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Highlights

What are the main findings?

e  Developed a Machine Learning approach using drone-based LiDAR point clouds to
classify rooftop solar panels from building surfaces.

e  Achieved very high classification accuracy, with F1 scores of 99% for commercial-scale
panels and 95-96% for residential-scale panels.

What is the implication of the main finding?

e LiDAR geometry and reflectance features enable reliable rooftop solar detection,
overcoming limitations of imagery-based methods that are often obstructed by trees,
shadows, and roof orientation.

e  Provides a scalable approach for applying ML-based classification to unlabelled urban
datasets, supporting solar energy mapping and planning.

Abstract

As drone-based Light Detection and Ranging (LiDAR) becomes more accessible, it presents
new opportunities for automated, geometry-driven classification. This study investigates
the use of LIDAR point cloud data and Machine Learning (ML) to classify rooftop solar
panels from building surfaces. While rooftop solar detection has been explored using
satellite and aerial imagery, LIDAR offers geometric and reflectance-based attributes for
classification. Two datasets were used: the University of Southern Queensland (UniSQ)
campus, with commercial-sized panels, both elevated and flat, and a suburban area in
Newcastle, Australia, with residential-sized panels sitting flush with the roof surface.
UniSQ was classified using RANSAC (Random Sample Consensus), while Newcastle’s
dataset was processed based on reflectance values. Geometric features were selected based
on histogram overlap and Kullback-Leibler (KL) divergence, and models were trained
using a Multilayer Perceptron (MLP) classifier implemented in both PyTorch and Scikit-
learn libraries. Classification achieved F1 scores of 99% for UniSQ and 95-96% for the
Newcastle dataset. These findings support the potential for ML-based classification to be
applied to unlabelled datasets for rooftop solar analysis. Future work could expand the
model to detect additional rooftop features and estimate panel counts across urban areas.

Keywords: LiDAR; rooftop solar panels; machine learning; deep learning; reflectance;
feature selection; PyTorch; scikit-learn
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1. Introduction

Light Detection and Ranging (LiDAR)-equipped airborne platforms, such as drones or
manned aircraft, are now widely used in surveying, environmental modelling and urban
planning. Despite the restrictions of using Unmanned Aerial Vehicles (UAV) in urban
areas [1], UAV based LiDAR can capture points at high density, hundreds of points per
square metre, while maintaining exceptional positional accuracy (5-10 cm) [2]. These
accuracies depend on factors such as flight altitude, scan angle, GNSS-IMU calibration
and platform stability, which may vary across UAV systems. Despite these limitations,
these capabilities allow 3D mapping of urban environments, including building rooftops.
However, processing these large datasets is a challenging task, due to their size, number of
points, and the need for specialised software [3]. Manual classification is time-consuming,
prone to subjectivity, and difficult to scale [4]. With the increased use of drones in various
applications, there is a growing demand for automated classification of aerial-based LiDAR
data. One critical area of interest is the detection of solar panels in urban areas. For meeting
renewable energy goals, understanding the distribution of solar installations is essential.

Previous studies have explored the potential for solar panels, considering factors such
as the roof surface area, solar incidence and panel efficiency [5,6], rather than directly
detecting panels themselves. Jiang et al. [7] explored the use of Deep Learning (DL) for
solar panel segmentation across varying spatial resolutions, using satellite, aerial and UAV
imagery, at 0.8 m, 0.3 m, and 0.1 m, respectively. They found that the spatial resolution
matters, with higher resolution imagery boosting segmentation. Clark and Pacifici [8]
developed a high-resolution dataset consisting of solar panels derived from satellite im-
agery manually annotated using QGIS. Their dataset was used to support the training of
object detection models such as YOLO (You Only Look Once), which can automatically
detect and localise solar panels from overhead imagery, using bounding boxes and class
labels. While their work showed strong detection performance in 2D imagery, it did not
utilise elevation data or 3D geometric features that may enhance classification in urban
areas. Duran et al. [9] classified both photogrammetric and LiDAR point clouds using
nine ML algorithms. Their focus was on building, ground, and high and low vegetation.
Their MLP model showed the best accuracy at 96%, with Random Forest (RF) being a close
second at 91%. While their study utilised geometric features, such as eigenvalues, planarity
and roughness, there was a lack of analysis for choosing the best features that may have
leveraged more use from their dataset.

Conversely, Amakhchan et al. [10] and Tarsha Kurdi et al. [2] performed a histogram
analysis of geometric features, highlighting that careful feature selection, informed by
the distribution of these features, can enhance classification accuracy in LiDAR datasets.
Perhaps the closest study related to this one is by Kushwaha et al. [11], who aimed to
extract rooftop solar panels from a photogrammetric point cloud. Their method involved
computing the normal vector of each point to classify roof, facade, and panel surfaces based
on the Z-component. While their approach demonstrates separation of panels from roof
structures, it relied on rule-based classification rather than machine learning. Furthermore,
it did not incorporate geometric feature analysis or any model evaluation, such as accuracy
or F1 score. Based on the literature review, there remains a clear gap in the classification of
installed rooftop solar panels from LiDAR-derived point clouds. This study addresses that
gap by focusing on the following objectives.

1. Evaluate the effectiveness of geometric and spectral features for differentiating rooftop
solar panels from rooftop surfaces using LiDAR data.

2. Compare the performance of two MLP-based deep learning models, developed using
PyTorch and Scikit-learn, for supervised classification of roof and solar panels.
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3. Assess classification performance across two urban datasets (UniSQ and Newcastle),
with UniSQ having commercial structures and Newcastle being primarily residential,
using evaluation measures such as F1-score and overall accuracy.

The following sections outline the methodology used to achieve these objectives. This
includes the classification process and dataset preparation, the selection of geometric and
spectral features, an overview of how the MLP models were developed and refined, and a
discussion on how model performance was evaluated.

