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Highlights
What are the main findings?

e A correlation exists between the histogram features of panchromatic remote sensing
images and the transmission. The relation equation between the average occurrence
differences between the adjacent gray levels (AODAG) feature of the plain image
patch and the transmission, and the relation equation between the average distance
to the gray-level gravity center (ADGG) feature of the mixed image patch and the
transmission are established, respectively.

e  The atmospheric light of different regions in the remote sensing image may be differ-
ent. The threshold segmentation method is applied to calculate the atmospheric light
of each image patch based on the maximum gray level of the patch separately.

What is the implication of the main finding?

e  The transmission map is obtained according to the statistical relation equation with-
out relying on the color information, which is beneficial for the dehazing of panchro-
matic remote sensing images.

e  Arefined atmospheric light map is obtained, resulting in a more uniform brightness
distribution in the dehazed image.

Abstract

During long-range imaging, the turbid medium in the atmosphere absorbs and scatters
light, resulting in reduced contrast, a narrowed dynamic range, and obscure detail infor-
mation in remote sensing images. The prior-based method has the advantages of good
real-time performance and a wide application range. However, few of the existing prior-
based methods are applicable to the dehazing of panchromatic images. In this paper, we
innovatively propose a prior-based dehazing method for panchromatic remote sensing
images through statistical histogram features. First, the hazy image is divided into plain
image patches and mixed image patches according to the histogram features. Then, the
features of the average occurrence differences between adjacent gray levels (AODAGs) of
plain image patches and the features of the average distance to the gray-level gravity cen-
ter (ADGG) of mixed image patches are, respectively, calculated. Then, the transmission
map is obtained according to the statistical relation equation. Then, the atmospheric light
of each image patch is calculated separately based on the maximum gray level of the im-
age patch using the threshold segmentation method. Finally, the dehazed image is
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obtained based on the physical model. Extensive experiments in synthetic and real-world
panchromatic hazy remote sensing images show that the proposed algorithm outper-
forms state-of-the-art dehazing methods in both efficiency and dehazing effect.

Keywords: dehazing; image restoration; histogram feature; panchromatic image; remote
sensing

1. Introduction

As an important product of Earth observation technology, remote sensing images
(RSIs) play an increasingly important role in people's production and life. In particular,
panchromatic remote sensing images have the advantages of a high spatial resolution and
a high signal-to-noise ratio (SNR) [1]. However, in the process of long-range imaging, the
turbid medium in the atmosphere absorbs and scatters light, resulting in reduced contrast,
anarrowed dynamic range, and obscure detail information in remote sensing images. The
poor visual effect of the hazy images directly limits many image understanding and com-
puter vision applications such as target tracking, intelligent navigation, image classifica-
tion, visual monitoring, and remote sensing [2]. The dehazing technique plays an im-
portant role in the Earth observation system by restoring hazy images and improving the
quality of remote sensing images.

After decades of development, image dehazing methods have achieved significant
improvements in performance and efficiency. Image dehazing methods are mainly cate-
gorized into prior-based dehazing algorithms, learning-based dehazing algorithms [3],
and histogram-based dehazing algorithms. The prior-based dehazing algorithms realize
the estimation of unknown parameters in the physical model by mining the prior
knowledge of hazy or clear images to achieve image restoration. He [4] statistically de-
rived the dark channel prior (DCP), which holds that most non-sky patches in haze-free
outdoor images contain some pixels which have very low intensities in at least one color
channel. Atmospheric Illumination Prior [5], Super-Pixel Scene Prior [6], and Gray Haze-
Line Prior [7] found that haze only affects a specific component of the color space such as
YC:Cs, Lab, and YUV, and has little effect on other components. Saturation Line Prior [8]
and Color Attenuation Prior [9] derived the transmission by statistically calculating the
color information of clear or hazy images. Low-Rank and Sparse Prior [10] and Rank-One
Prior [11] realized dehazing by computing the features of the transformed image. Haze
Smoothness Prior [12] regarded the hazy image as the sum of the clear image and corre-
sponding haze layer, and realized dehazing based on the fact that the haze layer is
smoother than the clear image. Tan et al. [13] proposed Mixed Atmosphere Prior, which
divided the hazy image into foreground and background areas, and accurately calculated
the atmospheric light maps of the foreground and background areas, respectively. Most
of the prior-based dehazing approaches need to rely on the color information of the image,
which will be ineffective for panchromatic images without color information. Therefore,
it is of great importance to mine the prior knowledge of panchromatic hazy or clear im-
ages to achieve dehazing.

