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Abstract: Urban green spaces are an important part of the urban ecosystem and hold
significant ecological value. To effectively protect these green spaces, urban managers
urgently need to identify them and monitor their changes. Common urban vegetation
positioning methods use deep learning segmentation models to process street view data
in urban areas, but this is usually inefficient and inaccurate. The main reason is that they
are not applicable to the variable climate of urban scenarios, especially performing poorly
in adverse weather conditions such as heavy fog that are common in cities. Additionally,
these algorithms also have performance limitations such as inaccurate boundary area
positioning. To address these challenges, we propose the UGSAM method that utilizes the
high-performance multimodal large language model, the Segment Anything Model (i.e.,
SAM). In the UGSAM, a dual-branch defogging network WRPM is incorporated, which
consists of the dense fog network FFA-Net, the light fog network LS-UNet, and the feature
fusion network FIM, achieving precise identification of vegetation areas in adverse urban
weather conditions. Moreover, we have designed a micro-correction network SCP-Net
suitable for specific urban scenarios to further improve the accuracy of urban vegetation
positioning. The UGSAM was compared with three classic deep learning algorithms
and the SAM. Experimental results show that under adverse weather conditions, the
UGSAM performs best in OA (0.8615), mIoU (0.8490), recall (0.9345), and precision (0.9027),
surpassing the baseline model FCN (OA improvement 28.19%) and PointNet++ (OA
improvement 30.02%). Compared with the SAM, the UGSAM improves the segmentation
accuracy by 16.29% under adverse weather conditions and by 1.03% under good weather
conditions. This method is expected to play a key role in the analysis of urban green spaces
under adverse weather conditions and provide innovative insights for urban development.

Keywords: urban green spaces; streetscape imagery; multimodal large language model;
deep learning; Segment Anything Model
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1. Introduction
With socio-economic development, population growth, and accelerated industrializa-

tion, most cities continue to expand. Urban expansion serves as the foundation for urban
development; yet, during this process, substantial urban green spaces and suburban vege-
tation are frequently occupied and transformed into residential buildings and industrial
facilities [1]. Urban greenery plays a crucial role in achieving urban carbon neutrality and
improving air quality [2–4]. The reduction in green spaces has led to multiple environ-
mental challenges, including intensified urban heat island effects and diminished urban
ecosystem diversity [5,6]. Therefore, comprehensive planning of urban green spaces during
urban development becomes an inevitable choice for environmental preservation [7–10].

Previous studies have proposed various methods for coordinated planning of urban
green spaces, all requiring precise localization of vegetation within urban areas. Traditional
manual field surveys demand on-site personnel inspections, proving time-consuming and
cost-prohibitive for large-scale urban applications [11,12]. Advances in remote sensing tech-
nology enable automated all-weather collection of streetscape data, allowing researchers
to locate urban green spaces through street view image analysis. Progress in artificial
intelligence (AI) has led to automated localization methods using machine learning and
deep learning algorithms, which employ automatically acquired streetscape data combined
with image segmentation algorithms like FCN [13] and PointNet++ [14] to demarcate
vegetation areas [15]. However, there are two challenges in using these artificial intelligence
algorithms [16–18]. First, there are limitations in the performance of these algorithms,
which cannot handle the boundary regions well during segmentation, and there is a lot of
room for improvement in segmentation accuracy [19]. Secondly, the urban climate is highly
variable, and in some coastal cities there is often inclement weather such as storms, and
most of the areas of the streetscape images collected under adverse weather are blurred
and the data quality is poor, which leads to a low accuracy of the final localization [20].
Furthermore, in order for these AI algorithms to function effectively in practice, it is imper-
ative to consider their substantial computational costs and inference times [21]. Therefore,
providing urban managers with a method suitable for vegetation positioning in urban
scenarios is of practical significance.