2. Materials and Methods

This section describes the datasets, feature extraction, and classification methods used
in this study. It is structured as follows: Sections 2.1 and 2.2 introduce the datasets and
feature engineering, Section 2.3 outlines the input features including RGB, and Section 2.4
details the classification workflow.

2.1. Datasets
2.1.1. UniSQ Dataset

The first dataset was collected over a large commercial rooftop at the University of
Southern Queensland using a RIEGL miniVUX-3UAV LiDAR sensor and a Sony Alpha
series RGB camera mounted on a UAV. Flights were conducted at 80 m AGL, 8 m/s forward
speed, with a 120° scan angle and a pulse repetition rate equivalent to 54 scan lines per
second. Data were processed in RiIPROCESS, which implemented extrabytes to store
reflectance attributes.

The dataset contained 227,410 total points. Two buildings were analysed: A block
with elevated panels (Figure 1) and D block with flat panels (Figure 2). RANSAC [12] plane
segmentation effectively separated panels from roofs on A block, but D block required
parameter adjustments due to minimal height differences. Outliers such as ducts and

HVAC units were removed manually.

Raw Point Cloud Segmentation

RANSAC — Planes Extracted Classification

Figure 1. Elevated panel classification process for A block in the UniSQ dataset, RANSAC has
effectively separated panels from the roof (green), which allows for classification of roof (blue) and
panels (red).
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Segmented Point Cloud Segmentation, RANSAC & noise removed from roof plane

Leftover panel points classified Roof and panels classified

Figure 2. Flat panel (red) and roof (green) classification process for D block in the UniSQ dataset.

2.1.2. Newcastle Dataset

The second dataset was collected over a suburban residential area in Newcastle,
Australia, using the same UAV-mounted RIEGL miniVUX-3UAV LiDAR sensor paired
with a Sony Alpha series RGB camera. The dataset was processed with RiPROCESS,
which implements extrabytes to store additional attributes such as reflectance. The RGB
imagery was fused with the LiIDAR point cloud, producing a colourised dataset with both
geometric and spectral information. The raw point cloud was loaded into CloudCompare.
Thirteen roof segments, including panels, were extracted from the dataset, for a total of
103,087 points (Figure 3). While RANSAC plane segmentation could be used to separate
roof planes from panels, it required manual parameter tuning for each roof segment due to
variations in slope, orientation, and roof structure. This limitation significantly increased
preprocessing time and highlighted scalability issues for large-scale projects.

Instead, the reflectance attribute provided by the LiDAR was used as the primary
discriminator. Reflectance is derived from amplitude but corrects for range dependency,
making it more suitable for distinguishing surface materials across multiple scan positions.
The amplitude formula is a ratio, given in the units of decibels (dB) [13].

P,
Adb = 10'10g( ;Cho) (1)
DL

where Ay, is the amplitude in decibels, P, is the optical input power and Pp; is the
minimal detectable input power.

Because calibrated amplitude suffers from range dependence, it is not ideal for material
classification. Reflectance instead expresses the fraction of incident optical power reflected
by a surface at a given wavelength. Relative reflectance can be computed by comparing the
amplitude of a target surface to that of a calibrated reference surface at the same range [13].
The formula for relative reflectance is:

Pret = Adp — Ad.ref(R) (2)

where p,,; is the relative reflectance in decibels, Ay, is the calibrated amplitude and
Aap.ref(R) is the amplitude of the reference target at range R.
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Segmentation and reflectance attribute

Figure 3. Segmented roofs (red) and panels (blue) from the Newcastle dataset using the reflectance
scalar field for classification.

Reflectance values indicate how much of the laser pulse is returned to the sensor,
providing a basis for material differentiation. More negative values correspond to surfaces
that absorb more energy, while less negative values indicate stronger reflections. In the
Newcastle dataset, solar panels consistently exhibited lower reflectance (—19.8 dB to
—10 dB) than surrounding roofs (—10 dB to —2.2 dB) (Figure 4), reflecting their light-
absorbing coatings.

Classification was performed in CloudCompare using the scalar field and filter-by-
value tool, with colour mapping applied: blue for panels, red for roofs, and white for
mid-range values. The latter corresponded to structural supports, which were included
as roof to maintain a clear binary separation. Unlike in the UniSQ dataset, where such
supports were discarded for A block, they were retained here due to their reflectance
similarity with roof materials.

Because reflectance is expressed in decibels, even small numerical differences represent
substantial changes in signal strength. Roofs, typically made of tile or metal, returned
stronger signals, while solar panels absorbed more energy. Although RIEGL [13] notes that
positive reflectance values are associated with retro-reflective surfaces such as traffic signs
or windows, the solar panels in this dataset showed negative reflectance values due to their
anti-reflective coatings.
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-22 —10.0 —19.8

Reflectance attribute (dB)

Filtered by reflectance values

Classification

Figure 4. Reflectance-based classification using CloudCompare. Reflectance scale shown in dB.
Lower values (—19.8 dB to —10 dB) correspond to solar panel surfaces, while higher values (—10 dB
to —2.2 dB) align with rooftop returns.

2.2. Geometric Feature Selection

Geometric features are used to assess the relationship between each point in the
point cloud and its surrounding neighbours [2]. Once spatial 3D information about the
environment has been collected in the form of point clouds, the next step involves defining
the local 3D neighbourhood of each point, p = (x,y,z). This is achieved by applying a
spherical neighbourhood, where all points within a sphere of fixed radius, r, around p are
considered part of its local neighbourhood N [14].

