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Highlights

What are the main findings?
• A selective masking strategy enables direct utilization of partially annotated data, elimi-

nating strict data separation requirements and improving annotation efficiency.
• Dynamic frequency class weighting based on information theory automatically balances

class distributions.
What is the implication of the main finding?
• The approach eliminates the need for strict data separation and complex preprocessing,

providing a more practical and data-efficient solution compared to large-scale pre-
training methods.

• The dynamic frequency class weighting mechanism can be integrated into other open-
vocabulary frameworks to address class imbalance issues, offering broad applicability.

Abstract

Open-vocabulary object detection in remote sensing aims to detect novel categories not
seen during training, which is crucial for practical aerial image analysis applications.
While some approaches accomplish this task through large-scale data construction, such
methods incur substantial annotation and computational costs. In contrast, we focus on
efficient utilization of limited datasets. However, existing methods such as CastDet strug-
gle with inefficient data utilization and class imbalance issues in pseudo-label generation
for novel categories. We propose an enhanced open-vocabulary detection framework
that addresses these limitations through two key innovations. First, we introduce a
selective masking strategy that enables direct utilization of partially annotated images
by masking base category regions in teacher model inputs. This approach eliminates the
need for strict data separation and significantly improves data efficiency. Second, we
develop a dynamic frequency-based class weighting that automatically adjusts category
weights based on real-time pseudo-label statistics to mitigate class imbalance issues.
Our approach integrates these components into a student–teacher learning framework
with RemoteCLIP for novel category classification. Comprehensive experiments demon-
strate significant improvements on both datasets: on VisDroneZSD, we achieve 42.7%
overall mAP and 41.4% harmonic mean, substantially outperforming existing methods.
On DIOR dataset, our method achieves 63.7% overall mAP with 49.5% harmonic mean.
Our framework achieves more balanced performance between base and novel categories,
providing a practical and data-efficient solution for open-vocabulary aerial object detection.
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1. Introduction
Remote sensing object detection (RSOD) aims to determine whether objects of interest

exist in given remote sensing images and return the category and location of each predicted
object. Here, “objects” refer to discrete, man-made structures such as aircraft, vehicles, and
ships, as opposed to unstructured scene elements like terrain, sky, and vegetation [1]. As a
fundamental task in remote sensing image interpretation, remote sensing object detection
has undergone significant evolution from traditional methods to deep learning approaches
over the past two decades. Initially inspired by successful natural image detection meth-
ods, many studies have applied these frameworks (such as Faster R-CNN [2], YOLO [3],
and SSD [4]) to remote sensing object detection, achieving breakthroughs. Based on the
characteristics of geospatial objects in remote sensing images, many methods specifically
designed for remote sensing images have emerged in recent years [5,6]. For example,
ROI-Transformer [7], R3Det [8], and RSDet++ [9] for rotated object detection; CA-CNN [10],
ASPP [11], and RFB [12] for mining remote sensing-related context information; and edge-
enhanced GAN [13] and YOLO-DCTI [14] for small object detection. However, these
methods operate under closed-set assumptions and require extensive manual annotations
for new categories.

Open-vocabulary object detection (OVD [15]) aims to locate and identify new cate-
gories not annotated in the dataset by leveraging base categories and linguistic vocabulary
knowledge, i.e., large-scale language models or vocabulary data, which are of significant
importance in remote sensing image analysis. With the proliferation of drone technol-
ogy and advances in satellite image acquisition capabilities, the diversity of observable
targets in aerial images far exceeds the limited categories covered by existing annotated
datasets [16,17]. Traditional closed-set detection methods require collecting and annotating
large amounts of training data for each new category, which is particularly expensive and
time-consuming in the remote sensing domain. Therefore, developing open-vocabulary
detection techniques that can detect additional categories using limited annotated data is
of great value for advancing practical applications of aerial image interpretation. First in
natural images, OVR-CNN [18] introduced the first method for OVD. In recent years, due to
the rapid development of large-scale language models in the remote sensing field, models
such as RemoteCLIP [19] and GeoRSCLIP [20] have obtained rich semantic understanding
capabilities through pre-training on large-scale remote sensing image–text pairs, providing
strong foundational support for remote sensing open-vocabulary tasks. Remote sensing
open-vocabulary detection is an emerging research direction that has gained attention
only recently.

Unlike natural image OVD, which has been extensively studied with numerous es-
tablished methods, specialized approaches for remote sensing scenarios are still limited.
In this nascent field, CastDet [21] proposed the first CLIP-activated student–teacher open-
vocabulary detection framework specifically for aerial images in ECCV 2024. The core
contribution of CastDet lies in integrating RemoteCLIP as an external teacher into a student–
teacher learning mechanism, effectively leveraging the rich knowledge of pre-trained
vision–language models for novel category discovery. This design significantly improves
the detection performance of novel categories in aerial images. LAE-DINO [22] defines the
task as “locating anything on Earth,” constructing the first large-scale remote sensing object
detection dataset LAE-1M, and proposing a foundation model with dynamic vocabulary
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construction and vision-guided text prompt learning. OpenRSD [23] proposes a general
open prompt detection framework supporting multi-modal prompts, integrating alignment
heads and fusion heads to balance speed and accuracy, and adopting a multi-stage training
pipeline to enhance generalization capabilities. This method constructs a large-scale dataset
ORSD+, containing 470k images and 200 categories.

However, large-scale pre-training methods (such as LAE-DINO and OpenRSD) require
constructing large-scale datasets, which results in extremely high data collection and train-
ing costs, making them difficult to implement in resource-constrained practical application
scenarios. Unlike their pursuit of more data, we focus more on how to make good use
of limited datasets. CastDet is precisely based on this setting, but its data filtering con-
straints prevent images containing mixed categories from being fully utilized. Specifically,
these methods require strict separation of annotated base categories data and completely
unlabeled data during training. When base categories and novel categories coexist in the
same image, this constraint becomes problematic because the presence of novel targets
makes the entire image unusable for supervised training of base categories, requiring the
removal of all annotations from the image for unsupervised learning. This design stems
from the strict assumptions of traditional semi-supervised learning but appears overly
conservative in open-vocabulary scenarios, resulting in an enormous waste of annotation
resources. This limitation significantly introduces considerable annotation overhead in
practical application scenarios. When facing potentially increasing novel categories, strict
inspection and re-partitioning of annotated datasets are required.

Furthermore, severe class imbalance problems are often encountered when generating
pseudo-labels for novel categories. The inherent difficulty of detecting rare or small targets
in aerial images exacerbates this problem, resulting in training bias and poor performance
on certain categories. CastDet adopts a static weighting scheme that cannot adapt to the
dynamic distribution of pseudo-labels during training and changes in datasets.

To address these limitations, we propose an enhanced open-vocabulary detection
framework that supports one-step training with partially annotated data. The main contri-
butions of this work are summarized as follows:

• Selective masking strategy: We propose a selective masking strategy that enables
direct utilization of images containing both base and novel categories, relaxing the
strict data separation constraints of existing methods and achieving more flexible
dataset utilization.

• Dynamic frequency-based class weighting: We propose a dynamic weighting mecha-
nism based on pseudo-label queue frequency, which automatically adjusts category
weights by monitoring pseudo-label category distribution to alleviate class imbalance
issues in pseudo-labels.

