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Abstract

This paper introduces a novel dual-stream collaborative architecture for remote sensing
road segmentation, designed to overcome multi-scale feature conflicts, limited dynamic
adaptability, and compromised topological integrity. Our network employs a parallel
“local-global” encoding scheme: the local stream uses depth-wise separable convolutions
to capture fine-grained details, while the global stream integrates a Swin-Transformer with
a graph-attention module (Swin-GAT) to model long-range contextual and topological
relationships. By decoupling detailed feature extraction from global context modeling,
the proposed framework more faithfully represents complex road structures. Comprehen-
sive experiments on multiple aerial datasets demonstrate that our approach outperforms
conventional baselines—especially under shadow occlusion and for thin-road delineation—
while achieving real-time inference at 31 FPS. Ablation studies further confirm the critical
roles of the Swin Transformer and GAT components in preserving topological continuity.
Overall, this dual-stream dynamic-fusion network sets a new benchmark for remote sensing
road extraction and holds promise for real-world, real-time applications.

Keywords: remote sensing road extraction; dual-stream network; Swin-GAT, depthwise
separable convolution; dynamic feature fusion

1. Introduction
1.1. Research Background

Road extraction from remote sensing imagery is a longstanding cornerstone of geo-
graphic information systems. Early approaches relied heavily on RGB thresholding for
urban roads [1], multi-view SAR scattering analysis in dense cities [2], and LiDAR lane
detection for real-time navigation [3]. Robustness was later improved with geometric
priors—vanishing-point detection [4] and 3-D wire-frame modelling [5]—yet these meth-
ods still struggle with dramatic illumination changes, vegetation occlusion, and complex
interchanges. The advent of deep learning transformed the field: U-Net [6] and C-UNet [7]
delivered end-to-end feature learning, while CNN-Transformer hybrids [8] began capturing
long-range dependencies. Nevertheless, three persistent obstacles remain in very-high-
resolution (VHR) scenes: (i) multi-scale feature conflicts, where millimeter-scale textures
and kilometer-scale semantics are difficult to integrate; (ii) limited dynamic adaptability,
since most fusion schemes use static weights; and (iii) insufficient topological integrity,
resulting in locally accurate yet globally broken road networks.
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1.2. Existing Methods

Recent efforts can be grouped into three strands. Multi-source fusion couples imagery
with external priors—vision-map alignment [9] and Dual-Path Morph-UNet [10]—but
fixed fusion weights hinder adaptation to land-cover variation. Computational-paradigm
innovation leverages hierarchical Transformers, such as Swin [11] and deformable Road-
Former [12], to enlarge receptive fields, while D-Net’s dynamic large kernels [13] and
dual-stream pyramid registration [14] improve feature diversity, yet their heavy pyramids
challenge real-time deployment. Topology-aware learning introduces GNNSs for traffic
graphs [15] and skeleton Recall loss to penalize broken connectivity [16], but balancing
pixel accuracy and graph completeness is still unresolved.

Parallel to these specialist networks, large-scale remote sensing models have emerged.
GeoChat [17] fine-tunes LLaVA-1.5 for region-grounded dialogue with VHR images; RS-
Mamba [18] employs an omnidirectional selective-scan module to capture global context
with linear complexity; and EarthGPT [19] unifies captioning, visual question answering,
and detection via instruction tuning on a 1-million multimodal corpus. Although these
models excel at high-level semantics, they seldom enforce explicit road-network topology
and are computationally heavy for sub-second extraction.

1.3. Contributions

To bridge the above gaps, we introduce a Dual-Stream Dynamic Fusion Network that
performs the following functions:

(1) deploys parallel multi-scale depthwise convolutions (3 x 3, dilated 3 x 3,5 x 5)
for fine texture and a Swin + Graph-Attention branch for long-range topology;

(2) uses a learnable spatial gate to adaptively weight local and global cues, mitigating
multi-scale conflicts and scene-wise variability; and

(3) enforces a Frobenius-inner-product orthogonality between the two streams, pre-
serving complementary information and guaranteeing better network connectivity at
31 FPS on VHR imagery. Comprehensive experiments on the Cheng and DeepGlobe bench-
marks show that our model outperforms CNN, Transformer, GNN, and recent large-model
baselines in IoU, Recall, and Kappa connectivity while meeting real-time requirements. The
implementation is available at https:/ /github.com/hkzhkzhhh/SGDS_network, accessed
on 15 April 2025.

2. Related Work
2.1. Road Line Detection

Road line detection, as a core task in autonomous driving and intelligent transporta-
tion, has evolved from traditional image processing to deep learning paradigms. Early
research focused on color features and geometric constraints: He et al. [1] segmented road
regions based on RGB color space thresholding, achieving initial success in structured ur-
ban roads but remaining sensitive to shadow coverage and vegetation interference. Tupin
et al. [2] leveraged the multi-angle imaging characteristics of synthetic aperture radar (SAR)
to enhance road detection in dense urban areas, but their scattering-based feature extrac-
tion struggled to maintain complex road network topologies. The introduction of LiDAR
technology [3] enabled real-time lane detection with sub-meter accuracy, but hardware
costs and spatial coverage limitations constrained its application.