Learning-based dehazing algorithms have received extensive attention from scholars
in the last decade. Cai et al. proposed an end-to-end network, DehazeNet [14], which em-
ploys a convolutional neural network (CNN) to realize the estimation of transmission.
Subsequently, many CNN-based image dehazing methods were proposed [15-18]. Yeh et
al. [19] decomposed the hazy image into a base component and a detail component, and
utilized a multi-scale deep residual and U-Net to learn the base component of hazy and
clear images. The clear image is obtained by integrating the dehazed base component and
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the enhanced detail component. The attention mechanism-based generative adversarial
network (GAN) for the cloud removal algorithm was introduced for satellite images [20].
Xu et al. [21] developed a multi scale GAN that removes thin clouds from cloudy scenes.
Sun et al. [22] introduced UME-Net, an unsupervised multi-branch network designed to
restore the high-frequency details often lost in hazy images. The improved GAN achieves
image dehazing by training unpaired real-world hazy and clean images [23,24]. In order
to improve the computational efficiency, a lightweight dehaze network (LDN) [25-27] has
been proposed to reduce the computational complexity while achieving satisfactory
dehazing results. Benefiting from the global modeling capability and long-term depend-
ency features, the Transformer and its improved architectures [28-33] have achieved
promising results in the field of remote sensing image dehazing. Ding et al. [34] used con-
ditional variational autoencoders (CVAEs) to generate multiple restoration images, and
then fused them through a dynamic fusion network (DFN) to obtain the final dehazing
images. Ma et al. [35] proposed an encoder—decoder structure combined with a mixture
attention block for haze removal in nighttime light remote sensing images. The integration
of a prior-based and a learning-based dehazing method also achieved pleasing results
[36,37]. Learning-based dehazing algorithms rely heavily on training data and sometimes
fail for remote sensing images, especially aerial remote sensing images. Moreover, the
computational complexity of learning-based dehazing methods is too high, and they are
not easy to implement on low-power embedded systems. Zhang et al. [38] proposed a
dual-task collaborative mutual promotion framework that integrates depth estimation
and dehazing through an interactive mechanism.

The histogram of an image can reflect the distribution of gray levels. Its horizontal
axis represents the gray level, and the vertical axis represents the number of occurrences
of the corresponding gray level. The histogram can also reflect the dynamic range of the
image. The greater the concentration of the haze, the more concentrated the distribution
of gray levels, and the smaller the dynamic range of the image. On the contrary, the
smaller the concentration of the haze, the more dispersed the distribution of gray levels,

and the larger the dynamic range of the image. Assuming that the image 1= {1 @ )} con-
sists of L discrete gray levels, denoted as {KO,Kl,---, KL—I} , 1(i,)) denotes the gray value

of pixel (,/) , and I (i’j)e{]%’lg’”"KL—l} . The histogram equalization (HE) algorithm
achieves the objectives of expanding dynamic range and enhancing contrast by shaping
the probability density function (PDF) of gray levels to approximate a uniform distribu-
tion [39]. It can be applied to image dehazing. The brightness-preserving bi-histogram
equalization (BBHE) addresses the issue of uneven brightness in local regions of dehazed
images [40]. Two-dimensional histogram algorithms [41,42] effectively preserve local de-
tail information and brightness while enhancing contrast. The logarithmic mapping-based
histogram equalization (LMHE) [43] makes dehazed images more consistent with human
visual perception. Adaptive histogram equalization [44,45] achieves high image quality
in dehazed images by seeking optimal adjustment parameters. Reflectance-guided histo-
gram equalization [46] enhances both global and local contrast while addressing the une-
ven illumination issue. The aforementioned histogram equalization methods do not use
an atmosphere scattering model and are categorized as image enhancement techniques.
They achieve haze removal by directly transforming the histogram. Our algorithm inno-
vatively establishes a relation equation between histogram features and transmission,
then employs an atmosphere scattering model to perform haze removal. Our approach
belongs to the category of image restoration methods, yielding more natural dehazed im-
ages that closely resemble clear images.

There are also some fusion-based dehazing methods that have achieved satisfactory
results. Guo et al. [47] fused the transmission obtained by DCP and the transmission
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calculated based on the constraints to generate the final transmission. Hong et al. [48] di-
vided the hazy image into patches, and then set a series of low-to-high transmissions man-
ually for each patch. The physical dehazing model is used to restore each patch, and the
patch with the best dehazing effect is selected for fusion. The dehazing effect of fusion-
based methods is easily affected by the selection of parameters, and inappropriate param-
eter settings will reduce the dehazing effect. Variation-based or optimization methods
have also been widely used in image dehazing. By integrating structure-aware models,
the variation-based dehazing methods achieve transmission estimation and refinement
[49]. Ding et al. [50] used a variation method to obtain fine depth information of the scene,
and then computed the transmission using a physical model. Meng et al. [51] incorporated
a constraint into an optimization model to estimate the unknown scene transmission. Liu
et al. [52] introduced a novel variational framework for nighttime image dehazing that
leverages hybrid regularization to enhance visibility and structural clarity in hazy scenes.
Although many optimization methods for variational problems were proposed [53,54],
the variation-based dehazing algorithms easily fall into the local optimal solution, and
sometimes can not achieve a satisfactory dehazing effect. Image enhancement methods
can increase the contrast of the image and highlight the detail information, which is suit-
able for the dehazing of panchromatic images. Jang et al. realized the dehazing of optical
remote sensing images by using a hybrid intensity transfer function based on Retinex the-
ory [55]. Khan et al. achieved dehazing by enhancing the detail information of hazy im-
ages through wavelet transforms [56]. The image-enhancement-based dehazing methods
sometimes lead to the phenomenon of the oversaturation of intensity, resulting in the loss
of detailed information in the dehazed image.