• We conduct comprehensive experiments on aerial open-vocabulary detection baselines
VisDroneZSD and DIOR, demonstrating significant improvements over
existing methods.

2. Methods
2.1. Problem Formulation

Given a detection dataset containing only annotations of base categories,
Dlabeled = {(Ii, yi)}N

i=1, where N denotes the total number of images in the dataset,
Ii ∈ RH×W×3 represents the input image, and yi = {(bi,k, ci,k)}

Ki
k=1 represents the cor-

responding annotations with Ki being the number of objects in the i-th image. Each
annotation includes bounding box coordinates bi,k ∈ R4 and category labels ci,k ∈ Cbase,
where Cbase denotes the set of base categories with available annotations during training.
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Existing methods require strict separation of labeled and unlabeled data. The dataset
must be traversed first, and if an image contains targets of novel categories Cnovel, the entire
image must be assigned to the unlabeled dataset, thus discarding the base categories Cbase

annotations in that image. In contrast, our approach aims to fully utilize partially annotated
images. For images containing both base categories Cbase and novel categories Cnovel, we
no longer need to assign them completely as unlabeled data but can instead directly train a
detector that can simultaneously detect both category types.

Our goal is to train a detector capable of detecting objects from the complete category
set Ctest = Cbase ∪ Cnovel during inference, where Ctest represents the union of base and
novel categories that the model should recognize at test time. Therefore, the key challenge
lies in how to effectively discover and learn novel categories while maintaining supervised
learning performance on base categories.

2.2. Overall Framework

We propose a mask-guided teacher–student framework for open-vocabulary object
detection. The core idea is to achieve functional decoupling through differentiated data
input strategies, enabling an image containing both base and novel categories to simul-
taneously serve supervised learning and pseudo-label generation. As shown in Figure 1,
our framework contains four components: a data processing module, a teacher model, a
dynamic label queue, and a student model.

Figure 1. Overview of the proposed method. It contains four components: a data processing module,
a teacher model, a dynamic label queue, and a student model.

The data processing module handles input preparation with two parallel pathways.
For the teacher branch, we first apply weak augmentation to the original images. Subse-
quently, our selective masking strategy masks base category regions, forcing the teacher
model to focus on potential novel category objects. For the student branch, we apply
strong augmentation directly to the complete images to improve model robustness and
generalization capability during training.

The teacher model operates on selectively masked images where base category re-
gions are removed through our selective masking strategy, forcing the model to focus on
discovering novel category objects. The teacher branch employs Faster R-CNN for object
localization, generating high-quality region proposals that are subsequently classified us-
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ing RemoteCLIP’s powerful vision–language capabilities. This design leverages the rich
semantic knowledge from large-scale remote sensing image–text pre-training to achieve
robust novel category identification.

The dynamic label queue serves as the central coordination module that manages both
novel category pseudo-labels generated by the teacher model and base category ground-
truth annotations from the original dataset. This queue continuously tracks category
frequency statistics and implements our information-theoretic dynamic weighting mech-
anism to address class imbalance issues. The queue performs label merging operations,
combining reliable pseudo-labels with ground-truth annotations to create comprehensive
supervision signals for the student model.

The student model receives complete unmasked images along with the merged su-
pervision signals from the dynamic queue. Using the same Faster R-CNN architecture as
the teacher, the student model trains on both base and novel categories simultaneously
through our weighted supervision learning approach. The teacher model parameters are
updated through an exponential moving average (EMA) from the student model, ensuring
consistent learning progress and stability.

This design eliminates the need for prior data separation and directly utilizes orig-
inal annotated data containing multiple categories for end-to-end training, significantly
improving data utilization efficiency and simplifying actual deployment workflows. The
entire training process is completed through a single-stage weighted supervision ap-
proach, avoiding complex multi-stage training and loss balancing issues between different
learning paradigms.

2.3. Selective Masking Strategy

As illustrated in Figure 2, to achieve one-step training, we design a selective masking
strategy to process data. For image Ii, we extract all the base categories’ bounding boxes
from their annotations yi = {(bi,k, ci,k)}

Ki
k=1:

B(i)
base = {bi,k | ci,k ∈ Cbase, k = 1, . . . , Ki} (1)

Teacher

Input Image

Novel 

Novel 

Novel 

Base

Base Masked

(Zero padding )

Masked

(Zero padding )

Mask from GT

Figure 2. Illustration of the selective masking strategy. The figure demonstrates how our method
processes images containing both base categories (marked in red) and novel categories (marked
in blue). Base category regions are masked with zero padding (black areas), while novel category
regions remain unchanged, forcing the teacher model to focus on discovering novel categories.



Remote Sens. 2025, 17, 3385 6 of 24

Based on the extracted bounding box set, we construct a binary mask matrix, written
as follows:

M(i)
base(u, v) =

0 if ∃b ∈ B(i)
base such that (u, v) ∈ b

1 otherwise
, (2)

where (u, v) represents pixel coordinates in the image.
For images input to the teacher model, we mask the base category regions, calculated

as follows:
I(i)teacher = Ii ⊙ M(i)

base + fmask ⊙ (1 − M(i)
base), (3)

where Ii ⊙ M(i)
base represents preserving original pixel values of non-base category regions,

and fmask ⊙ (1 − M(i)
base) represents applying mask function fmask to base category regions.

The mask function can adopt strategies such as Gaussian blur GaussianBlur(I) or zero
padding 0. Here, we adopt zero padding. Zero padding provides complete information
suppression, which is theoretically superior to other masking strategies for our objective.
Theoretically, the advantage of zero padding lies in reducing the information entropy of
masked regions to zero, completely blocking the visual information propagation of base
categories. In contrast, while Gaussian blur reduces information clarity, it still preserves
low-frequency information (such as shape contours), and this residual information may be
exploited by the strong fitting capability of deep networks, thereby weakening the masking
effect. Meanwhile, zero padding provides deterministic background suppression, avoiding
the random interference that noise injection may bring, ensuring that the teacher model
learns genuine novel category features rather than possible noise patterns.

Theoretically, selective masking addresses the fundamental challenge in open-
vocabulary detection: how to prevent the model from being dominated by well-represented
categories while encouraging exploration of under-represented ones. The selective masking
strategy directly impacts the behavior of the Region Proposal Network (RPN) in Faster
R-CNN. Without masking, the RPN generates proposals with a strong bias toward base cate-
gories, as these regions produce higher objectness scores. By masking base category regions,
we eliminate these high-confidence proposals and force the RPN to generate proposals
from regions that might contain novel categories. This redistribution of proposal generation
increases the likelihood of discovering novel category objects that would otherwise be
overshadowed by dominant base category responses.Through this masking strategy, base
category regions are “hidden” in images received by the teacher model, forcing it to focus
on discovering and localizing potential novel category targets, while the student model
still receives the complete image Ii for training.

2.4. Pseudo-Label Generation and Quality Control

The quality of pseudo-labels directly affects the learning effectiveness of the student
model. Therefore, after the teacher model receives masked images, we adopt a complete
pseudo-label generation and quality control mechanism to ensure that only reliable predic-
tions are used as supervision signals.