The covariance-based features used in this study are derived from the eigenvalues,
A1 > A2 > Az € Rand the corresponding eigenvectors ej, 3, €3, € R3 of the neighbourhood

covariance matrix: 1

cov(N) =7 X (n=P)p-P)" ©
peN

Each point, p represents a 3D location in the neighbourhood, N, which may be defined
by a spherical radius. The covariance matrix describes how these points are distributed
around their centroid point, p [15,16].

The geometric features calculated in this study using CloudCompare are derived from
the methodology of Hackel et al. [15]. From the eigenvalues calculated in the spherical
neighbourhood, several geometric features are derived. This follows the work of Tarsha
Kurdi et al. [2], where multiple datasets were tested across various geometric features. These
include, the sum of eigenvalues, omnivariance, eigenentropy, anisotropy, planarity, linearity,
PCA1, PCA2, surface variation, sphericity, and verticality. The addition of roughness is
included in our study to see if panels differentiate from roof surfaces.

The geometric features are defined below:

Sum of eigenvalues:

Z)\Z‘Z/\l-f-}\z-l-)\g (4)
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Omnivariance:

O = VA1-AxA3 6)

Eigenentropy:

E= —) Min(Ay) (6)

Anisotropy:

Al — A3
A= )
Planarity:
Ay — A3
P =
o ®)
Linearity:
A — Ay
L= W )
PCAL1:
pcAl— M (10)
o M+A+ A3
PCA2: N
PCA2=— "2 11
A+ Ax+ Az 1
Surface Variation: N
Sp=-— 13 12
v AM+A+ A3 (12)
Sphericity:
A3
3 1
5=1 13)

Verticality:

Verticality measures how much a surface deviates from being horizontal. It is derived
from the surface normal vector n € R3, where n = (nx, ny, nz) The verticality V is
calculated by:

V = 1—|n| (14)

Here, n, is the vertical component of the normal vector, which indicates how much a
surface is aligned with the vertical axis [2,14,17].

The roughness calculation in CloudCompare is based on the distance between a point
and the best-fitting plane computed from its neighbouring points [18]. The kernel size,
defined as the spherical neighbourhood radius, was set to the default value for each dataset
and applied across all geometric feature calculations. Preliminary testing with alternative
values showed minimal impact on classification performance.

Histogram Overlap and KL Divergence

Having explored the shape and spread of each histogram, we can now assess how
much the roof and solar panel classes overlap by using two statistical measures, histogram
overlap and KL divergence.

Histogram overlap is calculated using the histogram intersection method proposed
by Swain and Ballard [19]. This method computes the similarity between two normalised
histograms by summing the minimum values of the corresponding bins.

Y, min(Z;, M;) (15)

where | and M are the histograms of the two distributions, in this case, the roof and the
solar panels classes, and 7 is the number of bins. This expression measures the overlapping
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area between distributions by taking the minimum value of each bin. A higher overlap
value (approaching 1) suggests strong similarity between the classes, while a lower value
(approaching 0) indicates greater class separability.

Amakhchan et al. [10] proposed a similar analysis known as Histogram Form Resem-
blance Mark (HFRM), which measured the overlap between histograms for vegetation and
terrain classes. In their study, features with overlap values below 0.5 were selected for their
DL classification model. In our study, because the geometric properties of roofs and solar
panels are similar, we adopt a more flexible interpretation. Features that have an overlap
value below 0.5 are considered strong, while those below 0.7 are still considered useful for
class separation.

To further assess geometric feature separability, KL divergence was used to measure
the difference between the probability density functions of the roof and panel classes. KL
divergence measures how much information is lost when one probability distribution is
used to approximate another [20]. This method has been applied in previous studies for
feature selection, for classifying different dormer types on roofs [21].

The KL divergence, denoted as Dk, (P||Q), measures how a probability distribution
Q, diverges from a reference distribution, P.

D (PIIQ) = L P05 o 6)
i Q(l)

Here, P and Q represent the probability distributions of geometric feature values for
either the roof or panel classes. This measures how different the two distributions are from
each other. A higher KL divergence means greater separation between classes, while lower
values suggest they are similar.

2.3. Selected Geometric Features

The selected features will be used to assess neighbourhood characteristics, including
surface, shape, and distribution within the point cloud. These results will be implemented
in the DL pipeline for identifying and distinguishing between roof and solar panel points.
Seven features from each dataset were selected for their ability to clearly differentiate
between the two classes. Tables 1 and 2 present the final selection based on the histogram
overlap and KL divergence analysis discussed in the previous section.

Table 1. Selected geometric features highlighted in bold, for the UniSQ dataset based on histogram
analysis and KL divergence.

Feature (UniSQ) Histogram Overlap I(<I:do]3fl rf;iilr:lf I(i,l;r?ellvlelr Ig{(:)r(l);;: Acceptance
Eigenvalues Sum 0.8 0.1 0.2 No
Omnivariance 0.2 24 21 Yes
Eigenentropy 0.8 0.1 0.2 No
Anisotropy 0.2 1.5 2.0 Yes
Planarity 0.6 0.6 0.4 Yes
Linearity 0.7 0.3 0.2 No
PCA1 0.8 0.1 0.1 No
PCA2 0.7 0.5 0.3 No
Surface Variation 0.1 3.5 24 Yes
Sphericity 0.2 1.5 2.0 Yes
Verticality 0.3 1.3 2.7 Yes
Roughness 0.6 0.5 0.8 Yes
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Table 2. Selected geometric features for the Newcastle dataset are highlighted in bold, based on
histogram analysis and KL divergence.

