 

inner part of the building is detected as a building and the detected building does not extend outside the 

buffer area (Figure 4). Some misclassifications can be allowed for by using percentage thresholds. If 

the buffer covers the building completely, it is assigned to class 6. 

There are some typical errors from the building detection step that also cause false changes to be 

detected in the change detection stage. These include: 

1. Missing buildings or building parts due to tree cover (demolished or changed buildings in 

change detection). 

2. Missing buildings or building parts due to their low height (demolished or changed buildings). 

3. Enlarged buildings due to their connection with nearby vegetation (changed buildings).  

4. Misclassification of other objects as buildings (new buildings). 

Figure 4. Illustration of the buffer approach to detect changed buildings. (a) The basic 

principle. The black line represents a building on the old map. To consider the building 

unchanged, the inner part of the building (the red area) should be detected as a building and the 

detected building should not extend outside the buffer (to the gray area). (b) An unchanged 

building. The red line represents the detected building. (c) and (d) Changed buildings. 

 

 

   

(a) (b) (c) (d) 

Special correction rules were developed to take into account the first two cases (the second one only 

for entire buildings). The objective of these rules is to rely on the map data when it is known that 

misclassifications are likely. The rules are used to investigate tree cover and DSM in the case of 
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buildings that seem to be demolished and tree cover in the case of buildings that seem to have changed 

so that they are smaller in the building detection results than on the map. Firstly, there is a test to see 

whether over 90% of a demolished building or the missing area of a changed building has been 

classified as tree. In this case, it is likely that tree cover has prevented proper detection of the building. 

Misclassification of the building as tree is also possible. A demolition or change is less likely, 

assuming that the majority of buildings will be unchanged and that the most likely class for an area of 

a recently demolished building is ground. These buildings are assigned to class 7: assumed to be OK 

after examining tree cover. If the tree cover condition is not satisfied for a demolished building, the 

DSM is examined by comparing the mean height of the building on the map with the height of the 

surrounding pixels (located 3.6–3.9 m from the boundary in this study; the distance was determined by 

taking into account the positional accuracy of the map, the fact that buildings are typically larger in the 

DSM than on the map, and visual evaluation). To exclude trees, only pixels classified as ground are 

considered. If the height difference is over 1.5 m for at least 25% of the surrounding pixels, this is 

considered as an indication of a building and the building is assigned to class 8: assumed to be OK 

after examining DSM. This rule can detect buildings lower than 2.5 m, which was used as a threshold 

value in the original building detection. It can also detect car parks or other buildings that are located 

on a hill slope and have part of the roof on or near ground level. The third problem listed above could 

be approached, for example, by further analysis of aerial image data for the detected buildings. The 

ortho image mosaic used in this study, however, was not suitable for the task due to the distortions in 

the shapes of the buildings (see Section 2.2.2). Effects of the fourth problem can be diminished by 

analyzing the shape and size of the detected buildings. In this study, this was carried out in the 

postprocessing step of building detection by eliminating very small buildings.  

The buildings on the map and in the building detection results are labeled separately but in such a 

way that the labels are consistent. For example, a building classified as changed is assigned to class 2 

both on the map and in the building detection results. Different presentations can be created from the 

change detection results. For example, new and changed buildings can be taken from the building 

detection results, others from the map. The results are also provided as text files that can be imported 

as attributes to vector maps, i.e., the existing building map or the building detection results converted 

into vectors. The extraction and correction of boundaries of changed buildings, as well as actual 

updating of the database, remain tasks to be completed in later stages of the update process. Depending 

on the objectives and accuracy requirements of the updating, attention should be paid to classes 2–8 or 

part of them.  

3.2.2. Change Detection Experiments 

Two different change detection scenarios were tested in this study. In the first test, the objective was 

only to detect significant changes. The overlap approach was used, and the required overlap to 

consider a building unchanged was set to 50%. In the second test, the objective was to also detect more 

subtle changes in the appearance of the buildings, and the buffer approach was selected. The positional 

accuracy and other characteristics of the old building map were taken into account to select the buffer 

width, which was set to 2.1 m (inside building boundary) + 3.6 m (outside). The number of 

misclassifications allowed inside and outside the building was 5%, calculated separately for both cases 
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as a percentage of the area of the inner part. The tree cover and DSM correction rules were used in 

both tests.  