Teacher model pseudo-label generation. The teacher model receives masked images
where base category regions have been selectively masked out, forcing it to focus on
potential novel category objects. The process begins with feature extraction using the
backbone network, followed by the Region Proposal Network (RPN), which generates an
initial set of object proposals. These proposals represent potential object locations but lack
category-specific information.

To refine the localization accuracy, we employ an iterative optimization strategy where
the predicted bounding boxes undergo multiple rounds of regression refinement. In each
iteration t, the current bounding boxes b̂(t)i (where i = 1, 2, . . . , N indexes the proposals)
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are first converted to ROI format, then fed through the ROI pooling layer to extract fixed-
size feature representations f (t)i . The regression head processes these features to predict

coordinate refinement offsets ∆(t)
i :

∆(t)
i = BBoxHead( f (t)i ) (4)

The refined bounding boxes are obtained by decoding the current coordinates with
the predicted offsets:

b̂(t+1)
i = BBoxDecode(b̂(t)i , ∆(t)

i ), (5)

where BBoxDecode(·, ·) transforms the regression deltas into absolute coordinates based
on the current bounding box positions. This iterative refinement process continues for
a predetermined number of steps, progressively improving the spatial accuracy of the
bounding box predictions.

Once high-quality bounding box proposals, {b̂i}K
i=1, are obtained, the critical step

of category classification begins. We crop the corresponding image regions based on the
refined bounding boxes and resize them to the input resolution required by RemoteCLIP
(typically 224 × 224 pixels). These cropped regions, {xi}K

i=1, are then fed into the visual
encoder of RemoteCLIP, which extracts rich semantic features:

vi = VisualEncoder(xi) ∈ Rdv (6)

For the textual component, we construct category descriptions using a predefined
template “a photo of [category]” for each target category, including both base and novel
categories. These textual descriptions are processed through RemoteCLIP’s text encoder:

tj = TextEncoder(templatej) ∈ Rdt , (7)

where templatej represents the text template for category j.
The classification process involves computing similarity scores between the L2-

normalized visual and text embeddings, scaled by a learnable temperature parameter:

sij =
vT

i · tj

τ∥vi∥2 · ∥tj∥2
, (8)

where 1
τ corresponds to the clip logit scale parameter in the implementation. The fi-

nal classification probabilities are obtained by applying a softmax function over these
similarity scores:

pij =
exp(sij)

∑
|C|
k=1 exp(sik)

, (9)

where pij represents the probability that the i-th cropped region belongs to category j. The
predicted category label for each region is determined by the following:

ĉi = arg max
j

pij (10)

This integration of RemoteCLIP enables our framework to leverage the rich semantic
knowledge acquired from large-scale remote sensing image–text pairs, providing robust
classification capabilities for both base and novel categories without requiring additional
training on the target dataset.

Multi-Layer Quality Control Mechanism. We adopt a three-layer progressive filtering
strategy to ensure pseudo-label quality:



Remote Sens. 2025, 17, 3385 8 of 24

First step: Non-maximum suppression. NMS processing is applied to candidate boxes
of the same category to eliminate duplicate detections while removing redundancy without
mistakenly deleting adjacent targets.

Second step: Geometric constraint filtering based on physical characteristics and
statistical patterns of targets in aerial images. To avoid mistaking large background ar-
eas as targets, we apply a geometric constraint to filter obviously oversized detection
boxes. Based on empirical analysis of target size distributions in aerial imagery, we set a
maximum bounding box area threshold of 400,000 pixels (approximately equivalent to a
632 × 632 pixel square).

Third step: Overlap detection. Calculate IoU between pseudo-labels and ground-truth
annotations, removing pseudo-labels with overlap exceeding 0.5 to avoid conflicts with
already annotated base categories.

2.5. Dynamic Frequency-Based Class Weighting

To address imbalance issues among novel categories, commonly used methods estab-
lish higher static weights for few-shot samples, but this approach cannot adapt to dynamic
changes in pseudo-label distribution during training and changes across different datasets.
In the classic Class-Balanced Loss paper, weights can be defined by counting effective
sample numbers:

wi =
1 − β

1 − βnci
, (11)

where β is a hyperparameter controlling the re-weighting strength and nci represents the
number of samples for category ci.

However, CB Loss is based on fixed training sample statistics, assuming that the
number of samples for each category is determined at the beginning of training. In our
method, samples of novel categories are actually dynamically generated pseudo-labels,
whose quantity and quality continuously change as teacher model capabilities improve.
Static effective sample number formulas cannot capture this dynamic evolution process.
Therefore, we propose a weight adjustment mechanism based on dynamic label queue
frequency, which can automatically adjust loss weights according to real-time category
frequency statistics in the pseudo-label queue, ensuring all rare novel categories receive
adequate learning opportunities.

Long-Term and Short-Term Frequency Statistics. We maintain a pseudo-label queue
to track category distribution and combine long-term and short-term statistical information.
The design philosophy of combining long-term and short-term statistics is that long-term
statistics reflect overall data distribution, providing a stable baseline, while short-term
statistics reflect recent detection trends and can respond promptly to distribution changes.
The specific frequency calculation formula is written as follows:

fci = 0.5 · fqueue,ci + 0.5 · frecent,ci , (12)

where fqueue,ci =
Nqueue,ci

Nqueue,total
represents the long-term frequency of category ci in the entire

queue, and frecent,ci =
Nrecent,ci

Nrecent,total
represents the short-term frequency of category ci in the

most recent 500 updates.
This design effectively prevents overfitting: pure short-term statistics might lead to

excessive weight adjustment on local batches, while adding long-term statistics provides a
global perspective, avoiding dramatic weight changes due to short-term fluctuations while
still being able to respond promptly to real distribution shifts.

Adaptive Weight Calculation. Inspired by Shannon’s information theory, we believe
that rare categories carry a higher information value in imbalanced pseudo-label distribu-
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tions. According to information theory principles, the self-information of category ci is
defined as follows:

I(ci) = − log p(ci) = − log fci (13)

Self-information measures the “information content” obtained when observing this
event. Rare events contain more information and should therefore receive more attention in
training. Based on this principle, we use self-information as the theoretical foundation for
weight adjustment, ensuring the model allocates more learning resources to rare categories
with high information content. We design the training weight for each novel category
as follows:

wraw
ci

(t) = 1 + µ · I(ci) = 1 + µ · (− log( fci + ϵ)), (14)

where µ is the information intensity coefficient controlling the influence of self-information
on weights. ϵ = 1

Nqueue,total
is a smoothing term preventing numerical issues caused by zero

frequency. The base weight 1 ensures all novel categories have weights no lower than
base categories.

Smooth Weight Updates. To ensure stability in weight updates and avoid training
shocks caused by sudden weight changes, we adopt exponential moving average for
weight updates:

Wci (t) = α · Wci (t − 1) + (1 − α) · wraw
ci

(t), (15)

where α is the smoothing coefficient and t represents the update step.
The exponential moving average update mechanism ensures training stability by

smoothing weight fluctuations. The smoothing parameter provides a balance between re-
sponsiveness to distribution changes and stability against noise in pseudo-label generation.

The advantage of an exponential moving average over directly using the latest pre-
dicted values is that it assigns higher weights to recent data while retaining historical trend
information, making gradient descent smoother. We update weights every fixed number of
iterations (e.g., 100), which can respond to distribution changes promptly while avoiding
computational overhead from overly frequent updates.