Feature (Newcastle) = Histogram Overlap I(ﬂ“o];)fl rle;’iennecl;! I(;I;Iillvler Ig;:':;f Acceptance
Eigenvalues Sum 0.5 1.4 0.7 Yes
Omnivariance 0.6 3.3 0.5 No
Eigenentropy 0.5 1.5 0.8 Yes
Anisotropy 0.7 0.4 0.2 No
Planarity 0.6 0.7 0.5 Yes
Linearity 0.6 0.8 0.5 Yes
PCA1 0.6 0.8 0.5 Yes
PCA2 0.6 0.8 0.5 Yes
Surface Variation 0.8 0.3 0.2 No
Sphericity 0.7 0.4 0.2 No
Verticality 0.8 0.4 0.1 No
Roughness 0.6 0.4 0.5 Yes

2.3.1. UniSQ Feature Selection

The features that demonstrated the most effective separation between roof and solar
panel classes, based on low histogram overlap (<0.2) and high KL divergence (>1), were
omnivariance, anisotropy, surface variation, and sphericity. Surface variation recorded
the highest KL divergence in both directions, showing the greatest difference between the
two classes.

Verticality also showed strong separation, with an overlap value below 0.5 and KL
divergence above 1 in both directions. Planarity, the weakest performer with an overlap
value of 0.6, was retained for further analysis. Roughness, although not commonly high-
lighted in similar studies, scored comparably to planarity. This feature was kept, as it may
capture subtle surface deviations that should improve classification performance when
used in combination with other features.

2.3.2. Newcastle Feature Selection

The sum of eigenvalues and eigenentropy were the only features that recorded his-
togram overlap values of 0.5, indicating adequate separation between roof and solar panel
classes. While omnivariance showed strong divergence from roof to panel (KL = 3.3), the
considerably lower divergence in the opposite direction (KL = 0.5) suggested inconsistent
class separation, so it was discarded.

Planarity, linearity, PCA1, and PCA2 were below the 0.7 threshold for histogram
overlap. KL divergence values were just under 1 for roof to panel and approximately
0.5 for panel to roof. These were retained due to their consistent, although moderate,
class separation.

As with the UniSQ dataset, roughness scored the lowest among the selected features
but was still kept. While it does not show strong separation by itself, it may still contribute
additional variation between classes when combined with other features.

The results reflect the difference in building structure, panel size, and orientation
between the two datasets. The UniSQ dataset contains two large industrial roofs fitted
with commercial-sized solar panels, including both flat and elevated installations. In
comparison with Newcastle, this dataset consists of many smaller residential rooftops
with varied orientation and roof types, which are all fitted with flush-mounted, flat panels.
These differences contribute to the reduction in class separability observed in Newcastle’s
geometric features.
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2.3.3. RGB Analysis

To further strengthen class separability, Red, Green, and Blue (RGB) channels were
analysed using the same histogram-based approach as geometric feature selection. Cardoso
et al. [22] employed Structure from Motion (SfM) with Pix4D to reconstruct point clouds
from overlapping RGB and thermal UAV imagery. While their method derives geometry
from imagery and thermal reconstruction, our approach used RGB values obtained from a
standard photogrammetric camera (the Sony Alpha camera) mounted during UAV capture.
These values were fused into the LiDAR-derived point cloud, providing another source of
classification features.

2.4. MLP Workflow

This study uses a supervised classification approach based on a Multilayer Perceptron
(MLP) model, implemented in both Scikit-learn (v1.6.1) and PyTorch (v2.6.0+cul26) libraries.
Scikit-learn was selected for its ease of integration into the Python (v3.12.9) ecosystem.
Although it lacks GPU support, it remains effective for smaller datasets [23,24]. PyTorch, by
comparison, allows for GPU acceleration via CUDA (Compute Unified Device Architecture),
for faster model training and greater scalability [25]. This is useful when experimenting
with deeper networks or applying the model to larger LiDAR datasets.

Each point in the LIDAR dataset was manually labelled either as roof (class 0) or solar
panel (class 1). The labelled dataset for each site was divided into training (70%), validation
(10%), and testing (20%). Splits were performed at the site level so that each site appears in
only one of train, validation, or test. The model was trained using spatial coordinates (X, Y,
Z), selected geometric features, and RGB values, to identify structural and visual patterns
associated with each class. Validation data was used during training to fine-tune model
parameters and to avoid overfitting, while the final evaluation was performed using the
independent test set. This process is summarised in Figure 5, outlining the classification
workflow from feature extraction to model optimisation and prediction.

['abelled LIDAR Validation Set Training Set
Point Cloud (10%) (70%)
\

Feature Selection Train MLP.

(Geometric + RGB) Model
‘ ‘ Fine Tune
Parameters

Split Dataset

Evaluate
70/10/20 Model

Preprocessing | Model Development

Test Set (20%)
Optimised MLP Classifier

Final Evaluation Predicted Classes, Roof and Solar Panel

Figure 5. Workflow for supervised classification using an MLP model.

An MLP is a supervised feed-forward neural network that consists of an input layer,
one or more hidden layers, and an output layer. Each layer contains neurons (or nodes),
which perform calculations on their inputs by applying a weighted sum followed by a
non-linear activation function, such as ReLU (Rectified Linear Unit). During training,
the neural network iteratively adjusts these weights and biases to learn the relationship
between input features and class labels. While the process is mathematically similar to
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regression analysis, its layered architecture enables MLPs to identify and model complex
patterns within datasets [26].

These computations can be written in vectorized form. Equations (17)—(19), follow the
work of Goodfellow et al. [27] and Grosse [28].

hW = oM (w(1>x+b(1)) (17)
h® = o® (w(Z)h(l) —i—b(Z)) (18)
y =0 (W(3)h(2) + b(3)) (19)

where x is the input feature vector consisting of spatial coordinates (X, Y, Z), selected
geometric features, and RGB values, h) is the activation vector of layer I, WO is the
weight matrix, b(") is the bias vector, and @ is the activation function for layer [, applied
element-wise.

For our study, y is the output vector of the network, representing class predictions,
either roof or solar panel.