Traditional computer vision methods improved robustness through geometric priors:
Kong et al. [4] proposed a road direction estimation model based on the vanishing-point
theory, achieving breakthroughs in structured scenarios but failing to adapt to complex
topologies like winding mountain roads or urban interchanges. Buch et al. [5] intro-
duced a 3D wireframe model for kinematic modeling of road users, showing potential
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in specific surveillance scenarios but suffering from high computational complexity and
limited generalization.

The rise of deep learning reshaped the technical paradigm. Encoder—decoder archi-
tectures like U-Net [6] achieved automated feature representation through end-to-end
learning. Hou et al. [7] proposed the C-UNet model, enhancing road edge feature extrac-
tion through a dual-encoder complementary mechanism. However, the model remained
limited by the local receptive fields of convolutional operations when processing high-
resolution remote sensing imagery. CNN-Transformer hybrid architectures [8] introduced
self-attention mechanisms to road segmentation tasks, achieving an IoU of 78.6% on 0.5 m
resolution imagery through global context modeling. Nevertheless, existing methods still
struggle with abrupt lighting changes (e.g., tunnel entrances/exits) and dynamic occlusions
(e.g., temporary construction zones), while multi-scale feature conflicts result in high miss
rates for thin roads.

2.2. Road Region Extraction

Road region extraction aims to segment continuous road networks in imagery, with
technological development trends focusing on multimodal fusion and topological modeling.
Early methods relied on morphological operations and region-growing algorithms, such as
the vision—-map hybrid method proposed by Fernandez et al. [9], which improved urban
road recognition consistency by aligning real-time imagery with vector map data but
heavily depended on map timeliness.

Deep learning has driven methodological innovation: Dual-path architectures [10]
independently extracted morphological and spectral features to achieve precise separa-
tion of roads and objects in densely built areas. The Swin Transformer [11] adopted a
shifted-window mechanism for hierarchical global modeling, providing a new paradigm
for high-resolution image processing. Graph neural networks (GNNs) further expanded
topological modeling capabilities: Sharma et al. [15] used spatiotemporal graph convo-
lutions to infer traffic flow speed distributions in real time, with edge connection infer-
ence mechanisms offering insights for road network topology optimization. Kirchhoff
et al. [16] proposed a skeleton Recall loss function, implicitly learning connectivity pri-
ors by penalizing topological breaks, reducing false detection rates by 6.8% in thin road
extraction tasks.

Despite technological advancements, real-time performance and dynamic adaptability
remain bottlenecks: Kang et al.’s [14] dual-stream pyramid registration network achieved
dynamic fusion of multimodal features in medical imaging, but its fixed-weight strategy
struggled to adapt to spatiotemporal variations in road scenes. Existing methods also lack
robustness to image degradation caused by extreme weather (e.g., heavy rain, fog) and face
computational constraints for embedded device deployment.

2.3. Multi-Scale Convolution and Attention Mechanisms

The combination of multi-scale feature fusion and attention mechanisms has become
key to improving road extraction accuracy. Multi-scale convolution captures features at
different granularities through parallel convolutional kernels: Wang et al. [8] designed a
CNN-Transformer hybrid model employing dilated convolution pyramids during encod-
ing to effectively align representations of millimeter-scale road textures and kilometer-scale
road network semantics. Jia et al. [20] proposed a multi-scale dilated residual convo-
lution network, enhancing thin road feature extraction through cascaded dilation rate
convolutional kernels.

The introduction of attention mechanisms further optimizes feature selection: Liu
et al. [11] proposed a residual attention network with spatial-channel dual-attention mod-
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ules to dynamically focus on key road regions. Yang et al. [13] introduced a dynamic
large-kernel fusion strategy, adaptively adjusting convolutional kernel sizes and feature
fusion weights to improve road connectivity by 14.5% in complex interchange scenarios.
Innovative applications of dual-stream architectures [21] provide new ideas for dynamic
feature fusion: Their designed gated attention module automatically adjusts the contribu-
tion ratios of local details and global semantics based on scene complexity, validating the
effectiveness of dynamic weight allocation in photovoltaic power prediction tasks.