3.3. Accuracy Estimation 

3.3.1. Accuracy Estimation of Building Detection Results 

The accuracy of the building detection results was estimated by using pixel-based and building-

based accuracy measures. To obtain a good understanding of the quality of the results, the use of 

different measures is important (e.g., [49,77,78]). In the pixel-based estimation, the results were 

compared pixel by pixel with the reference map and completeness (i.e., producer’s accuracy or 

interpretation accuracy), correctness (i.e., user’s accuracy or object accuracy) and mean accuracy were 

calculated for buildings [79,80]. The equation for mean accuracy [79] is: 

Mean accuracy = %100
2 &

CBMB

MBCB

nn

n


,  (4)  

where nCB & MB is the number of pixels labeled as buildings both in the building detection results and on 

the map, nMB is the total number of pixels labeled as buildings on the map, and nCB is the total number 

of pixels labeled as buildings in the building detection results.  

In the building-based estimation, a building on the map was considered correctly detected if a 

certain percentage of its area (determined by a threshold value) was labeled as building in the building 

detection results. Map buildings containing missing laser data were excluded by using the masks (see 

Section 2.2.1). Similarly, a building in the building detection results was considered a correct building 

if a certain percentage of it was labeled as building on the map. All detected buildings were 

considered. Matching of building objects was not carried out. The estimation was run with two 

different threshold values: 50% and 1%. Rutzinger et al. [49] suggested that a threshold value between 

50% and 70% should be selected for this type of evaluation. Song and Haithcoat [77], on the other 

hand, accepted any overlap to consider a building correct. We assume that small threshold values can 

also be useful if the buildings are detached objects and the objective is to measure the performance of 

the method in detecting buildings, regardless of the quality of their shape. For example, from sparse 

laser scanner data it can be possible to detect the majority of the buildings, at least partly [81]. This might 

provide useful information for a human operator in the update process, even if the shape of all detected 

buildings is not good. Similar to Zhan et al. [78], Rottensteiner et al. [47], Champion et al. [10] and 

Rutzinger et al. [49], curves showing the accuracy estimates as a function of building size  

were created.  

3.3.2. Accuracy Estimation of Change Detection Results 

For evaluating the change detection results, reference results were created by carrying out change 

detection between the old and new building maps. The method and parameter settings were the same 

as those used for the actual change detection, but naturally, the tree cover and DSM correction rules 

were not applied. A confusion matrix was created, and completeness and correctness were estimated 

separately for different classes and buildings of different sizes. This accuracy estimation was  
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building-based. Comparison of the results, except for new buildings, was based on comparing labels 

given for the buildings on the old map. Comparison of new buildings was based on their overlap. If 

there was any overlap between a new building in the change detection results and new buildings in the 

reference results, the building was considered correct. Two sets of accuracy estimates were calculated. 

In the first case, classes 1–5 were considered. In the second case, class 5 was excluded. Classes 7 and 8 

were included in class 1 in both cases. There are many reasons for classifying a building as class 5 (see 

the description of the change detection method in Section 3.2.1), and errors are not always related to 

building detection. The true accuracy is thus likely to lie somewhere between the two estimates. 

Curves showing the accuracy estimates as a function of building size (buildings  threshold value) 

were created.  

4. Results and Discussion 

4.1. Building Detection Results 

Building detection results for the test areas are presented in Figure 5. More detailed results for some 

buildings can be seen in Figure 3. Table 2 shows the pixel-based accuracy estimates for the building 

detection results. The building-based estimates for buildings of different sizes are presented in Figure 

6. A summary of these estimates is also presented in Table 3.  

According to the pixel-based estimates, the mean accuracy of buildings was 89%. The accuracy was 

lowest (83%) in the new residential area. It could be expected that new buildings are clearly visible 

and thus easy to detect, but there are some understandable reasons for the lower accuracy, such as 

buildings or building parts missing from the map, low car parks and buildings under construction. The 

highest accuracy (94%) was achieved in the industrial area, which is natural due to the large building 

size. As noted by Rutzinger et al. [49], differences between the detected and reference buildings with 

regards to the building outlines can decrease the pixel-based estimates considerably. In our study, there 

were remarkable differences in the appearances of the buildings. If the building detection results were 

compared with a reference map manually delineated from the laser DSM, the accuracy estimates 

would probably be higher. 