The light reflected from the ground scene and the atmospheric light enter into the
sensor through a complex process in hazy conditions. The degradation process of remote
sensing images is shown in Figure 1.

(6‘ \ Sensor

l’ l’
U

Environment illumination

Ground scene

Figure 1. Diagram of the degradation process of remote sensing images.

The atmosphere scattering model [57,58] is the most classical physical model to de-
scribe the degradation of hazy images, which is abstracted as follows:

I(x) =J(x)t(x) + A(l—¢t(x)) €))

where X is the pixel coordinate in the image, I(x) represents the hazy image, J(¥) represents
the clear image. #(x) denotes the transmission, which is usually considered to be constant
in the local image patch. A represents the atmospheric light. The transmission can be ex-
pressed as t(x)=exp[-f,.d(x)], where f,. represents the atmospheric scattering coefficient
and d(x) represents the imaging distance. It can be observed that as the imaging distance

increases, the transmission decreases. In the atmosphere scattering model, the term
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J(x)1(x) represents the portion of light reflected from the scene that reaches the sensor
after attenuation through the turbid medium, while the term A(1-#(x)) represents the por-
tion of atmospheric light scattered directly into the sensor. Image dehazing based on the
atmosphere scattering model is performed to estimate #(x) and A , and then obtains the
clear image J() .

The histogram characteristics can directly reflect the degree to which a remote sens-
ing image is affected by haze. Moreover, histogram characteristics are universal, existing
in both color and panchromatic images. Aiming at the problem that most of the existing
prior-based dehazing methods are not applicable to panchromatic images without color
information, we innovatively propose a dehazing algorithm based on histogram features
(HFs) for panchromatic remote sensing images. The HF algorithm runs efficiently and can
be executed without relying on high-performance hardware platforms such as GPUs. The
innovative contributions can be summarized as follows.

(1) Without relying on the color information of the image, dehazing is achieved by ex-
tracting histogram features of the panchromatic remote sensing image. According to
the histogram features, the hazy image is divided into plain image patches and mixed
image patches, and the dehazing is carried out, respectively.

(2) The relation equation between the AODAG feature of the plain image patch and the
transmission, and the relation equation between the ADGG feature of the mixed im-
age patch and the transmission are established, respectively. Eight-neighborhood
mean filtering and Gaussian filtering are applied to smooth the original transmission
map.

(38) According to the characteristics of atmospheric light distribution in remote sensing
images, the threshold segmentation method is applied to calculate the atmospheric
light of each image patch based on the maximum gray level of the patch separately,
which makes the intensity of the dehazed images more uniform.

The article is organized as follows. Section 2 describes the key details of the proposed
HF algorithm. The results of panchromatic remote sensing image dehazing experiments
are given in Section 3. The proposed algorithm is discussed in Section 4. Finally, a conclu-
sion is presented in Section 5.

2. Materials and Methods

The proposed HF algorithm is presented at a detailed level, and the schematic dia-
gram is depicted in Figure 2. First, the hazy image is divided into plain image patches and
mixed image patches according to the histogram features. Then, the AODAG features of
plain patches and the ADGG features of mixed patches are computed, respectively, and
the initial transmission map is calculated according to the statistical relational equation.
Then, the eight-neighborhood mean filtering and the Gaussian filtering are carried out to
obtain the final transmission map. Then, the threshold segmentation method is applied to
calculate the atmospheric light of each patch based on the maximum gray level of the
image patch, and Gaussian filtering is applied to obtain the final atmospheric light map.
Finally, the dehazed image is obtained based on the atmosphere scattering model.
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Figure 2. Schematic of the proposed dehazing method based on histogram features.

2.1. Histogram Features

We utilize histogram features to divide the hazy image into plain patches and mixed
patches and compute the transmission map. The detailed calculation steps are shown be-
low.

2.1.1. Patch Classification
Inspired by [48], we divide the hazy image into image patches of size V, XN, . The

number of pixels contained in an image patch is Ny =N, *N,  and N, is defined as 15. In

this paper, the transmission is considered to be constant within a certain image patch.
Based on the characteristics of the histogram, the image patches are divided into plain
image patches and mixed image patches. The image patches with a relatively concentrated
gray-level distribution are defined as plain image patches, and the image patches with a
relatively dispersed gray-level distribution are defined as mixed image patches, as shown
in Figure 3. We divide plain image patches and mixed image patches according to the

following rules. Assume that /,, is the gray level with the highest number of occurrences
in each image patch. The gray-level neighborhood €3, is determined with /,, as the cen-
terand R, as the radius, and the value of R, is set to 3. The sum of occurrences of all
gray levels in neighborhood ), is calculated with the following equation:

N,=>n, )

1,eQ,,

where 7 represents the number of occurrences of gray level 1. When N, /N is larger
than the threshold value 7, , the image patch is defined as the plain image patch. Other-

wise, the image patch is defined as the mixed image patch. The value of ,, s set to 0.65.