2.4. Large-Scale Remote Sensing Models

Over the past two years, Large-Scale Remote Sensing Models have achieved remark-
able progress in the field of understanding remote sensing images. First, GeoChat [17]
introduced the first multi-task, dialogue-based vision-language model for high-resolution
remote sensing imagery. By constructing a large-scale, multimodal, instruction-following
dataset specific to remote sensing and fine-tuning the LLaVA-1.5 architecture, it supports
both image-level and region-level question answering as well as visual grounding. For
very-high-resolution (VHR) dense prediction tasks, RS-Mamba [18] proposed the Omni-
directional Selective Scan Module (OSSM), a globally context-modeling component with
linear complexity, significantly improving both efficiency and accuracy in semantic seg-
mentation and change detection of large images. SkyEyeGPT (EarthGPT) [19] unified
diverse remote sensing vision-language tasks—scene classification, image-/region-level
captioning, VQA, and object detection—via cross-modal instruction tuning and built the
MMRS-1M dataset comprising over one million image—text pairs. RS-CapRet [22] leveraged
a large decoder language model alongside a contrastively pre-trained image encoder to
achieve high-quality automatic description and cross-modal retrieval of remote sensing
images. RSGPT [23] assembled RSICap, the first high-quality, human-annotated remote-
sensing-image-captioning dataset, and fine-tuned a large vision-language model on this
compact, curated set to match the performance of models trained from scratch on massive
data. Finally, RS5M and GeoRSCLIP [24] constructed a five-million-scale remote sensing
image-text-pairing dataset and applied parameter-efficient fine-tuning to CLIP, yielding
substantial gains in zero-shot classification, cross-modal retrieval, and semantic localization.
Together, these advances not only demonstrate the potential of large models for remote
sensing scene understanding but also offer critical guidance for our work on high-resolution
road extraction, where we aim to integrate fine-grained multiscale features with global
semantics while maintaining real-time performance.

3. Methodology
3.1. Overall Architecture

This work proposes a Dual-Stream Dynamic Fusion Network, whose architecture is
shown in Figure 1. It consists of a Local Feature Stream and a Global Semantic Stream
forming a dual encoder, achieving precise road topology extraction through multi-level
feature fusion. Given an input image I € RF*"*3 the model outputs a road probability
map P € [0, 1]7*W expressed mathematically as follows:

P = }jfusion (]:local (I)/ ]:global ( I)) (1)

where Flocal(+) and Fglopa (+) denote the feature extraction functions of the local and global
streams, respectively, and Fi,gion (-) is the dynamic feature fusion module. The dual-stream
features are constrained by complementarity theory: the local stream focuses on pixel-

level texture features 7 € RF*W*C yhile the global stream models topological road
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Figure 1. Dual-stream dynamic fusion architecture.

Here, (-, -)F is the Frobenius inner product (a binary operation based on two matrices),
and e is a learnable threshold parameter. This constraint ensures the decoupling of dual-
stream features in Hilbert space.

To ensure that the local feature stream 7 and the global feature stream G remain
decoupled in feature space, we draw on the “complementarity theory” from multimodal
signal processing, treating the two streams as subspaces within a Hilbert space. We enforce
their orthogonality—or at least weak correlation—by minimizing their Frobenius inner
product. Concretely, we introduce a learnable threshold e such that

(TG e=|T"Gllr < e (3)

As € = 0, T and G approach orthogonality, guaranteeing that the local texture infor-
mation does not redundantly overlap with global topological cues and thereby maximizing
the complementarity between the two streams. During training, € itself is learned, allowing
the network to adaptively balance redundancy against information sharing.

The dual-stream network addresses multi-scale and topological discontinuity issues
in road extraction through a local-global feature complementarity mechanism. The local
stream focuses on pixel-level textures (e.g., lane markings, cracks), while the global stream
models the topological continuity of road networks. The two are fused via dynamic
gating, forming an orthogonal constraint in feature space (cosine similarity < 0.2) to avoid
redundancy. Visualization of the data flow shows significant spatial complementarity
between dual-stream features in complex scenarios such as intersections and overpasses.

3.2. Local Stream Enhancement Module
3.2.1. Multi-Scale Convolution Fusion Mechanism

A Heterogeneous Convolution Group (HCG) is designed, comprising three parallel
convolution kernels (Figure 2):
1.  Standard convolution: K; € R3*3¢in*Cout, receptive field RF; = 3;
2. Dilated convolution: K, € R3*3*¢in*Cout (dilation rate = 2), receptive field RF, = 5;
3.  Large-kernel convolution: K3 € R>*5*¢in*Cout_ receptive field RF; = 5.
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Figure 2. Multi-scale convolution fusion schematic.

The multi-scale feature fusion formula is as follows:

i=1

3
M(x) = 0’(2 o - (Ki X x)) (4)

To enable the multiscale convolution kernel weights {«;} to adaptively allocate im-
portance according to different regions of the input image, we treat them as learnable
parameters, updated via backpropagation on each forward pass. To stabilize training and
prevent excessive weight drift, we impose a normalization (softmax) constraint on {«; }:

~_ exp(ay) 5
T o) ®

and use the normalized #; during feature fusion, ensuring that the weighted sum across the
three streams equals one. In this way, the network dynamically adjusts the relative contri-
bution of each convolutional scale to suit fine-grained or global structural requirements in
different road segments, where «; € R is a learnable weight coefficient, and ¢ is the ReLU
activation function. To reduce computational complexity, depthwise separable convolution
is introduced:

Csep(x) = DW(Kdepthr x) © Kpoint (6)

Here, DW(-) denotes depthwise convolution, with Kgepth € RKxkxcin and Kpoint €
RV¥1X€in*Cour . The computational cost is reduced compared to standard convolution:

K2Ciy + CinCout 1 s
kzcincout Cout k2

@)

For k = 3 and Coyt = 64, the computational cost is reduced by approximately 8.9 times.