Table 2. Pixel-based accuracy estimates for the building detection results. 

 Low-rise 
area 

High-rise 
area 

New residential 
area 

Industrial 
area 

All 
areas 

Completeness 89.7% 90.0% 89.2% 96.9% 91.3% 

Correctness 83.8% 89.3% 77.7% 90.6% 87.1% 

Mean accuracy 86.6% 89.6% 83.1% 93.7% 89.1% 

Buildings classified 
as trees 

3.9% 2.5% 2.5% 0.8% 2.5% 

Buildings classified 
as ground 

6.4% 7.5% 8.3% 2.3% 6.2% 
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Figure 5. Building detection results for the test areas. 
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Figure 6. Building-based accuracy estimates for the building detection results as a function 

of building size. (a) Estimates for all buildings larger than the X axis value. (b) Estimates 

for buildings in the size range given by the X axis values. An overlap of either 50% or 1% 

between reference and detected buildings was required to consider a building  

correctly detected. 

 

(a) (b) 

Table 3. Building-based accuracy estimates for the building detection results. All test areas 

included. An overlap of either 50% or 1% between reference and detected buildings was 

required to consider a building correctly detected. 

Building size 
(m2) 

Number of 
buildings in the 
reference map 

Completeness 
(overlap 
requirement 
50% / 1%) 

Number of 
buildings in the 
building 
detection results 

Correctness 
(overlap 
requirement 
50% / 1%) 

 20 1,128 88.9% / 91.6% 1,210 86.3% / 87.9% 

 40 1,012 94.0% / 96.4% 1,060 92.7% / 94.2% 

 60 949 95.9% / 98.0% 974 96.0% / 96.7% 

 80 896 96.5% / 98.7% 916 97.5% / 98.1% 

 100 854 96.5% / 98.7% 861 98.4% / 98.7% 

 200 452 96.7% / 99.1% 534 98.9% / 99.1% 

 300 318 95.9% / 99.1% 355 99.4% / 99.4% 

 

The building-based estimates are more tolerant of differences between the map and remotely sensed 

data, as well as of errors in the shape of the detected buildings. They provide information on the 

percentage of buildings that were detected (completeness) or correct (correctness), at least partly. For 

all buildings, the building-based completeness and correctness were 89% and 86%, respectively, 

estimated with the overlap requirement of 50%. The estimates rose rapidly with the size of the 

buildings, and for buildings larger than 60 m
2
 they were 96%. Some errors also occurred in the largest 

buildings, but these were special cases. For example, there are several two-level car parks in the area 

that are located on a hill slope and have the upper level on or near ground level on one side. Many of 

the car parks were presented with lines forming closed polygons on the original reference map and 
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were thus included in the raster map, but not all of them were. Many errors in the building detection 

occurred for the car parks because they are difficult to distinguish from the ground. A few large 

buildings in the high-rise area had roofs covered with vegetation and were thus misclassified as trees. 

Such buildings did not exist in the training data. Two large sheds in the industrial area were not 

presented on the map, which decreased the correctness slightly. Many of the smallest buildings on the 

map (typically sheds) were very low and/or covered with trees and thus difficult to detect. For smaller 

buildings, some discrepancies between the map and laser and image data also occurred. In the 

industrial area, for example, there were many sheds, containers or other constructions that were 

detected as buildings but were not presented on the map. Distinguishing such objects from real small 

buildings is difficult. It also seems that some buses were misclassified as buildings. This might be 

improved by more detailed classification of different objects (e.g., roads). Some misclassifications 

occurred between buildings and vegetation. The acquisition date of the laser scanner data was not ideal 

for building detection because trees were in full leaf. 