ReLU has become the standard activation function in deep neural networks for its
simplicity and strong performance [29]. Both Scikit-learn and PyTorch models in this study
use ReLU activations in the hidden layers. The output layer applies sigmoid or softmax
activation for Scikit-learn and PyTorch, respectively [30,31], producing class probabilities
for binary classification (roof or solar panel).

Figure 6 illustrates the architecture of the MLP classifier used in this study, including
the input features, hidden layers with neurons (each with their learned weights and biases),
and the final predicted output classes.

Selected | | RGB
Features Values

Input Layer

h® = eM(WDx + b®)

Hidden Layer 1
h® = oA (WDhD + p®@)
Hidden Layer 2
h® = oA (WOh® +b®)
Hidden Layer 3

y=o®W (W(4)h(3) + b(4)) -

Output Layer

Figure 6. Architecture of the MLP classifier used in this study. The input features, x (Spatial
coordinates, selected geometric features, and RGB values) are passed through three hidden layers
with ReLU as the activation function. The final output predictions, y, are either roof or solar panel.

Each row in the input table corresponds to a single point, with columns representing
spatial coordinates (X, Y, Z), RGB values, selected geometric features, and a class label (0 for
roof, 1 for solar panel). These input features are arranged as a matrix of shape X € RIN*F)
where N (rows) represents each point in the dataset, and F (columns) represents every

associated feature [32].
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2.4.1. MLP Configuration

Hyperparameter tuning was applied to improve classifier performance. This included
adjustments to the hidden layers, neuron structure, and learning rate schedule. The refined
architecture for both models used three hidden layers (100, 100, and 50 neurons in each). A
summary of these parameters is provided in Table 3.

Table 3. Parameters used for both models. Methods were replicated (where possible) to reduce bias
and show fair comparison between frameworks.

Parameters PyTorch Model Scikit-Learn Model
Execution Mode GPU CPU
Architecture MLP (3 hidden layers) MLP (3 hidden layers)
Neuron Structure 100—100—50 100—100—50
Activation Function ReLU ReLU
Batch Normalisation BatchNorm1d Not available
Learning Rate Schedule StepLR (Halved every 10 epochs) Constant learning rate
Optimiser Adam Adam
Training Epochs 50 50
70% Training
Data Split 10% Validation
20% Testing
Number of Features 13 (UniSQ) /12 (Newcastle) 13 (UniSQ) /12 (Newcastle)
Batch Size 256 256
Average Training Time ~109 s (UniSQ)/~50 s (Newcastle) ~110 s (UniSQ)/~47 s (Newcastle)
Evaluation Accuracy, Precision, Recall, F1 Score

2.4.2. Validation Strategy

Classifier performance was evaluated on the test set using accuracy, precision, recall,
and F1 scores derived from the confusion matrix [3]. This helps to assess overall perfor-
mance and the model’s ability to correctly identify minority classes (such as solar panels)
in imbalanced datasets.

For solar panels as the positive class (class 1), the components of the confusion matrix
are defined as:

True Positive (TP): Solar panel points correctly classified as class 1.
True Negative (TN): Roof points correctly classified as class 0.
False Positive (FP): Roof points incorrectly classified as panels.

False Negative (FN): Panel points incorrectly classified as roof.

From these components, performance can be calculated [33]:

TP+ TN
A = 2
Y = TP Y FP+ TN + EN (20)
. TP
Precision = TP+ EP (21)
TP
R = — 22
ecall TP+ EN (22)
Precision -Recall
F, score — 2. recision -Reca 23)

Precision + Recall

These scores can range from 0 to 1, where 1 indicates perfect classification. While
accuracy provides a general overview of model performance, it may be misleading in
imbalanced datasets. Precision and recall offer more insight into model behaviour. In both
datasets used in this study, roof points significantly outnumber panel points. Therefore, the
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F1 score, as the harmonic mean of precision and recall, provides a more balanced measure
of performance for solar panel detection.

3. Results

This section presents results from the feature analyses and supervised classification
experiments. First, we evaluate class separability using geometric and RGB features. Then,
classification performance is reported for both datasets using PyTorch and Scikit-learn MLP
models. Finally, we compare frameworks and summarise overall findings.

3.1. Feature Performance and Histogram Analysis
3.1.1. Geometric Features Histogram Analysis

With all geometric features defined and calculated using a consistent spherical neigh-
bourhood for each dataset in CloudCompare, the next step is to assess their distribution
across the two classes, roof and solar panel. This will be undertaken using a histogram
analysis. A similar approach was used by Tarsha Kurdi et al. [2] to inspect geometric
features across three classes: terrain, building, and vegetation. Likewise, Amakhchan
et al. [10] analysed vegetation and terrain in both flat and mountainous areas. While the
distinction between roof and panel surfaces is more subtle than between buildings and
vegetation, the same method is applied here to evaluate the degree of class separation
provided by each feature.

Each histogram represents the frequency distribution of a geometric feature, which is
separated by class. This is supported by a statistical analysis, including histogram overlap
and Kullback-Leibler (KL) divergence, to quantify how well each feature is distinguished
between the two classes. Figure 7 highlights the best performing geometric features from
each dataset.

Selected Geometric Features with Highest Separability
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Figure 7. Distributions of the best performing geometric features. Omnivariance and surface variation
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showed the strongest class separation for the UniSQ dataset (top row). Eigenentropy and Sum of
Eigenvalues were the most effective for the Newcastle dataset (bottom row).



Remote Sens. 2025, 17, 3389

14 of 23

25,000

20,000

15,000

10,000

5000

25,000

20,000

15,000

Number of Points

10,000

5000

30,000

25,000

20,000

15,000

10,000

5000

T I Roof —

3.1.2. RGB Channel Analysis

In addition to geometric descriptors, Red, Green, and Blue (RGB) channels were
evaluated to determine their contribution to class separability. Figure 8 shows the histogram
analysis for RGB values across both datasets.