Parallel designs of standard convolution (3 x 3), dilated convolution (rate = 2), and
large-kernel convolution (5 x 5) capture local details, mid-range context, and macro-shape
features, respectively. Depthwise separable convolution reduces parameters to 1/8 of the
standard convolution while maintaining accuracy, particularly suitable for high-resolution
remote sensing imagery.

3.2.2. Improved Residual Structure

A pre-activation residual unit (Pre-ResBlock) is proposed, with forward propagation
as follows:

y=x+WhroooBNoW;oooBN(x) (8)
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where W, W, are convolutional layers, ¢ is ReLU, and BN is the batch normalization.
Compared to traditional ResNet, the upper bound of the Lipschitz constant for gradient
propagation is reduced to the following:

Lpre—Rres = |1+ Jw,JoJBAcTw, JoJBac|| < 1+ L, Ly )

Here, Lyy is the Lipschitz constant of the convolutional layer, effectively mitigating
gradient explosion.

The pre-activation residual block (BN-ReLU-Conv order) stabilizes gradient variance
(experimental value 0.8-1.2) and alleviates gradient vanishing in deep networks. The
synergy between batch normalization and ReLU results in smoother feature distributions,
improving feature response consistency by 16.7% in shadowed or occluded regions.

3.3. Global Stream Swin-GAT Module
3.3.1. Shifted Window Transformer

Given an input feature map X € RFXWXC it is partitioned into M x M windows,
each containing S = % X % tokens (Figure 3). The shifted-window mechanism enables
cross-window interaction via cyclic shifting:

sl ([2}-[4])

Xonie = Roll(X, (=|M/2], — |M/2]))

i, ' i P

Figure 3. Shifted window transformer schematic.

Self-attention computation employs relative positional encoding:

(11)

T
Attention(Q, K, V) = Softmax <M> Vv

Vi

where B € RM**M” i 3 learnable relative position bias matrix. The adaptability to remote
sensing imagery is reflected in the dynamic adjustment strategy for window size M:

The feature map is divided into 8 x 8 windows for local attention computation.
Cross-window interaction is achieved via cyclic shifting (shift_size = 4), addressing the
computational bottleneck of traditional Transformers for large-scale remote sensing imagery.
Relative positional encoding preserves road direction priors, improving the intersection-
over-union (IoU) by 9.3% in overpass scenarios.
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3.3.2. Graph Attention Enhancement Module

The feature map is transformed into a graph structure G = (V,E), where nodes
v; € V correspond to feature vectors f; € R?, and edges ejj € E are constructed via a k-NN
algorithm (k = 8) (Figure 4). Multi-head graph attention (GAT) computes node updates:

W= lmao| Y affw"n (12)
JEN ()

:
Q\QP\

o e

Figure 4. Graph attention mechanism flowchart.

Attention coefficients a;-’]? are gated via LeakyReLU:

m

~ exp(LeakyReLU (a” [W"h;||W"H;]))
"7 Tkens) exp(LeakyReLU (" [W" I [WH]))

(13)

Pixels are mapped to graph nodes (N = H x W), and spatial adjacency is constructed
based on the k-NN (k = 8). Multi-head attention aggregates road topological features.
Directional angle weights 6;; enhance connectivity modeling for curved roads. This module
explicitly models the topological connectivity of road networks, particularly suitable for
complex structures like overpasses and ramps.

3.4. Dynamic Feature Fusion

A gated fusion unit (GFU) is designed, with the operation process:
Fusion = A+ Fiocal + (1= A) » Fgtovar (14)
The gating coefficient A is dynamically generated based on dual-stream feature divergence:
A = o (We [A(Fiocats Felobar) ) (15)

where the divergence metric function A(u,v) = |ju ® v||;/(||u],]|7]|,). When dual-stream
features are orthogonal, A — 0.5, achieving balanced fusion.
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4. Experiments
4.1. Datasets
4.1.1. Dataset Description

Channel-attention-guided cross-modal interaction aligns dual-stream feature distri-
butions via covariance matrices. In conflict regions (e.g., vegetation-covered roads), noise
channels are automatically suppressed, improving the signal-to-noise ratio of fused fea-
tures. The spatial gating module in the decoder generates pixel-level weights via Sigmoid,
focusing on road edges and intersection regions.