Fortunately, on the one hand, multimodal large language models have emerged as a
dominant approach in various artificial intelligence applications and are widely adopted in
image segmentation and object detection research. The Segment Anything Model (SAM)
is a multimodal large language model designed for image segmentation [22]. The SAM
has demonstrated the high efficiency in performing diverse segmentation tasks through
training on extensive datasets, and its pretraining model architecture and parameters make
it able to quickly adapt to the greening recognition task of different scenes without complex
parameter tuning [23]. Consequently, this suggests that there is potential for resolving the
issues associated with substantial computing resources and inference time when imple-
menting the SAM in practice. Meanwhile, when applied to urban vegetation localization,
the SAM effectively addresses the performance limitations of traditional algorithms. For
example, compared with traditional image segmentation algorithms, the SAM performs
better in dealing with complex backgrounds, occlusions, and morphological diversity of
vegetation in street view images, and can effectively reduce segmentation errors caused by
image complexity [24,25]. In addition, the multimodal characteristics of the SAM support
the fusion of multiple information, and by combining image visual features and semantic
information, it can significantly improve the accuracy and stability of greening area iden-
tification, provide strong technical support for accurately distinguishing vegetation and
nonvegetation areas, and significantly improve the positioning accuracy of urban greening
areas [26,27]. However, due to the complexity of urban scenes, directly applying the SAM



Remote Sens. 2025, 17, 2058 3 of 26

to urban street view images may result in minor omissions in boundary regions. Therefore,
enhancing the model’s capability to handle boundary areas becomes essential.

On the other hand, with the advent of image defogging technology, there is a possi-
bility of utilizing these defogging technologies to address the impact of severe weather,
such as heavy fog, frequently encountered in urban vegetation positioning tasks. Ex-
isting defogging methods can be categorized into traditional physical approaches and
deep-learning-based techniques [28]. Traditional physical defogging methods, such as
DCP [29], estimate atmospheric transmission and illumination components to achieve
defogging. However, their reliance on strong assumptions about uniform fog distribu-
tion and scene brightness often leads to halo artifacts, color distortion, and difficulties in
maintaining global consistency. With advancements in artificial intelligence, numerous
deep-learning-based defogging methods have been developed. AOD-Net [30], leveraging
a deep learning framework, simplifies the joint optimization of transmission and atmo-
spheric light by parameterizing the atmospheric scattering model. Nevertheless, its shallow
network structure limits its dynamic adaptability to varying fog concentrations, resulting
in incomplete defogging. EMRA-Net [31] and GCANet [32] further incorporate multiscale
residual modules, channel attention mechanisms, and gated context aggregation strategies
to enhance local texture recovery and noise suppression. Despite these improvements,
they still struggle with heavy fog regions, leading to incomplete processing. Defogging
methods based on Transformer architectures, including Dehamer [33], DehazeFormer [34],
and PMNet [35], utilize multihead self-attention mechanisms to focus on deeper image
features. However, these methods tend to over-defog, causing the loss of original image
characteristics. Moreover, algorithms based on the Transformer structure typically incur
substantial computational costs and require extended inference times [33–35]. Hence, cur-
rent defogging techniques fail to meet the requirements of urban scenarios in practice. In
other words, there is a need for a defogging method that achieves high defogging quality
while preserving the original features of images across different fog concentrations to the
greatest extent possible.

To this end, we first developed a specialized correction network, namely, the
Streetscape-Correction Network (SCP-Net). SCP-Net employs an encoder–decoder ar-
chitecture, where the encoder is based on ResNet and the decoder consists of multiple
upsampling layers with skip connections. Additionally, it innovatively incorporates a
multiloss function. This network effectively mitigates the issues of misclassification and
omission of vegetation in boundary regions during image segmentation using SAM, while
enabling directional correction through a dual-error correction mechanism. On the other
hand, we designed the Weather-Robust Preprocessing Module (WRPM) to counteract the
degradation of street view data quality caused by climatic factors. The WRPM adopts a
parallel dual-branch structure for feature extraction, utilizing dense haze region processing
network (FFA-Net) and light haze region processing network (LS-UNet) to, respectively,
extract dense fog and light fog features from images. These branches enable dedicated
processing pathways tailored to different fog concentration levels. Following feature ex-
traction, the feature fusion module (FIM) adaptively fuses the extracted information. The
WRPM not only effectively removes foggy regions from images but also preserves the
original details of the image to the greatest extent possible. The low cost of training and the
high inference efficiency of the backbone network suggest that its application in practice is
both feasible and beneficial. We refer to this integrated approach as Urban Green Space
SAM (UGSAM).