RGB Value Distributions for UniSQ and Newcastle
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Figure 8. Distributions of red (top), green (middle) and blue (bottom) channel values for roof and
solar panel classes in UniSQ and Newcastle datasets.

For the UniSQ dataset, all three channels provided strong separation between roof and
solar panel classes, with low overlaps and KL divergence values near or above 1.0. Conse-
quently, red, green, and blue features were all retained for classification, as summarised in
Table 4.

The Newcastle dataset showed greater variability. The red channel offered the clearest
separation (overlap 0.3; KL divergence 3.3 and 1.7), the green channel was borderline but
still useful (overlap 0.5; KL divergence 1.6 and 0.8), while the blue channel performed
poorly (overlap 0.7; KL divergence 1.1 and 0.3) and was therefore discarded. These results
are also reflected in Table 4.
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Table 4. Selected RGB features for both datasets based on histogram analysis and KL divergence,
highlighted in bold.

Histogram KL Divergence KL Divergence

Dataset Feature Overlap (Roof | | Panel) (Panel | | Roof) Acceptance
Red 0.4 0.8 1.2 Yes
UniSQ Green 04 0.9 1.1 Yes
Blue 0.3 1.1 1.2 Yes
Red 0.3 3.3 1.7 Yes
Newcastle Green 0.5 1.6 0.8 Yes
Blue 0.7 1.1 0.3 No

Overall, the results demonstrate that spectral contributions are dataset dependent:
UniSQ benefited from all three channels, while Newcastle relied primarily on the red
channel, with green contributing moderately and blue adding little value.

3.2. Classification Performance

Each dataset was classified using a consistent MLP-based approach, but with differing
preprocessing strategies. The UniSQ dataset underwent more meticulous cleaning, with
solar panel points separated from roof points using RANSAC-based plane segmentation.
Outer frame points were included as panel labels, as they coincided with the extracted
plane. Noisy objects such as air conditioners and unrelated roof structures were manu-
ally removed.

In contrast, the Newcastle dataset was classified using reflectance values alone, with
minimal cleaning or refinement. Frame points around solar panels were often classified as
roof due to their proximity and similarity in geometry. Performance indicators, including
accuracy scores and confusion matrices, are presented to evaluate the effectiveness of
each approach.

3.2.1. Results—PyTorch and Scikit-Learn Models—UniSQ Dataset

The UniSQ dataset contained 227,410 labelled points, which were split into 159,187
for training, 22,741 for validation, and 45,482 for testing. Both the PyTorch and Scikit-learn
MLP models demonstrated strong classification performance. Each achieved a macro-
average score of approximately 98% on the test set, indicating balanced performance across
both classes. Final overall accuracy was approximately 98% for both models. This indicates
they both generalised well to unseen data.

F1 scores for individual classes were 0.99 for roof and 0.96-0.97 for panel points, with
PyTorch outperforming Scikit-learn by 0.01. These values confirm the model’s effectiveness,
even with a moderate class imbalance. Notably, both models achieved high recall for class
1 (solar panels), meaning that very few panel points were mislabelled. Detailed test set
performance is shown in Table 5.

The confusion matrices shown in Figure 9 show classifier performance across the two
classes, roof (class 0) and solar panel (class 1), using the TP, TN, FP, and FN definitions.
PyTorch achieved fewer false positives and negatives compared to Scikit-learn. Conversely,
Scikit-learn had more true positives but more misclassifications overall. PyTorch showed
slightly stronger performance for classification consistency, mostly for roof points. Overall,
both models generalised well and handled class imbalance effectively.
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Table 5. Precision, recall and F1 scores for both PyTorch and Scikit-learn models on the UniSQ
test set.

Class Measure PyTorch Scikit-Learn
Precision 0.99 0.99
Roof (0) Recall 0.99 0.99
F1-Score 0.99 0.99
Precision 0.97 0.97
Solar Panel (1) Recall 0.96 0.96
F1-Score 0.97 0.96

Confusion Matrix - PyTorch MLP Confusion Matrix - Scikit-learn MLP
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Figure 9. Confusion matrices for PyTorch (a) and Scikit-learn (b) classifiers on the UniSQ test set.
Performance metrics are provided in Table 5.

3.2.2. Results—PyTorch and Scikit-Learn Models—Newcastle Dataset

The Newcastle dataset contained 103,087 labelled points, split into 72,160 for training,
10,309 for validation, and 20,618 for testing. While not as strong as the UniSQ results, both
models still achieved solid performance, with a macro-average score of approximately 94%,
indicating reasonably balanced classification across both classes. Final overall accuracy was
95% for the PyTorch model and 94% for the Scikit-learn model, showing that both models
performed well.

Results were mostly consistent across the two models. PyTorch performed better in
recall and F1 score for the roof class. Precision and F1 score were slightly higher for panel
points in the PyTorch model, by approximately 0.01. A detailed analysis is shown in Table 6.

Table 6. Precision, recall and F1 scores for both PyTorch and Scikit-learn models on the Newcastle
test set.

Class Measure PyTorch Scikit-Learn
Precision 0.97 0.97
Roof (0) Recall 0.95 0.93
F1-Score 0.96 0.95
Precision 091 0.90
Solar Panel (1) Recall 0.95 0.95

F1-Score 0.93 0.92
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The confusion matrices shown in Figure 10 show classifier performance across the two
classes, roof (class 0) and solar panel (class 1), using the TP, TN, FP, and FN definitions.
Both models performed similarly overall, with very close false negative counts. PyTorch
achieved fewer false positives, notably for roof classification. Although Scikit-learn showed
a high number of correctly classified panel points, this was due to a higher number of
panel samples in the test set, caused by differences in how each model split data, even
when using the same random seed. Overall, both models handled the dataset well and
proved reliable.