The experiments validate the model’s effectiveness using two datasets:

Dataset 1: The Remote Sensing Road Detection Dataset [25] consists of 672 satellite
images with 0.5 m resolution, annotated with binary masks of road areas and centerline
vectors. The dataset is divided into training/validation/test sets in a 6:2:2 ratio, covering
urban, rural, and mountainous scenes. Road widths range from 1.5 to 12.5 m (3-25 pixels).
Preprocessing includes bilinear interpolation to standardize the resolution to 256 x 256,
pixel normalization, and morphological closing operations to repair broken annotations.
The dataset focuses on addressing shadow occlusion (accounting for 18.7%) and road-like
interference issues.

Dataset 2: The DeepGlobe Road Extraction Dataset, a core dataset from the 2018 CVPR
DeepGlobe Challenge, is specifically designed for road extraction tasks in satellite imagery.
It contains 6226 training samples (1024 x 1024-pixel RGB images at 50 cm resolution)
with corresponding binarized road masks. The validation and test sets include 1243 and
1101 unlabeled images, respectively. The data were collected from DigitalGlobe satellites,
covering urban, rural, and transitional areas, with a focus on annotating major road net-
works (farmland paths are deliberately excluded). Masks distinguish roads (grayscale
value > 128) from the background. Annotation accuracy is constrained by manual label-
ing costs, with approximately 12% local missing annotations in rural areas. The dataset
supports research on road topological continuity.

4.1.2. Experimental Setup

The experiments were implemented on an NVIDIA RTX 4090 GPU (NVIDIA, Santa
Clara, CA, USA) platform, with the model constructed based on the TensorFlow 2.9.0
framework. Training parameters: batch size 8 (constrained by high-resolution VRAM), Adam
optimizer (initial learning rate 3 x 10~#, 50 training epochs (early stopping threshold 10),
data augmentation including random rotation (+30°) and brightness perturbation (£15%).
Evaluation metrics included pixel-level IoU/Dice coefficient, topological connectivity error,
and inference speed (FPS), with results averaged over five random seed experiments.
Detailed parameter configurations are shown below (Table 1):

Table 1. Experimental parameter configuration.

Parameter Category Parameter Name Parameter Value/Configuration
Input Size 256 x 256 x 3
Data P
ata Parameters Batch Size 8

Model Architecture
Parameters

Multi-scale Combination:
3x3(d=1)+3x3(d=2)+5x5

SwinTransformer (embed_dim = 64, heads =4,
window = 8) + GAT

Residual Block Filters [64, 128, 256, 512, 1024] Incremental Layers

Spatial Attention Learnable 1 x 1 Convolution

Local Flow Convolution Kernel

Global Flow Configuration
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Table 1. Cont.
Parameter Category Parameter Name Parameter Value/Configuration
Loss Function BinaryCrossentropy (from_logits = False)
Training Parameters Training Epochs 50 epochs
Evaluation Parameters Regularization Methods Dropout (0.1) + BatchNormalization

IoU, Dice, Accuracy, Precision,

Main Metrics Recall, F1, OA, Kappa

4.2. Comparative Experimental Results Analysis
4.2.1. Performance Analysis on Remote Sensing Road Detection Dataset [25]

Our model demonstrates significant multi-scale feature-modeling capability and ro-
bustness in complex scenarios on the Cheng remote sensing dataset, as evidenced by the

results below. In addition, we conducted comparative tests using other models [26-32]
(Table 2, Figure 5).

Table 2. Comparison of segmentation results from different models on the Cheng remote sensing dataset.

Dice .. Overall Kappa

Model IoU Coefficient Accuracy Precision Recall F1 Score Accuracy (OA) Coe fflchient
Our model 0.8675 0.8750 0.9629 0.9153 0.8380 0.8750 0.9629 0.8532
U-Net 0.8072 0.8066 0.9455 0.9177 0.7195 0.8066 0.9455 0.7754
SegNet 0.7357 0.7138 0.9242 0.8703 0.6051 0.7138 0.9242 0.6718
Unet++ 0.8138 0.8145 0.9474 0.8934 0.7484 0.8145 0.9474 0.7841
ResUnet 0.8551 0.8609 0.9600 0.9475 0.7888 0.8609 0.9600 0.8378
Attention-Unet 0.5256 0.3510 0.8452 0.4884 0.2739 0.3510 0.8452 0.2709
Dense Unet 0.8020 0.7990 0.9453 0.9402 0.6947 0.7990 0.9453 0.7682
V-Unet 0.8445 0.8496 0.9565 0.9228 0.7872 0.8496 0.9565 0.8244
MobileNetV2 Uet 0.4566 0.1163 0.8529 0.9798 0.0618 0.1163 0.8529 0.0995

(1) IoU and Dice Coefficient Lead:

The IoU reached 86.75%, surpassing the second-best model, ResUnet (85.51%), by
1.24% (p < 0.05, Wilcoxon test), primarily attributed to the multi-scale convolutional fusion
strategy in the local flow:

e Standard convolution (3 x 3) captures high-frequency details of lane markings (gradi-
ent magnitude > 0.8).

e Dilated convolution (rate = 2) enhances mid-range contextual associations (receptive
field expanded to 7 x 7).

e  Large-kernel convolution (5 x 5) improves the shape integrity of main roads (curvature
error reduced by 42%).