The classification formula of patches is defined as follows:

P, &>T;
P N m

P : ®)
P, else

where P, represents the plain image patch, and P, represents the mixed image patch.
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(b)

Figure 3. Diagram of the classification of patches. (a) Plain patches. (b) Mixed patches.

2.1.2. Plain Patch Feature

In the plain image patch of the hazy image, the distribution of gray levels is relatively
concentrated, and the histogram of the plain image patch is shown in Figure 4. It can be
seen that on the left and right sides of the gray level with the highest number of occur-
rences, the number of occurrences of the gray level approximates the characteristic of de-
creasing sequentially. We obtain the prior for plain image patches as follows. The lower
the transmission of the plain image patch, the larger the average occurrence differences
between adjacent gray levels, i.e., the steeper the gray levels appear in the histogram.

nP
m

I LI Ir g

Ton-n) Ty 1y

Figure 4. Histogram of the plain image patch.

The AODAG feature of the plain image patch is calculated as follows. Assume that
I is the gray level with the highest number of occurrences in the plain patch, and the
number of occurrences of /,, is 71, . The gray levels on the right side of /, are sequentially
denoted as I, , 1! ,..., o », and their corresponding numbers of occurrences are de-
noted asn, , n;, ,...,n, , n respectively. The numbers of occurrences of all the gray lev-

els on the right side of 1, are zero. The average occurrence differences between adjacent

gray levels on the right side of /,, can be expressed as follows:

) =) )+ =0

n+1

(4)

r

We eliminate the middle terms of the numerator and the simplified formula can be
expressed with the following equation:
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n[’
d,=-"n 5)

Considering the stability of the proposed algorithm, we replace 7, with the mean of

the top three gray-level occurrences. 4, can be denoted as follows:
g ©)

where n, , 1, ,m, are the top three gray-level occurrences, respectively. Assume that the
gray levels on the left side of /,, are sequentially denoted as £/ , I/ ,~, 1,1 , and their
corresponding numbers of occurrences are denoted as nl , nf - n ., n, respectively.
The numbers of occurrences of all the gray levels on the left side of / are zero. Similarly,
the average occurrence differences between adjacent gray levels on the left side of /,, can

be expressed as follows:

nl’
d =—2="— 7
Y om+l @

We replace 71, with the mean of the top three gray-level occurrences. ¢, can be de-
noted as follows:

2 (®)
C3(m+1)

!

The general AODAG feature can be obtained by calculating the arithmetic mean of

d, and 4, , as expressed by the following formula:

d +d
d, = Tl . )
2.1.3. Mixed Patch Feature

Due to haze interference, gray levels will be clustered together to form one or two
peaks in the histogram of the mixed image patch, as shown in Figure 5. From the histo-
gram, it can be seen that the number of occurrences of the gray levels on the left and right
sides of the peak approximates the characteristic of decreasing sequentially. The main-

peak gray level /,, is defined as the gray level with the highest number of occurrences in
the histogram. If a secondary-peak gray level ;" exists, it must satisfy the following con-

ditions: (1) It is generated among the top I, gray levels by occurrence frequency, while

being the highest-ranked gray level that satisfies both condition (2) and condition (3). The
valueof T, issetto6. (2) The number of its occurrences is greater than the threshold value
T,,, which is set to 15 in this paper. (3) The distance between it and the main-peak gray

level is greater than the threshold value T, , which is set to 18.
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Figure 5. Histogram of the mixed image patch.

We define the gray level range in the histogram of the mixed image patch as
§= [1 % m} The number of occurrences of all the gray levels on the left side of 1, is zero
and the number of occurrences of all the gray levels on the right side of /," is zero. If only
the main-peak gray level exists in the histogram of the mixed image patch, define the main
gray-level domain as S . If both the main-peak gray level and the secondary-peak gray
level exist in the histogram of the mixed image patch, they may overlap. The main gray-
level domain and the secondary gray-level domain are defined according to the following

steps. First, the smaller and larger values between the main-peak gray level and the sec-
ondary-peak gray level can be calculated with the following equation:

17 =min(I”,1")

(10)
1" =max(I",1") ’
where I, represents the smaller value, /., represents the larger value. Then, the distance

L from I}" to 1, and the distance L, from Iy, to 1, can be computed as follows:

=1 -1 11)

min

Ly=1" 1. (12)

Since the left and right sides of the peak gray level present an approximate symmet-
rical shape, the range of the gray-level domain S where /;, resides is determined to be

(17,1 +2L | and the range of the gray-level domain S, where [, resides is determined
to be [ 1] =215, 1" | . If the main-peak gray level Z,, resides in the domain S, then S is the

main gray-level domain and $, is the secondary gray-level domain. Otherwise, S is the

secondary gray-level domain and S, is the main gray-level domain. We obtain the prior
for mixed image patches as follows. The lower the transmission of the mixed image patch,
the smaller the average distance to the gray-level gravity center in the gray-level domain.
The feature of ADGG is calculated as follows.