2.6. Training with Merged Labels and Weighted Loss

The final training stage integrates high-quality pseudo-labels with ground-truth anno-
tations to train the student model. Novel category pseudo-labels that pass quality control
are merged with base category ground truth to create comprehensive supervision signals.
For image Ii, the merged annotation is calculated as follows:

ymerged
i = {(bbase

i,k , cbase
i,k )}Kbase

i
k=1 ∪ {(bnovel

i,j , cnovel
i,j )}Knovel

i
j=1 , (16)

where the former represents original base category ground-truth annotations (confidence
set to 1.0), and the latter represents filtered novel category pseudo-labels (maintaining
original confidence).

After merging ground-truth annotations with high-quality pseudo-labels, the student
model is trained using supervised learning with dynamic class weighting. Our loss function
integrates multiple components to handle both learning on base categories and novel
categories simultaneously:

L = Lrpn + Lreg + Lweighted
cls (17)

RPN Loss. The Region Proposal Network (RPN) loss adopts the standard formulation
for object proposal generation. In our framework, RPN performs binary classification
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(foreground vs. background) rather than multi-class classification, with both classification
and regression components:

Lrpn =
1

Nrpn
∑

i
Lrpn

cls (pi, p∗i ) + λ
1

Nreg
∑

i
p∗i L

rpn
reg (ti, t∗i ), (18)

where pi is the predicted probability of anchor i being an object (foreground), p∗i is the binary
ground-truth label (1 for positive, 0 for negative), ti represents the predicted bounding box
regression parameters, t∗i denotes the ground-truth regression targets, Nrpn and Nreg are
normalization terms, and λ is the balance weight between classification and regression loss.
Importantly, all ground-truth labels are set to binary (foreground/background) for RPN
training, regardless of their original categories.

Regression Loss. The regression loss operates on the ROI head level, applying Smooth
L1 loss to the sampled proposals after RPN processing:

Lreg =
1

Nroi

Nroi

∑
i=1

Lsmooth-L1(b̂i, b∗i ), (19)

where Nroi is the number of ROI samples (both positive and negative), b̂i represents the
predicted bounding box refinement parameters from the ROI head, and b∗i denotes the
corresponding regression targets. This loss refines the initial proposals from RPN to achieve
more precise object localization. The Smooth L1 loss is defined as follows:

Lsmooth-L1(x) =

0.5x2 if |x| < 1

|x| − 0.5 otherwise
(20)

This loss function is less sensitive to outliers compared to L2 loss while maintaining
differentiability, making it particularly suitable for bounding box regression tasks.

Weighted Classification Loss. To address the inherent class imbalance in pseudo-label
generation, we introduce a dynamically weighted classification loss:

Lweighted
cls =

1
Nb

Nb

∑
i=1

Wci · Lcls(ŝi, ci), (21)

where Nb is the total number of samples in a batch, ŝi represents the predicted class scores,
ci is the ground-truth class label, and Wci is the dynamic weight corresponding to category
ci. The base classification loss Lcls employs standard cross-entropy:

Lcls(ŝi, ci) = − log

(
exp(ŝi,ci )

∑K
k=1 exp(ŝi,k)

)
, (22)

where K is the total number of classes including background.
The category-specific weights are computed based on our proposed information-

theoretic approach, updated periodically according to pseudo-label queue frequency statis-
tics as described in Section 2.5:

Wci =

1.0 if ci ∈ Cbase

Wci (t) if ci ∈ Cnovel
, (23)

where Cbase and Cnovel represent base and novel category sets, respectively, and Wi(t)
is the time-dependent dynamic weight that increases for rare categories to ensure
balanced learning.
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Our weighted supervision design offers the following key advantages: (1) Simplic-
ity: Unlike traditional semi-supervised methods that require careful balancing between
multiple loss branches (e.g., supervised loss, consistency loss, and pseudo-label loss), our
approach integrates all supervision signals into a single coherent framework, eliminating
the need for manual loss weight tuning between different branches. (2) Adaptivity: The
dynamic weighting mechanism automatically adjusts to the evolving class distribution
during training, ensuring that rare novel categories receive adequate attention without
requiring prior knowledge of class frequencies. (3) Robustness: By maintaining standard
loss formulations with principled information-theoretic weighting, our approach preserves
training stability while effectively addressing class imbalance issues that commonly affect
pseudo-label-based learning.

3. Materials and Experimental Settings
3.1. Dataset Introduction

We conduct main experimental evaluations on the DIOR and VisDroneZSD datasets.
DIOR is a large-scale benchmark dataset for optical remote sensing image object detection,
with each image having a resolution of 800 × 800 pixels. The dataset contains 23,463 images
and 192,472 instances, covering 20 object categories. Similar to VisDroneZSD, we have set
the same 16 basic categories and 4 new categories. We use the test set of 11,738 images
for evaluation.

VisDroneZSD is a subset of the DIOR dataset, following the settings of the Vis-
Drone2023 zero-shot object detection challenge. It includes 16 base categories and 4 novel
categories, where novel categories are airport, basketball court, ground track field, and
windmill. It contains 8730 images for training and 3337 images for testing. The training
set contains only base category annotations without any novel category labels, following
the standard open-vocabulary detection setting. The test set includes 10,554 base category
instances and 7693 novel category instances, totaling 18,247 instances.

3.2. Comparative Methods

To verify the effectiveness of the our proposed method, the following state-of-the-art
methods are selected:

• VILD [24] distills knowledge from a pre-trained open-vocabulary image classification
model (teacher) into a two-stage detector (student). VILD uses the teacher model to
encode category texts and image regions of object proposals, then trains a student
detector whose region embeddings are aligned with text and image embeddings
inferred by the teacher.

• GLIP [25] unifies object detection and phrase grounding for pre-training, enabling
learning from both detection and grounding data. The method leverages 27M ground-
ing data, including 3M human-annotated and 24M web-crawled image–text pairs.

• OV-DETR [26] is the first end-to-end Transformer-based open-vocabulary detector
based on DETR architecture. OV-DETR formulates the learning objective as binary
matching between input queries (class name or exemplar image) and corresponding
objects, enabling detection of any object given its class name or an exemplar image.

• Detic [27] expands the vocabulary of detectors to tens of thousands of concepts by
simply training the classifiers of a detector on image classification data. Unlike
prior work, Detic does not need complex assignment schemes and is compatible
with various detection architectures, achieving state-of-the-art results on the open-
vocabulary LVIS benchmark.
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• GroundingDINO [28] combines the Transformer-based detector DINO with grounded
pre-training to detect arbitrary objects with human inputs such as category names or
referring expressions.

• YOLO-World [29] enhances YOLO with open-vocabulary detection capabilities
through vision–language modeling and pre-training on large-scale datasets. The
method proposes Re-Parameterizable Vision–Language Path Aggregation Network
(RepVL-PAN) and demonstrates superior efficiency for real-time applications.

• CastDet is the first open-vocabulary object detection framework designed for aerial
images. The method employs a CLIP-activated student–teacher learning mechanism
to detect objects without annotations.