The pixel-based accuracies of about 90% are in agreement with our previous studies with earlier 

versions of the method and different datasets. Values of a similar level have also been reported by 

other authors (e.g., [47,49]). Comparison of the building-based estimates to other studies, even to our 

own, is difficult because different evaluation methods and/or threshold values and study areas have 

been used. Generally, the characteristics of the study area have a large impact on the numerical values. 

The building-based estimates are, for example, dependent on the size distribution of buildings in the 

area (see [49]). It is, however, evident that the detection performance was good, except for the  

smallest buildings.  

The quality requirements of the Finnish Topographic Database allow four errors for 100 buildings 

(missing or additional buildings) [54]. This suggests that if the building detection results were used as 

a basis for building mapping, the quality of the map could be at least near to operational requirements. 

With the overlap requirement of 50%, the completeness of 96% was achieved when all buildings larger 

than 60 m
2
 were included in the analysis. In a mapping process, an operator could check all detected 

buildings, digitize the correct ones and discard false ones. Map buildings including missing laser data 

were excluded from the completeness analysis (see Section 2.2.1). In an operational process, such 

areas would require additional checking. 

4.2. Change Detection Results 

Change detection results obtained by using the overlap approach (the first change detection test) are 

presented in Figure 7. New and changed buildings for the figure were taken from the building 

detection results, others from the old map. The confusion matrix for the results is presented in Table 4 

and the accuracy estimates as a function of building size in Figure 8. Corresponding results obtained 

by using the buffer approach (the second test) were presented in [73]. Examples of buildings belonging 

to different change classes can be seen in Figure 3 (overlap results). A summary of the accuracy 

estimates in numerical form both for the overlap and buffer results is presented in Table 5. Unless 

otherwise mentioned, the following discussion refers to the overlap results and analysis where all 

classes (1–5) were considered. In the discussion, it is assumed that the update process is continued by a 
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human operator, who checks the buildings labeled as changed (classes 2–5) or not analyzed (6), digitizes 

the changes and stores them in the database. In the future, an automated process might also be possible. 

The new residential area, as well as smaller groups of new buildings, are clearly discernible in the 

change detection results. The number of demolished buildings was small (1% of all buildings), which 

is natural in a growing suburban area. Quite a few buildings were assigned to classes changed (4%) 

and 1-n/n-1 (14%). The most frequent class, however, was unchanged buildings (51%). In the update 

process, the unchanged buildings could be bypassed. About 95% of all buildings labeled as unchanged 

were unchanged according to the reference results (correctness). High correctness of unchanged 

buildings is very important so that changes are not missed if the operator relies on the change detection 

results. Some more buildings could have been labeled as unchanged (59% of all buildings according to 

the reference results). The completeness ranged from 86%/96% (class 5 included/excluded) to 

91%/99%, depending on the minimum building size. 

Figure 7. Change detection results for the test areas (overlap approach used). New and 

changed buildings were taken from the building detection results, others from the old 

building map. Buildings of the old map  The National Land Survey of Finland 2001, 

permission number MML/VIR/MYY/219/09. 
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The correctness of buildings labeled as changed was 55%, i.e., many buildings were included that 

were not changed in the reference data. Several of the errors, however, related to presentation of 

buildings on the maps (e.g., two buildings on the up-to-date map seem to be one in the DSM; a 

building is clearly larger in the DSM than on the maps; a changed building is a little larger in the DSM 

than on the up-to-date map, and it was thus classified as changed in the change detection results, but 

unchanged in the reference results). Real errors were often related to connection of buildings with trees 

or adjacent buildings. The completeness was 88% for all changed buildings, which means that real 

changes were identified well. It decreased for large buildings, but the number of such buildings was 

small, which makes the estimates unreliable. 

New buildings were also well detected. The completeness was 69% for all new buildings and about 

90% for buildings larger than 60 m
2
. New buildings not detected were thus generally small in size. There 

were also some errors in the largest buildings ( 300 m
2
). According to visual evaluation, these occurred 

usually for car parks or were related to the maps (e.g., a changed building and a new building in the 

reference results seem to be connected in the DSM and were thus classified as one changed building in 

the change detection results). One large new building was classified as changed because the detected 

building has a small overlap with an old building (demolished in the reference results). There were many 

false detections of new buildings, but these objects were also usually small. The correctness for all new 

buildings was 55% but increased to about 90% when the minimum building size was 80 m
2
.  