The main contributions of this work are as follows:

1. Due to the variable climate in cities, rainy and foggy weather greatly affects the clarity
of urban street scene images. Currently, there are few algorithm models for all-weather
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urban vegetation positioning. We propose a high-precision urban vegetation position-
ing algorithm UGSAM that can perform well in bad weather. The UGSAM consists
of a multimodal large model SAM, a defogging module WRPM, and a correction
network SCP-Net. We find that this algorithm performs excellently in bad weather
and also has certain performance improvements in normal weather.

2. To ensure that the UGSAM can maximize defogging while minimizing the damage
to the original features of the image, we propose a dual-branch structure WRPM
based on channel attention and pixel attention. WRPM includes the dense fog feature
network FFA-Net and the light fog feature network LS-UNet, which can fully extract
the diverse features of the image. Finally, the features are fused through FIM to
achieve refined defogging. To further improve the positioning accuracy, we trained
the correction network SCP-Net to conduct a secondary verification on the segmented
image, obtaining more accurate results.

3. The experimental results show that the UGSAM has the best positioning accuracy in
all weather conditions. Meanwhile, it requires less time for training and inference and
has certain transferability, making it suitable for deployment in urban scenarios.

2. Materials and Methods
2.1. Study Area and Data Connection

We selected Chongqing in China as the focus of our research. The street layout in
the central urban area of Chongqing is complex and changeable, which can well test the
performance of the model. For the purpose of this study, we gathered streetscape imagery
of selected urban thoroughfares under typical meteorological conditions from the publicly
accessible Baidu Maps platform to serve as the foundational dataset for our experimental
analysis. Figure 1 shows the locations of the study areas. We selected the areas with a
population concentration of more than 5000 people per square kilometer and land use types
of build land and park for the study. Table 1 shows the proportion distribution of data of
different climate types in the selected images.

Figure 1. Location of study area. (a) A schematic diagram of the geographical location of the city in
China. (b) The population density statistical chart of the study area. (c) A statistical chart of land use
types in the study area.
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Table 1. The proportion distribution of data among different climate types.

Weather Type Quantity Proportion

Normal (sunny, cloudy) 687 50%
Rainy (ordinary) 68 5%
Rainy (rainstorm) 273 20%

Light haze 172 12.5%
Dense haze 172 12.5%

Recognising the substantial influence that climatic variations exert on the urban land-
scape, we undertook the compilation of an extensive adverse weather street view dataset to
enhance the robustness and scientific rigor of our investigation. This dataset encompasses
a diverse array of inclement weather scenarios, thereby facilitating a more holistic examina-
tion of the multifarious effects that disparate weather conditions impart upon the urban
streetscape. The specific details and categorizations of the data are delineated in Table 2.

Table 2. Streetscape data information.

Data Types Data Information Data Examples

streetscape-
NormalWeather

Baidu Map,
2018–2020,

1372 images

streetscape-
InclementWeather

RESIDE [36],
24,577 images

2.2. Data Preparation

We selected about 3% of the dataset for manual annotation. This part of the data
was first segmented using the SAM (ViT-H) to obtain model-generated vegetation regions.
Manual corrections were then applied, and correction points were annotated. The correction
points are divided into two types. The first type is erroneous segmentation correction points,
meaning areas incorrectly classified as vegetation. Equation (1) shows this process. The
second category is the correct nonsegmented points. They refer to vegetation regions that
were not correctly classified into the set. They are named T. Equation (2) shows this process.