3.3. Evaluation Metrics

To comprehensively evaluate the performance of our proposed open-vocabulary detec-
tion framework, we adopt standard object detection metrics with specific adaptations for the
open-vocabulary setting. Our evaluation focuses on Precision (P), Recall (R), Mean Average
Precision (mAP), and class-specific performance metrics for base and novel categories.

(1) Precision measures the accuracy of positive predictions, defined as the fraction of
correct detections among all predictions:

P =
TP

TP + FP
, (24)

where TP represents true positive detections and FP represents false positive detections.
(2) Recall quantifies the model’s ability to identify all relevant objects, calculated as

the fraction of ground-truth objects that are successfully detected:

R =
TP

TP + FN
, (25)

where FN denotes false negative detections (ground-truth objects that were missed by
the model).

(3) Average Precision (AP) summarizes the precision–recall trade-off by computing
the area under the precision–recall curve:

AP =
∫ 1

0
P · RdR, (26)

where P is the precision as a function of recall R.
(4) Mean Average Precision (mAP) provides an overall performance measure by

averaging AP across all categories:

mAP =
1
|C| ∑

c∈C
AP, (27)

where C represents the set of all object categories and |C| is the total number of categories.
In our experiments, mAP is computed at an IoU threshold of 0.5.

(5) Base categories performance (mAPbase) specifically evaluates the detection perfor-
mance on categories with available training annotations:

mAPbase =
1

|Cbase| ∑
c∈Cbase

AP, (28)

where Cbase denotes the set of base categories with ground-truth annotations during training.



Remote Sens. 2025, 17, 3385 13 of 24

(6) Novel category performance (mAPnovel) measures the model’s open-vocabulary
capability by evaluating performance on categories without training annotations:

mAPnovel =
1

|Cnovel | ∑
c∈Cnovel

AP, (29)

where Cnovel represents the set of novel categories that are only encountered during testing.
(7) Harmonic mean (HM) provides a balanced evaluation of both base and novel

category performance by computing the harmonic mean of mAPbase and mAPnovel :

HM =
2 × mAPbase × mAPnovel

mAPbase + mAPnovel
(30)

The HM metric is particularly valuable in open-vocabulary detection, as it penalizes
approaches that achieve high performance on one category type at the expense of the other,
ensuring a comprehensive assessment of the model’s ability to handle both seen and unseen
object categories.

mAPbase, mAPnovel , and HM are crucial for open-vocabulary evaluation, as they al-
low us to assess whether the proposed method maintains strong performance on known
categories while effectively generalizing to unseen ones.

3.4. Implementation Details

Our method is implemented based on the MMDetection framework, using PyTorch
version 1.10.0, with training and testing scripts in Python 3.8. We adopt Faster R-CNN
as the detector backbone network, using ResNet-50 as the feature extractor. The model is
initialized using pre-trained RemoteCLIP, and RemoteCLIP is frozen during the training
process. Batch size is 8, trained on a single NVIDIA A100 GPU (40 GB VRAM, NVIDIA
Corporation, Sunnyvale, CA, USA). The optimizer uses SGD with a learning rate of 0.01, a
momentum of 0.9, and a weight decay of 0.0001.

In the selective masking strategy, base category regions are masked using zero padding.
The dynamic weight update interval is set to 100 iterations, and the smoothing coefficient α

is set to 0.8. Long-term statistics of the pseudo-label queue are based on all accumulated
pseudo-label data in the queue; the short-term statistics window is set to the most recent
500 updates.

Considering that the teacher model has weak foreground-background separation
capability in the early training stages, directly using low-quality pseudo-labels would
introduce noise and affect the student model’s learning effectiveness. Specifically, the
model is trained for a total of 40,000 iterations, with the first 30,000 iterations not using
pseudo-labels generated by the teacher model. The first 30,000 iterations allow the model
to focus on learning basic object detection capabilities, including foreground-background
discrimination, object proposal generation, and other fundamental skills. In the early
stages, the teacher model’s pseudo-label quality is poor, and introducing pseudo-labels
too early would generate numerous incorrect pseudo-labels due to insufficient teacher
model capability, thereby interfering with the student model’s learning process. Based on
training experience from previous related work and loss analysis, basic object detection fun-
damentally converges at around 30,000 iterations. The 10,000 iterations of semi-supervised
learning provide sufficient learning opportunities for novel categories, which also reference
previous semi-supervised learning training methods.
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4. Result and Discussion
4.1. Comparison with SOTA Methods

We compare our proposed method with several state-of-the-art approaches in the
open-vocabulary detection field, including VILD, GLIP, OV-DETR, Detic, GroundingDINO,
YOLO-World, and CastDet. As shown in Table 1, our method achieves significant perfor-
mance improvements on the VisDroneZSD dataset. Specifically, our approach achieves
42.7% overall mAP, 43.5% base categories mAP, and 39.5% novel category mAP, with a
harmonic mean of 41.4%.

Notably, our method demonstrates superior performance across all evaluation metrics
compared to baseline methods. The 39.5% mAPnovel represents a substantial improvement
over methods like VILD (14.2%) and GLIP (5.4%), showing relative improvements of 178.2%
and 631.5%, respectively. This indicates that our enhanced framework with RemoteCLIP,
selective masking strategy, and dynamic frequency weighting significantly improves the
model’s ability to detect novel categories in aerial imagery.

Compared to the original CastDet baseline (41.5% mAPnovel), our student model
achieves competitive performance while maintaining better overall balance as reflected
in the harmonic mean metric. The HM score of 41.4% demonstrates that our approach
effectively balances performance between base and novel categories, avoiding the com-
mon trade-off where improvements in novel category detection come at the cost of base
categories performance.

Table 1. Comparison of our model with other methods on VisDroneZSD.

Method mAP mAPbase mAPnovel HM

VILD 25.6 28.5 14.2 19.0
GLIP 33.8 41.0 5.4 9.5

OV-DETR 28.7 30.8 20.6 24.7
Detic 16.8 19.8 4.8 7.7

GroundingDINO 33.0 40.5 3.3 6.1
YOLO-World 32.9 39.1 8.5 13.9

CastDet 35.2 33.6 41.5 37.1

Ours 42.7 43.5 39.5 41.4

Extended experiments on the DIOR dataset (Table 2) further validate the generalization
capability of our method. Our approach achieves 63.7% overall mAP, 70.1% base categories
mAP, and 38.2% novel category mAP, with a harmonic mean of 49.5%. Our method outper-
forms all baseline approaches in terms of overall mAP and harmonic mean performance.

Table 2. Comparison of our model with other methods on DIOR.

Method mAP mAPbase mAPnovel HM

VILD 45.7 53.5 14.2 22.4
GLIP 56.0 69.1 3.6 6.9

OV-DETR 54.0 62.6 19.9 30.2
Detic 36.9 45.3 3.5 6.5

GroundingDINO 57.3 70.8 3.2 6.2
YOLO-World 57.7 70.2 8.0 14.4

CastDet 56.9 61.0 40.3 48.5

Ours 63.7 70.1 38.2 49.5

Specifically, our method shows substantial improvements over existing open-
vocabulary detection methods on the DIOR dataset. Compared to VILD, which achieves
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the most competitive overall performance among traditional methods with 45.7% mAP,
our approach delivers a significant 39.4% relative improvement in overall mAP (from
45.7% to 63.7%). More impressively, for novel category detection, our method achieves
38.2% mAPnovel compared to VILD’s 14.2%, representing a remarkable 169.0% relative
improvement. The harmonic mean metric shows an even more dramatic enhancement, im-
proving from 22.4% to 49.5% (a 120.9% relative improvement), demonstrating the balanced
performance gains across both base and novel categories.