Confusion Matrix - PyTorch MLP Confusion Matrix - Scikit-learn MLP
(Newcastle Dataset) (Newcastle Dataset)
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Figure 10. Confusion matrices for PyTorch (a) and Scikit-learn (b) classifiers on the Newcastle test set.
Performance metrics are provided in Table 6.

Overall, PyTorch showed slightly stronger classification consistency and recall, par-
ticularly for panel detection, while Scikit-learn remained competitive. Differences were
marginal given dataset size. Both frameworks generalised well across the two datasets and
proved robust for roof vs. solar panel classification tasks.

4. Discussion
4.1. Dataset Quality

The UniSQ dataset featured large, uniform roof sections, which allowed RANSAC-
based separation of panels from roof structures. However, this also resulted in panel frame
points being included as part of the panel class. Conversely, the Newcastle dataset was
labelled using the reflectance attribute, which excluded the frame and treated those points
as the roof. While more efficient, reflectance-based labelling may have contributed to closer
classification boundaries, as many roof and panel points occupied similar spatial planes
(X,Y, Z). This can be seen in Figure 11. Despite the variation in roof structures and panel
arrangements in Newcastle, reflectance-based labelling proved to be a faster alternative.

It is also worth noting that the UniSQ dataset contained industrial-sized panels, which
were consistently spaced and elevated above the roof surface. Due to the beam width and
angled incidence of airborne LiDAR, returns near panel edges may be sparse or mixed.
These mixed returns can originate from the panel, the supporting surface or the underlying
roof, depending on the incidence angle and material properties. This has been observed in
previous studies, where accuracy is affected by mixed returns near object boundaries [34].
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Figure 11. Side view of a roof section from both datasets, highlighting differences in panel labelling.
In the Newcastle dataset, reflectance captured only the inner panel points, with frame points labelled
as roof. By comparison, the UniSQ dataset used RANSAC to isolate the roof plane, assigning both
panel and frame points to the panel class.

Figure 12 shows a section of roof from the UniSQ test set, where predicted panel and
roof points are shown alongside misclassified points in red. These misclassified points
generally cluster around the solar panel edges and roof transitions, consistent with the
expectation that geometry is more ambiguous in these areas, which can reduce the reliability
of geometric features such as omnivariance or surface variation. This visually reinforces
how edge complexity and return inconsistency influence classification accuracy, even in a
thoroughly labelled dataset.
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Figure 12. Top-down view of a section of elevated panels on A block, from the UniSQ test set (20%).
Misclassified points (in red) are primarily concentrated around solar panel edges and roof transitions.
This pattern was also observed in both UniSQ and Newcastle test sets, showing where geometric
ambiguity led to reduced classification accuracy.

4.2. Model Performance and Feature Relevance

Both classifiers demonstrated strong performance overall, with PyTorch consistently
achieving slightly higher accuracy across both datasets. Differences in feature impor-
tance, however, became more apparent when RGB channels were removed, especially
for the Newcastle dataset, which lacked strong class separation based purely on selected
geometric features.

For UniSQ, removing RGB values did not have much of an impact, with Pytorch’s
accuracy only dropping by 0.2% (from 98.3% to 98.1%). This suggests that the model relies
mainly on geometric features. This may be due to the consistent panel structures and
clearer segmentation achieved through RANSAC.

Notably, removing the red and green (R and G) values from the Newcastle dataset
had a significant impact on accuracy, particularly for the Scikit-learn model, a drop of
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approximately 4% (from 93.8% to 89.7%). Also of note was that Scikit-learn’s false negative
rate more than doubled without red and green, showing reduced ability to differentiate
panels from the roof. This indicates that red and green channels compensated for the
weaker geometric features.

Comparing these results to Tarsha Kurdi et al. [2] and Amakhchan et al. [10], both stud-
ies used an MLP classifier, achieving accuracy scores of approximately 98%. Amakhchan
et al. [10] compared terrain and vegetation classes in flat and mountainous areas, while
Tarsha Kurdi et al. [2] classified building, vegetation, and terrain in urban areas. These
results demonstrate that MLP-based models can achieve high accuracy scores across a range
of LiDAR classification tasks. In this study, despite the greater challenge of differentiating
rooftop solar panels from roof surfaces, both MLP classifiers scored just above 98% accuracy
on the UniSQ dataset.

These results, shown in Tables 7 and 8, confirm that feature selection must be tailored
to the quality and characteristics of the LIDAR data. While geometric features can be
sufficient in structured datasets, spectral attributes such as RGB become equally important
when rooftop structures and panel arrangements are more varied or complex.

Table 7. For the UniSQ dataset, removing RGB reduces accuracy by <0.3%, indicating geometric
features alone were sufficient.

. PyTorch . . Scikit-Learn .

Measure (UniSQ) PyTorch (No RGB) Difference Scikit-Learn (No RGB) Difference

True Positives (TP) 10,911 10,937 26 10,831 10,833 2
False Negatives (FN) 405 464 59 485 568 83
True Negatives (TN) 33,798 33,688 110 33,792 33,665 127

False Positives (FP) 368 393 25 374 416 42

Accuracy (%) 98.30 98.12 —0.18 98.11 97.84 —-0.27
Table 8. For the Newcastle dataset, accuracy dropped 3—-4% without red and green values, indicating
that these were needed due to weaker geometric separation.