P =
N⋃

i=1

(
V(i)

model − V(i)
true

)
(1)

T =
N⋃

i=1

(
V(i)

true − V(i)
model

)
(2)

V(i)
model represents the vegetation region divided by the model in the i picture, V(i)

true is
the real vegetation region in the i picture, and the error segmentation correction points of all
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samples form a set P. N is the total number of images processed, and its value is 50. During
the manual annotation process, two uniformly trained annotators independently annotated
using a cross-validation method. The annotation consistency was evaluated through the
kappa coefficient (kappa > 0.85). Disagreements were reviewed by an expert group to form
the final annotation results. All annotated data were verified through multiscale IoU and
boundary matching degree detection to ensure that the spatial error of the vegetation area
was controlled within 5 px.

The street view data was then cropped and regionally matched to the remotely sensed
data. The original streetscape data labeled S(j)

z×w represents the data of size z×w numbered
j. The select function filters the street view data from the study area bt, finally obtaining
the image group (k1, k2, . . . , kn) of the matched data, labeled S(k1, k2, ...,kn)

size×size . The specific
method is shown in Equation (3).

S(k1, k2, ...,kn)
size×size = select

(
S(j)

z×w, bt
)

(3)

2.3. Framework of UGSAM

We propose a UGSAM method based on the deep learning foundation model SAM by
using streetscape data for monitoring urban vegetation distribution. Figure 2 shows the
overall framework of the UGSAM.

Figure 2. The framework of UGSAM. (a) WRPM: Weather-Robust Preprocessing Module. The target
image is defogged by a dense haze region processing network (i.e., FFA-Net) and a light haze region
processing network (i.e., LS-UNet), and the feature fusion of the two modules is realized by using a
feature fusion module (i.e., FIM). (b) SAM. The processed image and prompt information are input
to the encoder, and the vegetation area mask is obtained by the decoder. (c) SCP-Net: Streetscape-
Correction Network. The module corrects the SAM output result.

The innovations in the UGSAM mainly include two parts. The first part is the WRPM.
It handles image clarity problems caused by bad urban weather and restores images to
their normal weather conditions as much as possible. The second part is the SCP-Net. This
network uses streetscape data with marked points for training. After the SAM produces
segmentation results, SCP-Net corrects these results.

2.4. WRPM: Weather-Robust Preprocessing Module

In urban street scene analysis, severe weather conditions such as haze often lead to
significant degradation in image quality, thereby affecting the accuracy of subsequent
critical tasks like vegetation segmentation [37]. To address this, we propose the WRPM,
which aims to maximize the restoration of image details through efficient dehazing and
provide clear and reliable input for subsequent segmentation tasks.

The WRPM module employs a parallel dual-branch structure, designed with spe-
cialized processing paths for regions with different haze concentrations. It then achieves
adaptive integration of information through feature fusion. The overall architecture mainly
consists of three parts. The WRPM module utilizes a multilevel convolutional neural
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network [38], combining feature fusion attention mechanisms, multiscale feature extraction,
and feature fusion strategies, enabling the effective restoration of images in complex haze
scenarios. Specifically, it is composed of a dense haze region processing network FFA-Net,
a light haze region processing network LS-UNet, and a feature fusion module FIM.

2.4.1. FFA-Net

FFA-Net is responsible for feature recovery in dense haze regions within the WRPM
module. We incorporated multiple residual blocks and a feature attention [39,40] mecha-
nism into this network, enabling it to extract deep-level features from images and effectively
process areas with heavy haze and blurred features. Additionally, we designed a multilevel
convolutional and residual connection structure within the network. This mechanism
ensures that the trained network prioritizes key regions with dense haze in the image,
aiming to restore details and structures in these heavily obscured areas. Figure 3 illustrates
the basic structure of FFA-Net.

Figure 3. Detailed structure diagram of FFA-Net. FFA-Net is an encoder–decoder structure and has a
unique channel attention and pixel attention mechanism designed to achieve deep learning of image
features. The image shows the design of the encoder, decoder, group structure, block structure, and
attention mechanism in detail.

The key to the implementation of FFA-Net lies in the feature attention mechanism.
We designed two types of attention: Channel Attention (CAffa) and Pixel Attention (PAffa).
Equation (4) describes the computation process of Channel Attention, which dynamically
adjusts the weights of feature channels to enhance the representation of haze-related feature
channels. Equation (5) describes the computation process of Pixel Attention, which allocates
attention weights at the pixel level to focus on and enhance features in local pixel regions
with higher haze concentration.