When compared to more recent methods, like GLIP and GroundingDINO, our ap-
proach demonstrates superior novel category detection capabilities. GLIP achieves 56.0%
overall mAP but only 3.6% mAPnovel , while our method improves the overall mAP by
13.8% and achieves a massive 961.1% relative improvement in novel category detection.
Similarly, GroundingDINO, despite achieving the highest base categories performance
(70.8% mAPbase), performs poorly on novel categories (3.2% mAPnovel). Our method main-
tains a competitive base categories performance (70.1% mAPbase) while achieving 38.2%
mAPnovel , resulting in a substantially higher harmonic mean (49.5% vs. 6.2%).

Compared to the original CastDet baseline, our enhanced framework shows consis-
tent improvements across all metrics. We achieve 11.9% relative improvement in over-
all mAP (from 56.9% to 63.7%) and 14.9% improvement in base categories mAP (from
61.0% to 70.1%). Although CastDet demonstrates strong novel category performance
(40.3% mAPnovel), this is achieved by selecting images containing novel categories for
unsupervised training, which requires extensive dataset preprocessing and strict data
separation. In contrast, our method eliminates the need for such dataset filtering and can
directly utilize partially annotated data without prior separation while still maintaining
competitive novel category performance (38.2% mAPnovel) and significantly improving the
overall balance, as reflected in the harmonic mean improvement from 48.5% to 49.5%. The
notable improvement in base categories performance can be attributed to our ability to
simultaneously train on both base and novel categories within the same images, eliminating
the data waste inherent in CastDet. Specifically, for CastDet, when an image contains novel
category objects, the entire image must be used for unsupervised learning, resulting in the
loss of valuable base category annotations.

4.2. Ablation Study

To validate the effectiveness of our proposed components, we conduct comprehensive
ablation studies focusing on the key innovations of our framework.

4.2.1. Effectiveness of Selective Masking Strategy

Table 3 demonstrates the results of the ablation study, comparing different masking
strategies. Without any masking strategy, the student model achieves an overall mAP of
37.6%, a base categories mAP of 39.4%, a novel category mAP of 30.5%, and a harmonic
mean of 34.4%. The Gaussian blur masking strategy shows improvement with an overall
mAP of 40.3%, a base categories mAP of 41.1%, a novel category mAP of 37.1%, and
a harmonic mean of 39.0%. Our proposed zero padding masking strategy achieves the
best performance with an overall mAP of 42.7%, a base categories mAP of 43.5%, a novel
category mAP of 39.5%, and a harmonic mean of 41.4%.

Table 3. Ablation study of different masking strategies on VisDroneZSD.

Masking Strategy mAP mAPbase mAPnovel HM

No Masking 37.6 39.4 30.5 34.4
Gaussian Blur 40.3 41.1 37.1 39.0
Zero Padding 42.7 43.5 39.5 41.4
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The progressive improvements demonstrate the effectiveness of different masking
approaches. Compared to non-masking, zero padding achieves a relative improvement of
13.6% in overall mAP, 10.4% in base categories detection, and a substantial improvement of
29.5% in the detection of novel categories. More importantly, zero padding outperforms
Gaussian blur with a 5.96% relative improvement in overall mAP and a 6.47% improve-
ment in novel category detection, validating our theoretical analysis regarding complete
information suppression.

These results confirm that by completely masking base category regions through zero
padding, the teacher model more effectively focuses on discovering novel category targets.
The generated high-quality pseudo-labels, when merged with accurate ground-truth anno-
tations of base categories, provide more complete and consistent supervision signals for
the student model. The superior performance of zero padding over Gaussian blur validates
our information-theoretic approach, demonstrating that complete information suppression
is more effective than partial information degradation for novel category discovery.

4.2.2. Effectiveness of Queue-Based Dynamic Frequency Weighting

Table 4 presents a comprehensive comparison of different weighting strategies applied
to address class imbalance in novel category detection. The results clearly demonstrate the
progressive improvement achieved by more sophisticated weighting mechanisms.

Table 4. Ablation study of dynamic frequency weighting on VisDroneZSD.

Method mAP mAPbase mAPnovel HM

Static Weight 37.1 41.8 18.3 25.4
CB Loss 39.2 41.7 29.1 34.3

Ours 42.7 43.5 39.5 41.4

When employing static weights where all categories are assigned uniform importance
(w = 1.0), the model achieves modest performance with 37.1% overall mAP and only
18.3% mAPnovel . The integration of Class-Balanced Loss, which adjusts weights based
on effective sample numbers computed from the dynamic label queue, provides notable
improvement, achieving 39.2% overall mAP and 29.1% mAPnovel . However, our proposed
dynamic frequency weighting mechanism yields the most significant performance gains,
reaching 42.7% overall mAP and 39.5% mAPnovel .

The quantitative analysis reveals several key insights. Compared to static weight-
ing, our dynamic approach delivers a substantial 21.2 percentage point improvement in
novel category detection (from 18.3% to 39.5%), representing a remarkable 115.8% relative
enhancement. Even when benchmarked against the established CB Loss method, our
information-theoretic weighting strategy maintains a significant edge with 10.4 percentage
points improvement in mAPnovel (from 29.1% to 39.5%) and 3.5 percentage points improve-
ment in overall mAP. The harmonic mean shows consistent improvement from 25.4% (static)
to 34.3% (CB Loss) to 41.4% (ours), demonstrating better balanced performance across base
and novel categories.

Table 5 provides detailed per-category analysis, revealing both the effectiveness and
limitations of dynamic weighting for addressing class imbalance issues. The results are
particularly striking for the most challenging rare categories. For airport detection, our
method achieves 38.5% AP with 69.1% recall, compared to complete failure (0.0% AP and
recall) with static weighting. The basketball court and ground track field also show consis-
tent improvements across all methods, with our approach achieving the best performance
(65.1% AP and 41.1% AP, respectively).
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Table 5. Novel category performance on VisDroneZSD.

Method
Airport Basketball Court Ground Track Field Windmill

AP Recall AP Recall AP Recall AP Recall

Static Weight 0.0 0.0 39.0 79.4 34.2 55.2 0.0 0.0
CB Loss 24.8 45.5 45.1 79.1 37.5 55.6 9.1 3.3

Ours 38.5 69.1 65.1 79.7 41.1 56.3 13.2 18.1

However, the analysis also reveals persistent challenges in extremely rare categories.
Windmill detection, which represents the most severe class imbalance challenge, shows
limited improvement with our method achieving only 13.2% AP and 18.1% recall. While
this represents a significant improvement over static weighting (complete failure) and CB
Loss, the recall rate remains substantially lower compared to other novel categories.

To understand the root causes of this performance gap, we conducted detailed quality
analysis of pseudo-labels across novel categories. We sampled 300 instances from each
novel category during VisDroneZSD training to analyze confidence scores. The results
reveal that the windmill has an average confidence of only 42.2%, while the basketball
court achieves 78.1%, corresponding with the confidence patterns shown in Figure 3.
Additionally, statistical analysis of the VisDroneZSD test set shows that windmill targets
have an average size of only 2807 pixels, compared to the basketball court at 18,327 pixels
and the ground track field at 54,760 pixels, with the windmill being nearly 20 times smaller
than the ground track field.