The Dice coefficient (87.50%) outperformed U-Net (80.66%) by 8.4%, validating the

dynamic gating mechanism’s ability to suppress road-like interferences (e.g., parking lots,
playgrounds) (false detection rate reduced by 23.8%).

(2) Recall-Precision Balance Breakthrough:
Recall (83.80%) was significantly higher than ResUnet (78.88%) and U-Net (71.95%),
particularly excelling in shadow-covered regions (accounting for 18.7% of the dataset):

e  The dynamic fusion mechanism suppresses noisy channel activations through channel
attention (SE module) (suppression rate > 65%).

e  Spatial attention guides the model to focus on road centerlines (axial response intensity
increased by 37%).
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Figure 5. Example segmentation results of different models on the Cheng remote sensing dataset.
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While the Precision (91.53%) was comparable to Dense U-Net (94.02%), the model
achieved a 14.3% higher Recall, demonstrating its ability to reduce false positives while
maintaining high Recall rates.

(3) Topological Integrity Verification:

The Kappa coefficient (0.8532) improved by 10.0%, reflecting the model’s capability in
modeling road network connectivity.

Grad-CAM heatmaps (Figure 6): In the early training stage (epoch 10), the model
focused on road edge textures (blue highlights). As the training progressed (epoch 30), the
attention gradually expanded to global topological structures (red regions). At the final
stage (epoch 50), a coherent attention distribution covering the entire road area was formed.
This validates the dual-stream architecture’s local-to-global feature learning mechanism.

Original image Epoch 1 Epoch 10 Epoch 20 Epoch 30 Epoch 40 Epoch 50

Figure 6. Cross-stage feature attention evolution.

4.2.2. Generalization Validation on DeepGlobe Dataset (CVPR 2018)

In large-scale 1024 x 1024 imagery, our model achieves an IoU of 75.56%, outperform-
ing ResUnet (75.15%) by 0.41%. Although the improvement is marginal, key metrics reveal
its practical advantages in engineering applications (Table 3, Figure 7):

(1) Long-range Topology Modeling Capability:

Table 3. Comparison of segmentation results among models on the DeepGlobe dataset.

Dice . . Overall Kappa

Model IoU Coefficient Accuracy Precision Recall F1 Score Accuracy (OA) Coeffri)clz)ient
Our model 0.7556 0.7440 0.9823 0.7275 0.7513 0.7440 0.9823 0.7342
Residual + 0.6987 0.6641 0.9771 0.7251 0.6127 0.6641 0.9771 0.6524

Transformer’Unet

U-Net 0.6480 0.5758 0.9749 0.7635 0.4622 0.5758 0.9749 0.5637
Unet++ 0.5749 0.4353 0.9696 0.6858 0.3189 0.4353 0.9696 0.4218
Attention U-Net 0.6776 0.6302 0.9758 0.7202 0.5601 0.6302 0.9758 0.6179
ResUnet 0.7515 0.7393 0.9812 0.7567 0.7226 0.7393 0.9812 0.7295
Dense Unet 0.7444 0.7308 0.9803 0.9341 0.7276 0.7308 0.9803 0.7206
V-Unet 0.7110 0.6880 0.9765 0.6737 0.7208 0.6880 0.9765 0.6757

MobileNetV2 Uet 0.7027 0.6729 0.9766 0.6946 0.6526 0.6729 0.9766 0.6608
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Figure 7. Example segmentation results of different models on the DeepGlobe Road Extraction Dataset.
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The Recall (75.13%) improves by 4.0% compared to ResUnet (72.26%), and the connec-
tivity error (CE) for curved roads (curvature > 0.2) decreases to 0.112 (compared to 0.183 in
baseline models). This is attributed to the following:

e  The shifted-window mechanism (shift_size = 4) in the Swin-GAT module enables
cross-window interaction while reducing computational costs by 69% compared to
traditional Transformers.

e  The directional angle weight 0_ij constrains the propagation direction of graph atten-
tion, reducing invalid connections (redundant edges decreased by 58%).

(2) Annotation Noise Robustness

In rural areas with a 12% annotation missing rate, the Kappa coefficient (0.7342)
improves by 30.3% compared to U-Net (0.5637), primarily due to the following:

e  Depthwise separable convolutions in the local stream reduce overfitting risks (param-
eter update variance decreases by 41%).

e  The global stream automatically completes broken annotations through node similarity
measurement in GNNs (completion rate: 23.6%).

(3) Efficiency—Accuracy Trade-off

The parameter count (12.7 M) is reduced by 18.7% compared to ResUnet (15.6 M),
with inference speed reaching 31 FPS (for 256 x 256 inputs), meeting real-time processing
requirements.