Measure PyTorch Scikit-Learn
PyTorch (No Red/ Difference  Scikit-Learn (No Red/ Difference
(Newcastle)
Green) Green)

True Positives (TP) 7412 7388 24 7481 7037 444
False Negatives (FN) 415 439 24 422 866 444
True Negatives (TN) 12,095 11,498 597 11,864 11,470 394

False Positives (FP) 696 1293 597 851 1245 394

Accuracy (%) 94.61 91.60 —-3.01 93.83 89.76 —4.06

5. Conclusions

This study explored the supervised classification of solar panels and roof structures us-
ing LiDAR point cloud data from two different datasets, UniSQ and Newcastle. Geometric
and RGB features were selected through histogram analysis and KL divergence. This gave
early insight into how well the MLP models, implemented using PyTorch and Scikit-learn,
would perform across different datasets.

The UniSQ dataset, with clear panel definition achieved through RANSAC, demon-
strated excellent performance with minimal reliance on RGB features. Comparatively, the
Newcastle dataset had a greater variety of rooftop structures and solar panel arrangements
that showed greater dependency on spectral attributes, especially red and green chan-
nels. Where geometric feature separation was weaker, these spectral inputs effectively
supplemented the model’s ability to distinguish panels from roofs.
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Across both datasets, PyTorch showed slightly higher performance (0.2% and 0.8% in
accuracy for UniSQ and Newecastle, respectively), possibly due to model features such as
batch normalisation, learning rate scheduling (StepLR), and GPU acceleration. Although
training times remained consistent between both models (~110 s for UniSQ and ~50 s for
Newecastle), future work with larger datasets may reveal performance differences between
GPU-based (PyTorch) and CPU-based (Scikit-learn) implementations. This comparison
across PyTorch and Scikit-learn implementations is intended as a robustness check rather
than a primary contribution

The results highlight the importance of feature selection. No single configuration
performed optimally across both datasets. Histogram analysis and KL divergence were
essential tools for understanding feature behaviour and directing the selection process.
For more uniform rooftop and panel configurations like UniSQ, geometric features may
suffice. However, for Newcastle, with varying roof structures and panel arrangements,
RGB analysis proved to be a critical measure in the feature selection process.

Reflectance proved to be a fast and practical labelling approach that offered clear
class separation with minimal preprocessing, a useful tactic when RANSAC was more
difficult to implement. However, using RANSAC, where possible, can lead to a more
structured labelling outcome. This approach, in conjunction with removing noise in early
preprocessing stages, can help with maintaining clear separation between panels and
rooftop sections.

Overall, this work demonstrates that thorough data labelling, careful feature selection,
and iterative model tuning make the classification of solar panels using LiDAR data
achievable across varied and imperfect datasets. Notably, most classification errors were
observed along panel edges and roof transitions, a pattern recognised across both test sets.

Future Research

While this study has demonstrated that LiDAR-derived features can achieve high
classification accuracy for rooftop solar panels, several important areas remain open for
future research. One key limitation is that the current work focused on classification within
pre-segmented rooftop areas. Although this reflects a common operational workflow where
roof polygons are provided by councils or utilities, extending the methodology to full scene-
level detection from raw point clouds is a valuable direction. Such an approach would
pose additional challenges, including background clutter, non-panel rooftops, and stronger
class imbalance, but it would provide a more realistic and comprehensive framework for
large-scale deployment. Embedding the classifier within a two-stage pipeline, where roof
segmentation is followed by panel classification, may help address these challenges, though
headline accuracy is expected to decrease under this more difficult setting.

Another important area for development is cross-modal comparisons and fusion.
While this study concentrated on LiDAR point clouds and geometric features, prior work
has shown that image-based object detection, such as YOLO applied to aerial or satel-
lite imagery, can achieve high performance. Pena Pereira et al. [35], for example, used
RGB and Near-Infrared data across 171 building types, with over 12,500 panels, and re-
ported F1 scores exceeding 90 percent. Their findings also highlighted that adding height
information would further enrich the training data, suggesting that hybrid approaches
that integrate spectral and geometric information could outperform single-modality sys-
tems. Future work should therefore explore how LiDAR features can be combined with
spectral data from UAV or satellite imagery to improve generalisation across diverse
urban environments.

In addition to expanding sensing modalities, future studies should consider more
robust feature selection and broader model comparisons. In this study, histogram overlap
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and KL divergence values were applied as heuristic guides supported by visual inspection,
but these thresholds may not generalise across datasets. Larger and more diverse datasets
would allow for systematic ranking methods such as SHAP values or mutual information,
which could provide site-agnostic feature importance. Similarly, while this work focused
on MLPs as a proof of concept, evaluating additional baseline models such as Random
Forest, XGBoost, and point-cloud deep learning methods like PointNet++ would provide
stronger benchmarking. Statistical significance testing, for example, using paired t-tests or
McNemar’s test, should also be incorporated in such comparative analyses.

Reflectance, which played a major role in dataset preparation for separating panel
surfaces from roofs, also warrants further investigation as a direct classification feature.
Its integration alongside geometric and RGB features may enhance performance. Incorpo-
rating additional rooftop structures such as air conditioners could extend the task from
binary classification to multi-class models that better capture the variety of rooftop ob-
jects. Furthermore, class imbalance remains a challenge, as panel points were far sparser
than roof points in both datasets. Oversampling strategies, synthetic data augmentation,
or weighted loss functions may improve robustness, particularly in large heterogeneous
urban scenes.

Finally, expanding the scope of solar panel detection from individual rooftops to
city-wide applications represents an important practical goal. Previous studies have mainly
focused on estimating rooftop potential [36], but relatively few have attempted to count
already installed panels.

In summary, future research should aim to move from rooftop-level classification
towards scene-level detection, integrate LIDAR with complementary spectral data, adopt
more generalisable feature ranking and modelling approaches, incorporate reflectance and
rooftop structures as classification features, address class imbalance through advanced
sampling strategies, and develop scalable methods for city-wide panel counting. Together,
these directions will help advance solar panel mapping from proof-of-concept experiments
to robust, generalisable, and operational tools for energy planning.
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