CAffa = σ(Conv(δ(Conv(γ(x)))))⊙ x (4)

PAffa = σ(Conv(δ(Conv(x))))⊙ x (5)

where x represents the input feature vector, σ denotes the sigmoid activation function,
Conv stands for convolution, δ represents the ReLU activation function, γ indicates average
pooling, and ⊙ signifies element-wise multiplication. The group structure is composed of
multiple block residual modules connected in series, along with skip connections, which
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enhance the main network’s ability to recover dense haze regions. The outputs of the
three-layer group modules are combined and then processed through the feature attention
module. This result is further integrated with the initial image via a global residual
connection to produce the desired output.

2.4.2. LS-UNet

For regions with light haze in the image, we designed an attention-driven dehazing
network based on UNet [41]. Building upon the classic UNet encoder–decoder structure,
we innovatively integrated the channel attention mechanism (CAffa) and the pixel attention
mechanism (PAffa), forming an attention-enhanced deep architecture. Figure 4 illustrates
the processing flow of input features within this module.

Figure 4. Detailed structure diagram of LS-UNet. LS-UNet is an encoder–decoder structure. It
implements downsampling inside the encoder to extract low-dimensional features from the image
through consecutive convolution operations, and implements upsampling inside the decoder to
enhance the ability to restore image details.

During the downsampling phase of LS-UNet, low-dimensional features are extracted
through consecutive convolutional operations, gradually reducing the spatial dimensions.
In the middle part of LS-UNet (i.e., the bottleneck layer), we enhanced its design by
introducing a dual-attention architecture that combines the channel attention mechanism
and the pixel attention mechanism. The channel attention mechanism dynamically adjusts
the weights of feature channels, focusing on more important feature channels to better
preserve key information in light haze regions. The pixel attention mechanism enhances
the ability to capture detailed features through local feature aggregation, providing richer
feature representations for the subsequent decoding phase. During the upsampling phase,
deconvolution operations are combined with features from corresponding layers to help
restore image details and edges. This design enables the network to excel in detail recovery
and edge preservation in light haze regions.

Notably, the introduction of the attention mechanism allows the network to adap-
tively aggregate features and selectively focus on multiscale features, emphasizing critical
aspects such as image structure and texture information while suppressing irrelevant noise.
This results in finer image restoration in light haze scenarios, providing clearer image
input boundaries for subsequent UGSAM urban vegetation segmentation and effectively
improving segmentation accuracy.
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2.4.3. FIM

To make full use of the two paths of features extracted from the FFA-Net and LS-UNet
paths, we designed the FIM. This module adopts a multilevel attention mechanism to
adaptively fuse and weight-fuse feature information at the spatial, channel, and pixel
levels. In this way, the FIM can effectively integrate feature information of hazy regions
with different concentrations. It ensures the overall clarity of the image and avoids the
possible local detail loss or information redundancy that may occur when processing with
a single path.

The most significant innovation of the FIM is the design of a multilevel attention mech-
anism. In this module, we redefined the channel attention and pixel attention. Moreover,
according to the characteristics of streetscape data, we introduced the spatial attention
mechanism to learn the spatial dimension information of the city.

Channel attention CAfim weights each channel through global context information. It
assigns weights to different channels according to their importance, enhancing the global
consistency and semantic information of the feature representation and improving the
feature capture ability of channels. The processing of input features by it is reflected in
Equation (6).

CAfim = Conv(δ(Conv(γ(x)))) (6)

Spatial attention SAfim captures important spatial positions in the image by calculating
the channel average and maximum values. It adjusts the feature weights of each position
according to the spatial distribution of the image, enhancing the feature representation
of the haze-covered areas and improving the ability of model to recognize haze. The
processing of input features by it is reflected in Equation (7). Here, β represents the max-
pooling operation, and Concat represents the channel concatenation operation.