Table 4. Confusion matrix for the change detection results (overlap approach used). All 

test areas and buildings included (threshold value  20 m
2
), class 5 included. 

Change 
detection 
results 

Reference results   

 OK Change New Demolished 

*) 

1-n/ 

n-1 

Not 

analyzed 

Not 

new 

building 

Sum % of 

buildings in 

c.d. results  

**) 

OK 645 2 – 13 22 0 – 682 51.0% 

Change 19 29 – 4 1 1 – 54 4.0% 

New – – 172 – – Excluded 139 311 23.3% 

Demolished 5 1 – 13 0 0 – 19 1.4% 

1-n/n-1 82 1 – 3 95 0 – 181 13.5% 

Not 

analyzed 

2 1 Excluded 0 0 87 – 90 6.7% 

Not new 

building 

– – 79 – – – – 79 – 

Sum 753 34 251 33 118 88 139 1,416  

% of 

buildings in 

ref. results  

***) 

59.0% 2.7% 19.7% 2.6% 9.2% 6.9% –  100% 

 *) 10 of the reference buildings for class 4 (demolished) were not really demolished (see text).  

 **) % of buildings in the change detection results (total: 1,416 − 79 = 1,337) 

 ***) % of buildings in the reference results (total: 1,416 − 139 = 1,277) 
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Figure 8. Accuracy estimates for the change detection results (overlap approach used). The 

results are presented for different classes and buildings of different sizes. Class 5 (1-n/n-1) 

was included or excluded. *) 30% of reference buildings for class 4 (demolished) were not 

really demolished, see text. 
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Table 5. Building-based accuracy estimates for different classes in the change detection 

results. All test areas included, class 5 included / excluded. 

Class 
and 
building 
size (m2) 
 

Change 
detection 
approach 
 
 

Number of 
buildings in 
the reference 
results 

Completeness Number of 
buildings in 
the change 
detection 
results 

Correctness 

Class 1 (OK) 

 20 Overlap 751 / 669 85.9% / 96.4% 682 / 660 94.6% / 97.7% 

 Buffers 655 / 584 71.8% / 80.5% 525 / 506 89.5% / 92.9% 

 100 Overlap 581 / 516 87.3% / 98.3% 534 / 513 94.9% / 98.8% 

 Buffers 509 / 452 71.9% / 81.0% 407 / 389 89.9% / 94.1% 

 300 Overlap 204 / 188 91.2% / 98.9% 201 / 191 92.5% / 97.4% 

 Buffers 177 / 165 75.7% / 81.2% 155 / 145 86.5% / 92.4% 

      

Class 2 (Change) 

 20 Overlap 33 / 32 87.9% / 90.6% 53 / 52 54.7% / 55.8% 

 Buffers 118 / 108 69.5% / 75.9% 201 / 197 40.8% / 41.6% 

 100 Overlap 16 / 15 87.5% / 93.3% 27 / 26 51.9% / 53.8% 

 Buffers 88 / 79 69.3% / 77.2% 153 / 149 39.9% / 40.9% 

 300 Overlap 5 / 5 80.0% / 80.0% 8 / 7 50.0% / 57.1% 

 Buffers 32 / 28 65.6% / 75.0% 54 / 53 38.9% / 39.6% 

      

Class 3 (New) 

 20 Overlap 251 / 250 68.5% / 68.8% 311 / 311 55.3% / 55.3% 

 Buffers 250 / 249 68.4% / 68.7% 310 / 310 55.2% / 55.2% 

 100 Overlap 124 / 124 90.3% / 90.3% 120 / 120 93.3% / 93.3% 

 Buffers 123 / 123 90.2% / 90.2 % 119 / 119 93.3% / 93.3% 

 300 Overlap 50 / 50 88.0% / 88.0% 44 / 44 100.0% / 100.0% 

 Buffers 49 / 49 87.8% / 87.8% 43 / 43 100.0% / 100.0% 

      