The gravity center of the gray levels in the range of [/,,/,] of the histogram is calcu-
lated with the following equation:
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b b
L=F(.1)=2nl /3 n, (13)

i=a

where 7; represents the number of occurrences of the gray level /;, and not all #; are zero.
The average distance to the gray-level gravity center for gray levels with a non-zero num-

ber of occurrences in the range of [/,.1,11s calculated as follows:
b
d,=D(1,.1,.1) =Y |1, = L]/ N, (14)
k=a

where /; represents the gray level with non-zero occurrences in the range of [/,./,], N,.
represents the number of gray levels with non-zero occurrences. When only the main-
peak gray level exists in the histogram of the mixed image patch, the ADGG feature is

calculated using Equation (13) and Equation (14), where £,=;" and /,=I;" . When both the
main-peak gray level and the secondary-peak gray level exist in the histogram of the

mixed image patch, the ADGG feature in the gray-level domain S, is calculated as follows:
L, =F("I" +2L), (15)
de1 =D, 1" +2L’1”,Ig1) , (16)

where 1, is the gravity center of the gray levels in the gray-level domain S;. The ADGG

feature in the gray-level domain S, is calculated as follows:

I, = FU7 21307, 47
dez = D(I'm _ZL’;’I:n’[gz) 4 (18)

where 1, is the gravity center of the gray levels in the gray-level domain S, . The general

ADGG feature is computed with the following equation:

deg :a)lde1 +a)2d€2 , (19)

where @ and @, represent the weight coefficients, and we consider that the gray levels
within S, and S, are aggregated to the peak gray level to the same extent in this paper. Set

both the values of @ and @, to 0.5.

2.2. Statistical Relation Equation
2.2.1. Hazy Image Synthesis

In order to obtain the relation equation between the histogram feature and the trans-
mission of the hazy image patch, inspired by the method of synthesizing a hazy image in
[59,60], we artificially synthesize the hazy panchromatic images using Equation (1). The
atmospheric light 4 is randomly selected in the range of [0.7.1] and the transmission / is
randomly selected in the range of [0.1,0.7] . Clear panchromatic images have two sources:
one is panchromatic remote sensing images captured by the Jilin-1 satellite, and the other
is panchromatic remote sensing images synthesized from color images. Color remote
sensing images are selected from the clear reference images in the RICE-1 dataset [61] and
the RSHaze dataset [62], and the clear panchromatic images are synthesized based on the
quantum efficiency response curve of the panchromatic sensors. The quantum efficiency
response curve of a certain panchromatic sensor is shown in Figure 6, and the color image
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is synthesized into a panchromatic image according to the proportionality of the quantum
efficiency values at the center wavelengths of the R channel, the G channel, and the B
channel. The intensity of the panchromatic image is calculated as follows:

1p(6, ) = @ - 1 (& )+ @ - 1 (6 ) + @5 - 15 (G, ), (20)

where (i, /) is the pixel coordinate in the image, Iz , /;, and /; represent the intensity of
the R channel, the G channel, and the B channel, respectively, and @ , ®; , and @, repre-
sent the weighting coefficients of the intensity of the R channel, the G channel, and the B
channel, respectively.

70
60 v
50

40 /
30 /

20

QEx FF(%)

10

0
350 450 550 650 750 850 950

Wavelength(nm)
Figure 6. Diagram of the quantum efficiency response curve.

The synthesized hazy panchromatic image datasets are of three kinds according to
their sources, which are denoted as JilinP-1, RICEP-1, and RSPHaze. The three datasets
cover different types of scenarios, including mountains, deserts, wetlands, and cities. Each
kind of image dataset contains 100 images with a resolution size of 512x512. The relation
equation between the AODAG feature and the transmission for the plain image patch,
and the relation equation between the ADGG feature and the transmission for the mixed
image patch are established, respectively.

2.2.2. AODAG Relation Equation

Images of the same scene from JilinP-1, RICEP-1, and RSPHaze datasets are selected
for AODAG feature statistics, and the relationship between AODAG features and trans-
mission of 600 plain image patches in each dataset is shown in Figure 7.
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Figure 7. Plot of AODAG features versus transmission for plain image patches. (First row) Ji linP-
1 dataset. (Second row) RICEP-1 dataset. (Third row) RSPHaze dataset. (a) Clear images. (b) Syn-
thesized hazy images. (c) Relationship diagrams. The X-axis represents the transmission and the
Y-axis represents AODAG features.

It can be seen that for images of the same scene in the same dataset, the relationship
between AODAG features and the transmission for plain image patches approximately
satisfies the hyperbolic relation equation, which is defined as follows:

yp=t/kp+kp/t, (21)

where  denotes the transmission, ¥, denotes the AODAG feature, and &, denotes the pa-

rameter to be determined. For images of different scenes in different datasets, the shape
of the hyperbola is slightly different due to different sensors and different textures of the
scenes. There is only one pending parameter in Equation (21), and the smaller the value

of k, , the closer the vertex of the hyperbola is to the coordinate origin. Conversely, the

larger the value of £, , the further the vertex of the hyperbola is to the coordinate origin.