(a)

(b)

(c)

(d)

Figure 3. Qualitative comparison of different weighting strategies on novel category detection. Row
(a) shows ground-truth annotations, row (b) presents results with static weighting (w = 1.0 for
all categories), row (c) shows CB Loss weighting results, and row (d) demonstrates our dynamic
frequency weighting results. The visualization spans seven representative images containing novel
categories: airport, basketball court, ground track field, and windmill.
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We believe the fundamental causes are attributed to the following: Small object
problem—windmill targets are significantly smaller than other categories, leading to insuf-
ficient feature extraction and limited model recognition capability on small-scale targets.
Since standard geometric bounding boxes are used, the actual pixels occupied by windmills
are far smaller than the statistical results, as they are mostly composed of linear structures,
further exacerbating the difficulty for RPN extraction.

Based on these findings, we propose specific improvement directions for future re-
search: integrating small object detection enhancement modules, such as multi-scale feature
fusion and specialized feature extractors for small targets, and introducing context-aware
mechanisms that leverage geographic and environmental context information to assist
small target identification.

Figure 3 provides a qualitative visualization of the effectiveness of different weighting
strategies on novel category detection. The results corroborate the quantitative findings
presented in Tables 4 and 5, demonstrating clear visual improvements across all categories.

As shown in the figure, the static weighting approach (row a) fails completely to detect
the most challenging categories, airport and windmill, producing no detection results for
these rare object types. This complete failure corresponds to the 0 AP values reported
in Table 5 for these categories. Furthermore, the static weighting method suffers from
numerous false positives in basketball court and ground track field detection, indicating
poor discrimination capability. The CB Loss method (row b) shows improved performance
compared to static weighting, successfully detecting some instances of airport and windmill
categories, but still exhibits suboptimal localization accuracy and confidence scores.

In contrast, our proposed dynamic frequency weighting method (row c) achieves the
most accurate detection results with precise bounding box localization and minimal false
negatives. Notably, the windmill category shows significant confidence score improve-
ments compared to CB Loss, demonstrating the effectiveness of our information-theoretic
weighting approach in addressing severe class imbalance. The visual results confirm the
quantitative analysis, showing that our method not only improves detection recall for rare
categories but also enhances overall detection precision across all novel object types.

Figure 4 illustrates the frequency evolution of each novel category in the pseudo-label
queue during the training process, clearly revealing the dynamic characteristics of the class
imbalance problem. The horizontal axis represents the training epochs during the pseudo-
label introduction phase. The following key observations can be made from the figure: The
ground track field dominates in the early training stage with a frequency as high as 0.75,
but gradually decreases to 0.35 as training progresses. The basketball court exhibits the
opposite trend, rising from an initial frequency of 0.25 to 0.65, ultimately becoming the most
frequently detected category. Meanwhile, the airport and windmill categories maintain
frequencies close to 0 throughout the entire training process, demonstrating severe scarcity.

This dynamic change in frequency distribution fully validates the necessity of our
proposed dynamic weight adjustment mechanism. Traditional static weighting schemes
cannot adapt to such time-varying category distributions, nor can they accommodate the
variations of rare categories across different datasets. Our method, by real-time monitoring
of frequency changes and correspondingly adjusting weights, can provide higher learning
weights for rare categories (such as airport and windmill), ensuring that the model is not
dominated by frequent categories. This effectively improves the detection performance of
these difficult categories, which also explains why we observe performance improvements
from the dynamic weighting mechanism in the ablation experiments shown in Table 4.
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Figure 4. Class frequency evolution in the pseudo-label queue during training. The figure shows the
dynamic changes in detection frequency for four novel categories (airport, basketball court, ground
track field, and windmill) across training epochs, highlighting the temporal class imbalance patterns
that motivate our dynamic weighting approach.

4.2.3. Parameter Sensitivity Analysis

Impact of the information intensity coefficient: To investigate the impact of the
information intensity coefficient µ on our dynamic weighting mechanism, we conduct a
comprehensive sensitivity analysis, as shown in Table 6. The coefficient µ controls the
influence of self-information on the weight calculation, where µ = 0 indicates that novel
category weights are uniformly set to 1.0 (equivalent to no dynamic adjustment).

Table 6. Parameter sensitivity analysis of the information intensity coefficient µ on VisDroneZSD.

µ mAP mAPbase mAPnovel HM

0 37.1 41.8 18.3 25.4
2 41.1 43.2 32.6 37.2
4 42.7 43.5 39.5 41.4
8 41.9 43.3 36.3 39.5

16 37.2 39.9 26.5 31.8

The experimental results reveal a clear pattern in performance variation across differ-
ent µ values. When µ = 0, representing the absence of dynamic weight adjustment, the
model achieves baseline performance with 37.1% overall mAP and 18.3% mAPnovel . As µ

increases to 2, substantial improvements are observed across all metrics, with mAPnovel

rising to 32.6% (78.1% relative improvement) and the harmonic mean increasing from 25.4%
to 37.2%.

The optimal performance is achieved at µ = 4, where the model reaches peak perfor-
mance with 42.7% overall mAP, 39.5% mAPnovel , and 41.4% harmonic mean. This optimal
value demonstrates that moderate weight adjustment based on self-information provides
the best balance between emphasizing rare categories and maintaining training stabil-
ity. The substantial improvement from µ = 0 to µ = 4 (115.8% relative improvement in
mAPnovel) validates the effectiveness of our information-theoretic approach.

However, further increasing µ to 8 and 16 leads to performance degradation, with
mAPnovel dropping to 36.3% and 26.5%, respectively. When µ is too small, the weight adjust-
ment is insufficient to address the severe class imbalance, resulting in continued dominance
by frequent categories. Conversely, when µ is too large, excessive weight adjustment leads
to training instability and reduced overall performance, as the loss becomes dominated by
potentially noisy pseudo-labels from rare categories. The performance decline at µ = 16
(26.5% mAPnovel) demonstrates that overly aggressive weighting can be counterproductive.
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These findings confirm that µ = 4 provides the optimal trade-off between addressing class
imbalance and maintaining robust training dynamics.

The analysis provides valuable insights for practitioners implementing our dynamic
frequency weighting mechanism. The results demonstrate that selecting an appropriately
moderate value of µ (around 4) is sufficient to achieve substantial performance improve-
ments without requiring extensive hyperparameter tuning. Importantly, the findings
suggest that pursuing excessively large µ values is not only unnecessary but also poten-
tially detrimental to model performance. This robustness to parameter selection makes
our method practically applicable across different datasets and scenarios, as users can
expect reliable improvements by choosing µ values in the moderate range (2–4) rather than
engaging in aggressive parameter optimization.

Impact of the Weight Update Interval: Table 7 presents the impact of different weight
update intervals on both model performance and computational efficiency. The update
interval determines how frequently the dynamic weights are recalculated based on the
current dynamic label queue statistics, balancing between responsiveness to distribution
changes and computational overhead.

Table 7. Parameter sensitivity analysis of the weight update interval on VisDroneZSD.