SAfim = Conv(Concat(β(x), γ(x))) (7)

Pixel attention PAfim combines spatial and channel information to refine processing at
the pixel level. It enhances image details and edge features by refining each pixel position,
resulting in a clearer and more natural dehazed image. Equation (8) demonstrates the
processing of input features by the pixel attention (PAfim) module. Here, σ represents the
sigmoid activation function, the unsqueeze operation is used to add a dimension, and
rearrange denotes the tensor dimension rearrangement operation, which is used to restore
the original dimensions.

PAfim = σ(Conv(Rearrange([Unsqueeze(x), Unsqueeze(y)]))) (8)

2.4.4. Defogging Process

For the processing pipeline of streetscape data affected by adverse weather conditions,
the WRPM module employs a collaborative mechanism of dual-path parallel processing and
adaptive feature fusion. The input hazy image undergoes feature extraction through a dual-
branch structure, which involves two specific processes: dual-branch feature extraction
and module feature fusion.

Step 1: Dual-branch feature extraction. The input image is simultaneously fed into
two branches: the dense fog processing branch and the light fog processing branch. In the
dense fog branch, FFA-Net constructs a deep feature extractor through cascaded residual
blocks. Each residual block integrates CAffa and PAffa in an embedded manner, enabling
dynamic weight allocation for feature channels and pixel-level spatial focus. The light fog
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processing branch adopts an LS-UNet network with a symmetric structure. The feature
representation capability is enhanced using the method described in Equation (9).

Fmiddle = PAffa(CAffa(DoubleConv(Fenc))) (9)

Among them, Fenc is the feature output by the encoder. CAffa and PAffa adopt the
channel attention and pixel attention mechanisms in FFA-Net. DoubleConv represents two
consecutive Conv operations. In the decoding stage, transposed convolution is used for the
upsampling operation, and the feature of the corresponding encoding layer is concatenated
in channels through skip connection. This structure retains high-frequency details. At the
same time, through multiscale feature fusion, it enhances the texture restoration ability of
the hazy area.

After the dual-branch feature extraction, we obtain the feature maps Fffa ∈ RC×H×W

and Funet ∈ RC×H×W from the corresponding dual-branch of image output. These feature
maps are then input into the FIM. This module performs feature integration through a three-
stage attention mechanism, ultimately generating the output. The module first generates
the base fused features by element-wise addition, as shown in Equation (10), where ⊕
denotes element-wise addition.

Fbase = Fffa ⊕ Funet (10)

Step 2: Module feature fusion. After generating the base fused features, we optimize
the features using a dual attention mechanism. First, channel attention is applied by per-
forming global average pooling on the base fused features, followed by two convolutional
layers and nonlinear activation functions to generate channel weights Wc, which capture
the importance of each channel. Then, spatial attention is applied by performing max
pooling and average pooling on the base fused features, concatenating the two pooling
results, and using a convolutional layer to generate spatial weights Ws, which focus on
critical spatial regions. Finally, through the process in Equation (11), the base fused fea-
tures are combined with the channel weights and spatial weights. Through convolution
and activation functions, pixel-level fusion weights Wp are generated, enabling adaptive
pixel-level fusion to obtain Ffusion.

Ffusion = Fbase ⊕ (Wp ⊙ Fffa)⊕ ((1−Wp)⊙ Funet) (11)

The final output is corrected through convolution to obtain Foutput, as shown in
Equation (12).

Foutput = Conv(Ffusion) (12)

The streetscape data, formatted as S(k1, k2, ...,kn)
size×size , undergoes processing through the

WRPM method. Upon completion of the dehazing process, the resulting data is obtained in
the form of Sw(k1, k2, ...,kn)

size×size , representing the state of the image after haze removal.

2.5. SCP-Net: Streetscape-Correction Network

SCP-Net is a deep learning algorithm specifically designed for segmentation correction
of street view images, designed to correct errors in segmentation results generated by the
SAM. SCP-Net is trained by using streetscape data from labeled false segmentation points
and correct but unsegmented points to achieve accurate correction of segmentation results.