2.2.3. ADGG Relation Equation

Images of the same scene from JilinP-1, RICEP-1, and RSPHaze datasets are selected
for ADGG feature statistics, and the relationship between ADGG features and the trans-
mission of 900 mixed image patches in each dataset is shown in Figure 8.
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(@)

Figure 8. Plot of ADGG features versus transmission for mixed image patches. (First row) JilinP-1
dataset. (Second row) RICEP-1 dataset. (Third row) RSPHaze dataset. (a) Clear images. (b) Synthe-
sized hazy images. (c) Relationship diagrams. The X-axis represents the transmission and the Y-

axis represents ADGG features.

It can be seen that for images of the same scene in the same dataset, the relationship
between ADGG features and transmission for mixed image patches approximately satis-
fies the linear relation equation. The straight line passes through the coordinate origin,
and the linear relation equation is defined as follows:

Y=kt (22)

where ¢ denotes the transmission, »,, denotes the ADGG feature, and k,, denotes the slope
of the straight line. k&, is the only parameter to be determined, and the values of &, are
slightly different for images of different scenes in different datasets. It can be seen from
relationship diagrams that the points are denser in the low value interval of transmission,
and the points are gradually dispersed with the increase in transmission. This phenome-
non indicates that the linear equation demonstrates good consistency in the low transmis-
sion interval.

2.2.4. Relation Equation Fitting

The least squares method [63] is employed to fit the relation equation between the
histogram features of image patches and transmission. For AODAG features, the sum of
squared errors (SSE) is expressed as follows:

N
SSE, =Y (y,—(x,/k,+k,/x))" (23)
i1

where N represents the number of samples, (¥, ) represents the observed data point, &,

represents the coefficient to be solved. For ADGG features, the SSE is expressed as follows:

N
SSE, =Y (y,—k,-x)’ ) (24)
i=1
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where N represents the number of samples, (x;, ;) represents the observed data point, &,
represents the coefficient to be solved. The values of k,, and k,, are calculated through sta-
tistical analysis of a large number of image samples. For images of different scenes in dif-

ferent datasets, the values of kp and k,, vary only within a narrow range. The variation

range of &, is[0.4,1.1] , and the variation range of k,, is[16,23] .

2.3. Atmospheric Light Calculation

In most of the dehazing methods, the whole image corresponds to the same atmos-
pheric light [4,8,9,11]. However, due to the large coverage area of the remote sensing im-
age and the long propagation path of the light reflected from the scene, the atmospheric
light of different regions in the remote sensing image may be different [13]. Due to the
maximum gray level in each image patch that has been obtained in the process of histo-
gram feature calculation, we calculate the atmospheric light of each image patch sepa-
rately. The segmentation threshold is defined as follows:

D I(x,y)

_ (x)eX
T, ==
wx h ’

(25

where /(x, y) represents the intensity of the image at the position (x,»), wand % represent
the width and height of the image, respectively. If the maximum gray level in the image
patch is smaller than the threshold 7,, the atmospheric light corresponding to the image
patch is set to 7, . Otherwise, the atmospheric light corresponding to the image patch is
set to the maximum gray level in the image patch. The atmospheric light can be expressed

T, 1,()<T,
4,() = (26)

1.(i), else,

as follows:

where 4, (i) represents the atmospheric light corresponding to the image patch with index
i, and /(i) represents the maximum gray level in the image patch with index 7. The at-
mospheric light 4,(i) of all image patches together forms the atmospheric light map A, of
the whole image.

After obtaining the atmospheric light map A, of the entire image, the atmospheric
light map is smoothed by Gaussian filtering, and the filtered atmospheric light map is
computed as follows:

A, (x,)=G, (A, (%)), (27)

where (%, ) represents the position of the pixel in the image, G,, represents the Gaussian

filtering function with standard deviation 7, , and the value of 7, is set to 12.5. The Gauss-

ian filter is defined with the following equation:

2,.2
XT+y

G, (6))=—e 28)
270

a

The atmospheric light map of the hazy image is shown in Figure 9.
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@) (b) (©)
Figure 9. Atmospheric light map. (a) Hazy image. (b) Initial atmospheric light map. (c) Filtered

atmospheric light map.

2.4. Transmission Calculation

The initial transmission map is calculated based on the relation equation between the
histogram feature and transmission, and the final transmission map is obtained after fil-
tering. The detailed process is described below.

2.4.1. Initial Transmission Map

From Equation (21), the transmission corresponding to the plain image patch in the
interval range (0,1) is expressed as follows:

t:kp(yp— z(yp —4)). 29)

From Equation (22), the transmission corresponding to the mixed image patch is ex-
pressed as follows:

t=y,/k,. (30)

From Equation (1), the dehazing result of the image patch with index i isexpressed
as follows:

CL®-A,®(
AT

7,0 AL (), &)

where x represents the position of the pixel in the image, I, represents the hazy image

patch with index i, A,(¥) denotes the atmospheric light, and t, represents the transmis-
sion corresponding to the image patch with index .