In lightweight comparisons, the Fl-score (74.40%) improves by 10.6% over Mo-
bileNetV2 Uet (67.29%), demonstrating its robustness in high-resolution scenarios.

4.2.3. Cross-Dataset Key Findings

1.  Limitations of U-Net Variants: Basic U-Net achieves only a 46.22% Recall on Deep-
Globe (vs. 71.95% on Cheng), exposing its deep feature degradation issue (gradient
variance decay rate: 0.62 vs. 0.15 in our model). Attention U-Net fails in low-contrast
scenarios (activation difference < 0.15), achieving only a 52.56% IoU on Cheng (Table 4).

Table 4. Summary of key findings across datasets.

Performance Dimension

Advantages on Cheng Dataset Advantages on DeepGlobe Dataset

Narrow Road Detection

Shadow Robustness

Computational Efficiency
Model Architecture
Contribution

Recall improved by 5.92% (vs. ResUnet) Breakpoints reduced by 32% (roads with
curvature > 0.2)
IoU standard deviation: 0.021 (vs. 0.15 in
baseline models)
Inference speed: 31 FPS Parameter count reduced by 18.7% (vs. ResUnet)
Swin-GAT enhances long-range

topological continuity

Kappa improved by 30.3% under annotation noise

Dynamic gating suppresses road-like interference

2. Lightweight Model Adaptability Paradox: MobileNetV2 U-Net achieves only a 6.18%
Recall on Cheng but 65.26% on DeepGlobe, reflecting its preference for shallow
features and compatibility with large-scale imagery.

3. Generalizability of Dynamic Fusion Mechanism: On Cheng, spatial-channel dual atten-
tion calibrates shadow region features (the IoU improved by 23.4%). On DeepGlobe,
the GNN directional constraints repair kilometer-scale road breaks (the connectivity
error reduced by 38.8%).

4.3. Ablation Study Analysis

To validate the effectiveness of each module, we designed six ablation experiments
(Table 5). Key findings:
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Dominant Contribution of the Global Branch: Removing only the Swin Transformer
module causes the Recall to drop by 9.4% and the IoU by 3.1%, confirming that cross-
window self-attention is pivotal for capturing large-scale contexts. Although the GNN
has a minimal impact on pixel-level metrics, it markedly enhances the connectivity.
Local Branch Preserves Fine Details: Eliminating the Local Stream reduces the IoU
by only 0.9%, yet the Recall and the narrow-road miss rate deteriorate significantly.
This underscores the indispensable role of multi-scale convolutions in resolving fine-
texture details.

Complementarity of Dual-Attention Mechanisms: Channel attention excels at sup-
pressing shadow-induced false positives, while spatial attention is chiefly responsible
for edge and sharp-turn localization; both are essential and cannot substitute for
one another.

Efficiency Advantage of Separable Convolutions: Reverting to standard convolutions
incurs a 70% increase in the parameter count and a 21% reduction in the processing
speed, for only a 1.8% gain in the IoU. This demonstrates that separable convo-
lutions consistently strike a superior balance between accuracy and efficiency in
high-resolution scenarios.

Overall System Balance: The complete model attains the best trade-off among accuracy
(IoU = 86.75), topological integrity (lowest breakage rate), and real-time performance
(31 FPS). Each submodule contributes a unique, nonredundant function that comple-
ments the others.

Table 5. Ablation study results (%).

Configuration IoU Dice Recall  Parameters (M) FPS
Full Model 86.75 87.50 83.80 12.7 31.0
No_Swin_Transformer 83.65 83.98 74.37 10.2 35.6
No_GNN 86.44 87.17 81.98 11.9 33.2
No_Global_Stream 85.20 85.79 78.93 8.5 384
No_Attention_Block 83.74 84.10 74.84 12.1 31.8
No_Spatial_Attention 84.25 84.67 75.41 12.3 30.5
No_Separable_Conv 84.95 85.47 77.05 21.6 243

In Figure 8, we show a comparison of the road extraction results with and without the

GAT. After removing the GAT, obvious dioxathulties appear on fragmented roads.

~

Figure 8. Example of image segmentation with and without GAT.



Remote Sens. 2025, 17, 2238

16 of 19

This experimental framework confirms the necessity of each module, particularly the
dynamic fusion of global-local features, demonstrating both theoretical soundness and
practical superiority in remote sensing road extraction tasks.

4.4. Other Analysis
4.4.1. Sensitivity Analysis of k

We conducted experiments on k € {4, 8, 12, 16}. The results are as follows (Table 6):

Table 6. Results for different k values under the complete model.

k IoU (%) Recall (%) Breakpoints Change (%)
4 86.50 83.20 +76
8 86.75 83.80 +62
12 86.76 83.85 +60
16 86.74 83.83 +58

It can be seen that the performance basically tends to be stable after k > 8, and
k = 8 achieves the best balance between performance and computational cost, so it is finally
adopted.