Class 4 (Demolished) *) 

 20 Overlap 33 / 30 39.4% / 43.3% 19 / 19 68.4% / 68.4% 

 Buffers 31 / 28 41.9% / 46.4% 17 / 17 76.5% / 76.5% 

 100 Overlap 14 / 12 28.6% / 33.3% 4 / 4 100.0% / 100.0% 

 Buffers 13 / 11 30.8% / 36.4% 4 / 4 100.0% / 100.0% 

 300 Overlap 8 / 7 25.0% / 28.6% 2 / 2 100.0% / 100.0% 

 Buffers 8 / 7 25.0% / 28.6% 2 / 2 100.0% / 100.0% 

      

Class 5 (1-n/n-1) 

 20 Overlap 118 80.5% 181 52.5% 

 Buffers 118 80.5% 179 53.1% 

 100 Overlap 94 76.6% 140 51.4% 

 Buffers 94 76.6% 140 51.4% 

 300 Overlap 31 64.5% 37 54.1% 

 Buffers 31 64.5% 37 54.1% 

      

All classes 

 20 Overlap 1,186 / 981 80.4% / 87.6% 1,246 / 1,042 76.6% / 82.4% 

 Buffers 1,172 / 969 70.9% / 76.0% 1,232 / 1,030 67.5% / 71.5% 

 100 Overlap 829 / 667 85.5% / 95.5% 825 / 663 85.9% / 96.1% 

 Buffers 827 / 665 74.2% / 81.5% 823 / 661 74.6% / 82.0% 

 300 Overlap 298 / 250 85.9% / 94.4% 292 / 244 87.7% / 96.7% 

 Buffers 297 / 249 74.1% / 80.3% 291 / 243 75.6% / 82.3% 

 *) 10 of the reference buildings for class 4 (demolished) were not really demolished (see text). 

The correctness of demolished buildings was high, except for the smallest buildings (68% for all 

buildings, and about 90% for buildings larger than 60 m
2
 (Figure 8)). The completeness seems low 
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(39% for all buildings), but these results are misleading. The number of buildings in this class was 

small, and problems on the maps have a large effect on the results. Visual inspection of the demolished 

buildings in the reference results showed that 10/33 (30%) of them were not really demolished. Nine 

buildings were not included in the up-to-date raster map because they were missing, smaller than 20 

m
2
 or not presented as closed polygons on the original vector map. Five of these were car parks or 

other large constructions, and four were small buildings. One large building was probably mislocated 

on the old map. If these 10 buildings are excluded from the analysis, the completeness rises to 57% (all 

buildings included) and the errors occur in small buildings (most of them < 100 m
2
, all < 200 m

2
). It 

should be noted that the erroneous demolished buildings in the reference results also affect the 

accuracy estimates of other classes.  

About 14% of buildings were assigned to class 5 (1-n/n-1). In the reference results, the percentage 

was 9%. As already discussed, this class is problematic because it can occur in many different cases: 

due to real changes, due to representation of buildings on the map, or due to errors in the building 

detection. When all buildings are considered, the completeness of the class was 81%. For larger 

buildings it decreased, which indicates that correct detection of the class was not easier for large 

buildings. The correctness was 52%. Many buildings that were unchanged according to the reference 

results were assigned to this class. This generally related to problems in building detection, such as 

missing parts in buildings or nearby buildings connected to each other, but sometimes also to the maps.  

In the accuracy estimation, classes 7 (OK after examining tree cover) and 8 (OK after examining 

DSM) were included in class 1 (unchanged). Table 6 shows a separate comparison between buildings 

assigned to these classes and the reference results. Most buildings in classes 7 and 8 were unchanged 

in the reference results, and the effect of the additional correction rules was thus mainly positive. 