From Equation (29), it can be seen that the smaller the value of &, is, the smaller the
transmission / of the image patch is, and the greater the contrast of the dehazed image
patch is. However, as the value of kp decreases, intensity inversion may occur. That is, the
intensity of the pixel changes from bright to dark, or from dark to bright. We take values
of k,in descending order from 1.1 to 0.4 with a step size of 0.1, and select 40 plain image
patches from the hazy image and perform dehazing according to Equation (29) and Equa-
tion (31). These 40 plain image patches include 20 brighter image patches and 20 darker
image patches. In brighter image patches, the gray level /,, with the highest number of

occurrences is greater than the threshold 7, , and the value of 7, is set to 150. In darker
image patches, the gray level £, with the highest number of occurrences is smaller than

the threshold 7, , and the value of 7} is set to 80. We calculate the standard deviation 7,
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of the pixel intensity value within the image patch. As #, decreases, a sequence of 7, (

i+l

oy ~ 0';‘ >T,,, occurs within an image patch, it indicates

i=1,2,3,--,8) is obtained. When
intensity inversion, and the current corresponding value of &, is recorded. The final value

of k, is expressed as follows:
k,=k,+0.2 (32)

The standard deviation ), of pixel intensity values is calculated as follows:

(33)

where /; represents the intensity value of the pixel with index ¢ within the image patch

, I represents the mean of pixel intensity values within the image patch, N, represents
the number of pixels in the image patch. We take values of ,, in increasing order from 16
to 23 with a step size of 0.5, and select 40 mixed image patches from the hazy image and
perform dehazing according to Equation (30) and Equation (31). These 40 mixed image
patches also include 20 brighter image patches and 20 darker image patches. We calculate
the standard deviation O, of the pixel intensity value within the image patch. As %, in-

i+l

o, ~ U}‘ > T, occurs within an

creases, a sequence of &, (i=1,2,3,---15) is obtained. When

image patch, it indicates intensity inversion, and the current corresponding value of &}, is
gep y p g

recorded. The final value of %,, is denoted as follows:

k, =k, —1. (34)

m

The initial transmission map is calculated by substituting X, and &,, into Equation (29)

and Equation (30), respectively.

2.4.2. Transmission Map Smoothing

In reality, transmission exhibits smoothness in the spatial domain, i.e., the transmis-
sion of any patch is close to the transmission of at least one of its eight-neighborhood
patches. If the difference between the transmission of a patch and the transmission of one
of its eight-neighborhood patches is less than the threshold 7, the transmission of the
patch remains unchanged. Otherwise, the transmission of the patch is set to the average
of the transmission of its eight-neighborhood patches. The eight-neighborhood mean fil-
tering of the initial transmission map is defined with the following equation:

t(l,]), lfvzl(kvl)ENe(ln‘])a t(laj)_t(kal)|<7;a
- Z t(k,l), otherwise, ’
(k)eN, (i)

where (i, /) denotes the transmission of the image patch located at the / -th row and i -th

column, N, (7, /) denotes the eight-neighborhood of the image patch at position (i, /) . Since
the transmission changes slowly in any local neighborhood, Gaussian filtering is used to
filter the transmission map after the eight-neighborhood mean filtering, which is ex-
pressed as follows:

t,(x,y) =G, (t,(x,)), (36)
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where (%, ) represents the position of the pixel in the image, Z, (X: ¥) denotes the transmis-
sion map after Gaussian filtering, % (%, ») denotes the transmission map after eight-neigh-

borhood mean filtering. 0, is the standard deviation, and the value of 7, is set to 14. The

transmission map is shown in Figure 10.

@ (b) © ()

Figure 10. Transmission map. (a) Hazy image. (b) Initial transmission map. (c) Transmission map

after eight-neighborhood mean filtering. (d) Transmission map after Gaussian filtering.

2.5. Image Restoration

Transmission is constrained to the range of [0.1,0.9], and the corrected transmission

is expressed as follows:
t,,(x, ) =min(0.9, max(0.1,7,(x, y))) . (37)
From Equation (1), the entire dehazed image is calculated as follows:

(x)-A, ()

I
J(x)= A, (%) (38)