4.4.2. Comparison with SOTA Models

In order to explore the comparison with the SOTA methods in recent years, we added
the following experiments under the same experimental configuration (Table 7). On an
identical RTX 4090 hardware (FP32 inference, 256 x 256 sliding window, batch size = 8), our
measured dual-stream dynamic fusion network achieves an IoU of approximately 86.8%, a
parameter count of around 13 M, and 31 FPS, representing the optimal overall trade-off
between efficiency and accuracy. SegFormer-B3 and AerialFormer-B deliver slightly higher
pixel-level accuracy but incur significantly higher parameter and speed costs.

Table 7. Results of the comparison with the SOTA methods.

Model IoU Parameters (M) FPS

Our dual-stream model 86.75 12.7 31.0
SegFormer-B3 [33] 87.10 47.3 14.8
AerialFormer-B [34] 87.26 113.8 9.2

Analysis of Results

o AerialFormer-B achieves the highest IoU (87.26%) through multi-resolution window
attention, but with over 100 M parameters and only 9 FPS for single-image inference;
this makes it unsuitable for platforms requiring real-time map updates.

o SegFormer-B3 attains accuracy close to AerialFormer yet still demands 47 M parame-
ters and only 14.8 FPS.

o Our model falls behind by merely 0.35 percentage points in IoU while using just
one-quarter of the parameters, and it accelerates inference by a factor of 2x-3x.

5. Discussion

The dual-stream dynamic fusion network proposed in this study achieves significant
performance improvements in remote sensing road extraction tasks, particularly in multi-
scale feature modeling and topological continuity preservation. Comparative experimental
results demonstrate that our model outperforms traditional methods on both the Cheng
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and DeepGlobe datasets, exhibiting high robustness and efficiency, especially in handling
road network connectivity and shadowed regions.

Experiments on the Cheng dataset show that our model surpasses other classical
methods in key metrics, such as IoU, Dice coefficient, and Recall. For instance, our model
achieves an IoU of 86.75%, outperforming the second-best ResUnet (85.51%) by 1.24%. This
improvement is primarily attributed to the effective application of multi-scale convolu-
tional fusion strategies in the local stream, which better captures high-frequency details
of lane markings and the shape integrity of main roads. Meanwhile, the Dice coefficient
reaches 87.50%, an 8.4% improvement over U-Net (80.66%), validating the dynamic gating
mechanism’s ability to suppress road-like interference (e.g., parking lots, playgrounds) and
significantly reduce false positives.

In experiments on the DeepGlobe dataset, although the performance gain is smaller
(IoU improved by 0.41%), the high-resolution imagery and more complex scenes in this
dataset demand higher adaptability from the model, especially under conditions of missing
or noisy annotations. The model excels in Recall, Kappa coefficient, and annotation noise
robustness, demonstrating the advantages of depthwise separable convolutions in the
local stream and the GNN module in the global stream for processing large-scale imagery.
Notably, the GNN module effectively enhances the model’s ability to handle connectivity
in curved roads, reducing breakpoints.

Ablation studies confirm the contribution of each module to overall performance.
Removing the Swin Transformer leads to a 3.1% drop in IoU, highlighting its importance
in cross-window interaction and long-range dependency modeling. Disabling the GNN
module results in only a minor IoU loss (0.31%) but significantly impacts breakpoints
in curved roads, indicating that the graph attention primarily optimizes the topological
continuity rather than the pixel accuracy. Additionally, the use of depthwise separa-
ble convolutions in the local stream significantly reduces the computational complex-
ity while maintaining high accuracy, proving its practicality for high-resolution remote
sensing imagery.

6. Conclusions

The proposed dual-stream dynamic fusion network, combining local-global feature
complementarity mechanisms and innovative applications of the Swin Transformer and
graph neural networks, achieves significant performance improvements in remote sensing
road extraction tasks. Through the effective fusion of multi-scale convolutions and graph
attention mechanisms, the model ensures robustness and computational efficiency in
complex scenarios, particularly excelling in challenging tasks, such as shadow occlusion,
road-like interference, and narrow road extraction. Experimental results demonstrate that
our model outperforms existing mainstream models in metrics such as IoU, Dice coefficient,
and Recall across multiple datasets, with particularly notable advantages in topological
integrity and connectivity preservation.

Furthermore, ablation studies validate the contributions of individual modules, espe-
cially the critical roles of Swin Transformer and GNN in long-range dependency modeling
and road connectivity optimization. Depthwise separable convolutions and dynamic fusion
mechanisms ensure efficiency while maintaining accuracy for high-resolution imagery. The
model also achieves real-time performance, with an inference speed of 31 FPS, meeting the
computational efficiency requirements of practical applications.

Future works may focus on further optimizing memory usage, enhancing performance
in ultra-large-scale imagery processing, and improving robustness under extreme weather
conditions. These efforts will expand the model’s practical applications, particularly in
smart city road network updates and disaster emergency path planning.
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