According to visual evaluation, the rule based on the DSM was particularly useful in detecting car 

parks missed in the building detection stage (see Figure 3f). A few buildings assigned to classes 7 and 

8 were demolished or changed in the reference results. These changes were missed due to the 

correction rules. Sloping areas are problematic for the DSM rule because the height difference on the 

ground can exceed the threshold value used to indicate a building. The problem with the tree cover rule 

is that old, ramshackle buildings, which are more likely to be demolished than other buildings, are 

often covered by large trees. Depending on the objectives of the update process, it might be best that 

the operator also checks buildings assigned to classes 7 and 8. 

Considering all classes and buildings, the completeness and correctness were 80% and 77%, 

respectively. For buildings larger than 60 m
2
, they were about 85% (Figure 8). This is a satisfactory 

result, remembering that all the accuracy estimates presented here include some uncertainty related to 

the maps. Numerically, the results obtained for unchanged and changed buildings by using the overlap 

approach were better than those obtained by using the buffer approach. This was related to the smaller 

number of changes to detect. The buffer approach is better suited to the detection of subtle changes in 

the buildings than the overlap approach. On the other hand, the basic idea of carrying out change 

detection after building detection is probably most effective when the goal is only to detect the major 

changes. If the goal is to detect subtle changes in the shape of the buildings, it would be better to first 

carry out the building extraction process further, i.e., to determine the exact boundaries of the buildings.  
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Table 6. Reference results for buildings classified as OK after applying the special 

correction rules (classes 7 and 8). All test areas included. The results are presented for the 

overlap / buffer approach. 

Change detection results Reference results 

 OK Change New Demolished 

 

1-n/n-1 Not 

analyzed 

OK after examining tree 

cover 

15 / 34 0 / 1 0 / 0 2 / 2 0 / 0 0 / 1 

OK after examining DSM 16 / 14 1 / 1 0 / 0 7 / 7 

*) 

0 / 0 0 / 2 

*) Includes 3 buildings that were not really demolished. 

As discussed above, the change detection method found real changes rather well. The main problem 

was false detection of changes, i.e., new, changed, and 1-n/n-1 buildings. However, there were not 

many false detections of demolished buildings. The trend that completeness in detecting changes was 

higher than correctness was similar to that found in many other change detection studies (e.g., [8,10]). 

Completeness in detecting changes is also more important than correctness if the updating continues 

manually. A moderate number of false detections can be checked visually and bypassed, but finding 

missing changes is time consuming and can defeat the object of using an automated method. 

From Table 4, it can be calculated that a total of 245 buildings that were unchanged or not a new 

building in the reference results were assigned to some of the change classes (2–5) in the change 

detection. This is 18% of all buildings in the change detection results. These buildings would require 

checking by an operator, even though they have not changed. From Table 4 it can also be calculated 

that the number of buildings that belonged to a change class (2–5) in the reference results but were 

labeled as unchanged or not detected as a new building was 116, which is 9% of all reference 

buildings. These buildings would remain uncorrected in the update, assuming that the operator would 

check buildings assigned to classes 2–6. The percentage is a little larger than the 4% allowed in the 

quality requirements of the Topographic Database (missing and additional buildings; [54]), but it is 

affected by the uncertainty of the reference data, and includes many small buildings that are normally 

presented on the city base map but not in the Topographic Database, and also includes some changed 

and 1-n/n-1 buildings. As discussed above, most errors in new and demolished buildings occurred in 

small buildings. When assessing the usefulness of automated change detection, it must also be noted 

that even if some changes are missed, the database resulting from updating will be more accurate than 

the version before updating. If the update process can be made faster and easier, this can also have 

positive effects on the quality of the data. Practical tests are needed to finally show if the methods are 

feasible and accurate enough to benefit operational work. Comparisons of quality between automatic 

and visual change detection results would also be important.  

5. Conclusions and Further Development 

Methods for automatic detection of buildings and changes in buildings were developed and 

thoroughly tested by using airborne laser scanner and digital aerial image data from a 5 km
2
 suburban 
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area. Two real building maps of the area—an old one and an up-to-date one—were used to evaluate 

the quality of the results.  