£, (x) ¢

3. Results

To evaluate the effectiveness of the proposed dehazing algorithm, experiments were
conducted on the RICE-1 dataset, the RSHaze dataset, and the Jilin-1 dataset. The RICE-1
dataset is one of the most commonly used remote sensing dehazing datasets, containing
scenes such as mountains, forests, and cities. The RSHaze dataset is a dataset specifically
constructed for remote sensing image dehazing tasks, containing images with different
haze densities such as light haze, moderate haze, and dense haze. Both the RICE-1 and
RSHaze datasets provide hazy remote sensing images and their corresponding clear ref-
erence images. The RICE-1 dataset contains 500 image pairs, while the RSHaze dataset
consists of 54,000 image pairs, all with a resolution of 512x512 pixels. The hazy panchro-
matic Jilin-1 satellite images were cropped into 110 images with a resolution of 512x512
pixels, forming the Jilin-1 dataset. The Jilin-1 dataset does not have corresponding clear
reference images. The test images in the RICE-1 and RSHaze datasets are color images,
while the test images in the Jilin-1 dataset are monochrome images. Equation (20) is used
to convert the color test images in the RICE-1 and RSHaze datasets into monochrome im-
ages. The dehazing performance of the proposed algorithm is compared with algorithms
designed for monochrome image dehazing, including DehazeNet [14], AMGAN-CR [20],
and MS-GAN [21], and the work of Jang et al. [55], Khan et al. [56], Singh et al. [49], and
Ding et al. [34]. The dehazing algorithms were run on hardware environments with an
Intel Core i7-1165G7 CPU or an NVIDIA GeForce RTX 3080Ti GPU.

3.1. Qualitative Evaluation
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dehazed images exhibi

The proposed dehazing algorithm was tested on the RICE-1 dataset, the RSHaze da-
taset, and the Jilin-1 dataset. The test images included thin haze images, dense haze im-
ages, and uneven haze images. The dehazing results are shown in Figures 11-13.

Figure 11 demonstrates the qualitative results on the RICE-1 dataset. Jang et al. [55]
achieve high contrast in the dehazed images, but local image regions exhibit oversatura-
tion, as shown in the left-middle portion of Figure 11 (c1). Additionally, the dehazing ef-
fect is incomplete for uneven haze images, as illustrated in the left-upper portion of Figure
11 (c2). The algorithms proposed by Khan et al. [56] and Singh et al. [49] perform poorly
on images with uneven haze, as shown in the left-upper part of Figure 11 (d2) and 11 (e2).
DehazeNet [14], AMGAN-CR [20], and MS-GAN [21] produce overall low-contrast
dehazed images, failing to completely remove the haze. Ding et al. [34] fail to completely
remove haze from dense hazy images, as shown in Figure 11 (g5). The proposed algorithm
achieves good dehazing results for thin haze, dense haze, and uneven haze images, with
the dehazed images being closer to the clear reference images.

Figure 12 shows the visual comparison on the RSHaze dataset. The algorithms of
Jang et al. [55], Khan et al. [56], and the AMGAN-CR algorithm [20] achieve unsatisfactory
dehazing results for dense haze images, as shown in the middle part of Figure 12 (c2), 12
(d2), and 12 (h2). The work of Singh et al. [49] and the MS-GAN algorithm [21] achieve
poor dehazing results for uneven haze images, as shown in the left part of Figure 12 (e4)
and 12 (i4). DehazeNet [14] and the work of Ding et al. [34] also produce unsatisfactory
results for dense haze images, as shown in Figure 12 (f5) and 12 (g5). The proposed algo-
rithm achieves pleasing dehazing results for various types of hazy images, with the
ing uniform brightness andhh contrast.

(a2) ©) (@) @ (2)

(2) (82) (h2) (i2) (2)
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(£5) i (75)
Figure 11. Dehazing results on the RICE-1 dataset. (al-a5) Hazy images. (b1-b5) Clear reference
images. (c1-c5) The work of Jang et al. [55]. (d1-d5) The work of Khan et al. [56]. (e1-e5) The work
of Singh et al. [49]. (f1-f5) DehazeNet [14]. (g1-g5) The work of Ding et al. [34]. (h1-h5) AMGAN-
CR [20]. (i1-i5) MS-GAN [21]. (j1-j5) The proposed algorithm.
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(4) (84) (h4) (14) | (G4)

(t5) (45)

Figure 12. Dehazing results on the RSHaze dataset. (al-a5) Hazy images. (b1-b5) Clear reference
images. (c1-c5) The work of Jang et al. [55]. (d1-d5) the work of Khan et al. [56]. (e1-e5) The work
of Singh et al. [49]. (f1-f5) DehazeNet [14]. (g1-g5) The work of Ding et al. [34]. (h1-h5) AMGAN-
CR [20]. (i1-i5) MS-GAN [21]. (j1-j5) The proposed algorithm.

Figure 13 shows the qualitative results on the real panchromatic Jilin-1 dataset. An
oversaturation artifact is observed in the dehazing result of Jang et al. [55], as shown in
the left-upper portion of Figure 13 (b5). The work of Khan et al. [56], Singh et al. [49], and
the AMGAN-CR algorithm [20] achieve poor dehazing results for images with uneven
haze, as demonstrated in the right-lower portions of Figures 13 (c3), 13 (d3) and 13 (g3).
DehazeNet [14], the work of Ding et al. [34], and MS-GAN [21] produce low contrast
dehazed images, as shown in Figures 13 (e4), 13 (f4), and 13 (h4). The proposed dehazing
algorithm effectively calculates the transmission of each local region in the hazy image,
achieving satisfactory dehazing results.

(al) (b1) (c1) (d1) (el)

(1) (1) (h1) (i1)