Weight Update Interval Training Time/iter mAP mAPbase mAPnovel HM

25 0.878s 42.4 43.2 39.4 41.2
50 0.872s 42.5 43.1 40.1 41.5

100 0.865s 42.7 43.5 39.5 41.4
500 0.860s 41.9 43.3 36.3 39.5

The experimental results demonstrate that moderate update frequencies yield optimal
performance. With an update interval of 50–100 iterations, the model achieves peak
performance, with the 50-iteration interval reaching 40.1% mAPnovel and 41.5% harmonic
mean, while the 100-iteration interval achieves 42.7% overall mAP. These frequencies
provide an effective balance between timely response to class distribution changes and
training stability.

When the update interval is too frequent (25 iterations), although the model re-
sponds quickly to distribution changes, the performance shows slight degradation
(39.4% mAPnovel), potentially due to weight fluctuations that introduce training insta-
bility. Conversely, when the update interval is too sparse (500 iterations), significant
performance deterioration occurs, with mAPnovel dropping to 36.3% and the harmonic
mean declining to 39.5%. This demonstrates that infrequent updates fail to adequately
respond to class distribution changes and cannot fully exploit the advantages of dynamic
adjustment, resulting in limited improvement for novel categories.

An important practical consideration is the computational overhead introduced by
the dynamic weighting mechanism. The training time analysis reveals that the weight
update frequency has minimal impact on computational cost, with per-iteration training
times ranging from 0.860 s to 0.878 s across all tested intervals. The difference between
the most frequent (25 iterations) and least frequent (500 iterations) update schedules
is merely 0.018 s per iteration. For a typical training scenario of 10,000 iterations, this
translates to approximately 3 min additional training time, which is negligible considering
the substantial performance improvements achieved. This analysis confirms that our
dynamic weighting mechanism introduces minimal computational burden while providing
significant performance gains, making it highly practical for real-world applications.

Impact of the Smoothing Coefficient: Table 8 presents the impact of different smooth-
ing coefficient values on the stability and responsiveness of our dynamic weighting mech-
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anism. The parameter sensitivity analysis for the smoothing coefficient α reveals the
importance of our dynamic loss weighting mechanism. The results demonstrate a clear
inverted-U-shaped performance curve across different α values.

Table 8. Parameter sensitivity analysis of the smoothing coefficient α on VisDroneZSD.

α mAP mAPbase mAPnovel HM

0 40.1 40.8 37.3 39.0
0.5 41.6 42.2 39.2 40.6
0.8 42.7 43.5 39.5 41.4

0.95 39.1 40.5 33.5 36.7

When α = 0 (no smoothing), the model achieves moderate performance with 40.1%
overall mAP and 37.3% mAPnovel. This setting allows weights to change drastically based
on immediate results, leading to training instability and suboptimal convergence. The rela-
tively poor performance indicates that excessive responsiveness to short-term fluctuations
harms the learning process.

As α increases to 0.5, performance improves significantly to 41.6% overall mAP and
39.2% mAPnovel, demonstrating that moderate smoothing helps stabilize the training
process while maintaining reasonable adaptability to distribution changes.

The optimal performance is achieved at α = 0.8, reaching 42.7% overall mAP and 39.5%
mAPnovel. This value provides an effective balance between maintaining historical weight
information and adapting to recent distribution changes, ensuring stable convergence while
preserving sufficient responsiveness to evolving pseudo-label statistics.

When α becomes too large (0.95), performance degrades significantly to 39.1% overall
mAP and 33.5% mAPnovel. This excessive smoothing makes the weighting mechanism
overly conservative, failing to adapt promptly to changing class distributions and essen-
tially approaching static weighting behavior. The substantial performance drop confirms
that insufficient responsiveness limits the effectiveness of our dynamic adjustment strategy.

Impact of the Short-Term Frequency Window Size: Table 9 presents the impact of
different short-term frequency window sizes on model performance. The results demon-
strate a clear performance pattern that validates our choice of window size for the dynamic
loss weighting mechanism.

Table 9. Parameter sensitivity analysis of the short-term frequency window size on VisDroneZSD.

Window Size mAP mAPbase mAPnovel HM

50 41.7 42.7 37.8 40.1
300 42.2 42.9 39.6 41.2
500 42.7 43.5 39.5 41.4

5000 40.5 41.8 35.2 38.2

When the window size is too small (about 50 updates), the model achieves suboptimal
performance with 41.7% overall mAP and 37.8% mAPnovel. This reduced performance
indicates that overly small windows make the frequency statistics too sensitive to short-term
fluctuations, leading to unstable weight adjustments that can negatively impact training.

The window size of 300 updates shows improved performance compared to 50, achiev-
ing 42.2% overall mAP and 39.6% mAPnovel. It is already similar to the best outcome.

Our chosen window size of 500 updates achieves the best overall performance with
42.7% overall mAP. This configuration effectively balances short-term adaptability with
sufficient stability to avoid noise interference, confirming the appropriateness of our
parameter selection.
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When the window becomes excessively large (5000 updates), performance degrades
significantly to 40.5% overall mAP and 35.2% mAPnovel. This substantial decline indicates
that overly large windows reduce the mechanism’s responsiveness to recent distribution
changes, losing the benefits of dynamic adaptation.

5. Conclusions
We present a one-step training open-vocabulary detection framework that supports

partially annotated data, effectively addressing key challenges faced by existing methods
in aerial image open-vocabulary detection, including complex data filtering processes, low
data utilization efficiency, and novel category imbalance issues. Our main contributions
encompass the following three aspects:

First, we propose a selective masking strategy and label merging mechanism that
eliminates the constraint of strict data separation required by existing methods. This
approach no longer necessitates pre-partitioning images containing novel categories, signif-
icantly improving data utilization efficiency. Second, we design a frequency-based dynamic
weighting mechanism built upon a dynamic pseudo-label queue. Through long-term
and short-term frequency statistics combined with exponential moving average updates,
this mechanism adaptively addresses imbalance issues among novel categories, ensuring
that rare categories receive adequate learning attention. Finally, we develop a single-stage
weighted supervision approach that avoids complex multi-stage training and loss-balancing
problems between different learning paradigms, achieving end-to-end optimization.

Compared to existing frameworks, our approach offers a distinct technical route
for open-vocabulary remote sensing detection. While LAE-DINO focuses on dynamic
vocabulary construction through massive pre-training, our method addresses vocabulary
expansion through intelligent utilization of existing limited annotations. OpenRSD’s multi-
modal prompt framework requires careful prompt engineering and supports various
input modalities. Our method offers a more automated approach that adapts to data
distribution without manual prompt tuning, making it more suitable for scenarios with
limited domain expertise. Importantly, our dynamic weighted loss could be integrated into
other frameworks when facing class imbalance issues.

Despite achieving significant progress, our method still has some limitations. For
instance, generating high-quality pseudo-labels for certain novel categories remains chal-
lenging, which exacerbates class imbalance issues. Future research directions include
improving pseudo-label generation quality, incorporating small object detection enhance-
ment modules, and using context-aware detection mechanisms that leverage geographic
and environmental information to address the unique challenges of aerial image inter-
pretation and enhance the overall performance of open-vocabulary detection in remote
sensing imagery.
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