The building detection method is based on region-based segmentation and classification but also 

utilizes classification of laser points to distinguish ground segments. To distinguish buildings from 

trees, the classification tree method is used. The results were in agreement with previous studies and 

showed that buildings can be detected automatically with relatively good accuracy. In pixel-based 

comparison with the up-to-date map data, the mean accuracy of buildings was 89%. The pixel-based 

estimates are affected by differences between the map and aerial data, and the real accuracy is thus 

likely to be somewhat higher. Building-based comparison with the map showed that the detection 

performance of the method was generally good. Errors occurred mainly in small buildings and special 

cases, such as car parks located on a hill slope, which are difficult to detect automatically. When all 

buildings larger than 60 m
2
 were included in the analysis and an overlap of 50% between reference 

buildings and detected buildings was required, both completeness and correctness were 96%. This 

accuracy level could lead to a building map that is compatible with operational quality requirements. 

The change detection method compares detected building objects with those on a map and classifies 

buildings as unchanged, changed, new, demolished and 1-n/n-1 buildings. For the detection of changed 

buildings, overlap percentages or buffers are used. Additional correction rules relying on the existing 

map data can be used to decrease the number of misclassifications. Considering the five classes listed 

above and all buildings larger than 20 m
2
, the completeness and correctness of the change detection 

results were 80% and 77%, respectively (the overlap approach was used to detect changed buildings). 

For buildings larger than 60 m
2
, the estimates were about 85%. About 50% of buildings in the study 

area were detected as unchanged, with correctness of 95%, and real changes were found relatively well 

(e.g., completeness 69%, 88% and 81% for all new, changed and 1-n/n-1 buildings, respectively). The 

main problem was false detection of changes, especially new, changed, and 1-n/n-1 buildings. The 

total number of false changes, however, was moderate (18% of all buildings). In the case of new and 

demolished buildings, errors occurred mainly in small buildings. In the case of changed and 1-n/n-1 

buildings, errors also occurred in larger buildings. They were related, for example, to connection of 

buildings with trees or adjacent buildings but sometimes also to the representation of buildings on  

the maps.  

To improve the change detection results, further studies should concentrate on the problematic cases 

and on the testing of new and potentially useful datasets, such as full-waveform laser scanner data, 

which are expected to improve the automatic classification of objects through additional features 

extracted (e.g., echo width and backscattering coefficient). For example, connection of buildings with 

adjacent trees could be diminished by further analysis of aerial image or waveform data for the 

detected buildings. On the other hand, this problem can also be diminished by simply using laser 

scanner data from leaf-off conditions. The use of laser scanner data with a higher point density would 

be useful to better distinguish adjacent buildings from each other and to improve the shape of the 

detected buildings. It might also improve the results for small buildings. Classification of different 

objects, such as roads, could decrease the number of false detections of buildings. The number of false 

detections of small new buildings might also be reduced by using specific shape criteria for buildings 

not presented on the old map. However, caution is needed with such criteria to avoid missing real new 

buildings. It is likely that many of the false detections are easy for a human operator to recognize 
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visually and thus bypass. Searching for undetected changes is more difficult and contrary to the basic 

idea of using automated change detection.  

In addition to testing new datasets and developing more advanced methods to tackle the problematic 

cases, further tests should be carried out to show if the methods are useful and accurate enough for 

operational work. Ideally, operators updating a map database could bypass the unchanged buildings 

and concentrate on checking and correcting the changed ones, which might lead to significant savings 

in time and costs. Practical tests, however, are needed to confirm this. Performance of the methods in 

the case of sparse laser scanner data and aerial images with lower spatial resolution, which are used for 

operational countrywide mapping, should also be investigated. Another topic requiring further study is 

the applicability of classification rules in different areas. It is likely that classification rules created for 

building detection in one area can be utilized in other similar areas if the data have similar 

characteristics. Changes in the data, however, require changes in the rules. Rules can be created 

automatically by using the classification tree method and an up-to-date building map of a training area, 

which was the approach used in this study, but manual improvement of the rules is also possible. 

In this study, we investigated buildings, which are very important objects for updating, but there are 

also many other objects in map databases that need to be updated. The basic ideas and elements of this 

study, such as the classification tree method, could be utilized to also develop change detection 

methods for other objects. The change detection principles and rules, however, need to be defined 

separately by taking into account the specific characteristics of different objects. 
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