The training data of SCP-Net consists of two parts. The training dataset is expressed
as D = {(xiyi)}N

i=1, where xi is the input image and yi is the corresponding correction label
(binary mask). In the correction label yi, 0 represents the region of the P set in Equation (1),
and 1 represents the region of the T set in Equation (2).
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SCP-Net uses an encoder–decoder structure, and the encoder is partly based on
ResNet, a pretrained convolutional neural network used to extract multiscale features
from input images. The decoder part consists of multiple upper sampling layers and
skip connections, which are used to gradually recover the spatial resolution and generate
the corrected segmentation mask. The loss function of SCP-Net consists of two parts:
cross-entropy loss and Dice loss, which are used to deal with the class imbalance problem
and improve the accuracy of segmentation boundary, respectively. Cross-entropy loss is
calculated by Equation (13) and Dice loss is calculated by Equation (14), where ŷi is the
result of prediction correction of the input image xi.

LCE = − 1
N

N

∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (13)

LDice = 1− 2 ∑N
i=1 yi ŷi

∑N
i=1 yi + ∑N

i=1 ŷi
(14)

Equation (15) shows the definition of the total loss function, where λ is the weight
coefficient that balances the effects of the two losses.

L = λ · LCE + (1− λ) · LDice (15)

SCP-Net optimizes network parameters θ through backpropagation algorithms. Specif-
ically, the update rules of network parameters are shown in Equation (16), where η is the
learning rate and ∇θL is the gradient of the loss function over the network parameters.

θ ← θ − η∇θL (16)

In the training process, the Adam optimizer is used to update the parameters, and
the learning rate attenuation strategy is set to improve the training stability. In addition,
data enhancement techniques (random rotation, scaling, and flipping) are applied to the
training data to enhance the generalization ability of the model.

After SCP-Net completes training, it is set after the SAM decoder. The defogged
streetscape data Swki

size×size is input into the visual encoder of the SAM, forming the feature
vector In×tokens, as shown in Equation (17).

In×tokens = VisualEncoder
(

Swki
size×size

)
(17)

The SAM possesses a specialized prompt encoder capable of accepting various forms
of prompt information (point, text, box) to assist the model in segmenting specified areas.
We configure the text prompt parameter text with vegetation-related cue words (tree,
grass, vegetation), which are then fed into the prompt encoder according to Equation (18),
resulting in the prompt feature vector Pn×tokens.

Pn×tokens = PromptEncoder(text) (18)

The SAM ultimately outputs the segmentation result through the decoder. In Equation (19),
it generates the initial segmentation mask MSAM, where MSAM represents the vegetation region.

MSAM = MaskDecoder(In×tokens, Pn×tokens) (19)

SCP-Net corrects the initial segmentation mask MSAM. The encoder part of SCP-
Net extracts multiscale features from MSAM. The decoder part fuses features of different
scales through skip connections, gradually restoring spatial resolution. Finally, it out-
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puts the corrected segmentation mask MSCP. The correction parameters are presented
in Equation (20), where fSCP is the correction function of SCP-Net, and θ represents the
trained network parameters.

MSCP = fSCP(MSAM, θ) (20)

Through the aforementioned steps, SCP-Net corrects the segmentation results of SAM.
SCP-Net can identify and rectify missegmented points in the SAM model as well as real
vegetation areas that were not accurately segmented. The portion corresponding to MSCP

represents the final segmented vegetation region.

3. Results
As we aimed to explore the superiority of the UGSAM in the field of urban streetscape

data analysis through various experimental methods, the comparative experiments and
ablation experiments were designed. In the comparative experiments, we selected widely
recognized state-of-the-art methods from published research as benchmark models. Specif-
ically, we compared the performance of these benchmark models with the UGSAM across
multiple tasks: dehazing effectiveness, green space segmentation accuracy under normal
weather conditions, and green space segmentation accuracy under adverse weather con-
ditions. In the ablation experiments, we compared the performance of the original and
improved versions of each component of the UGSAM. These experiments were designed
to validate the advantages of the UGSAM in addressing extreme urban weather conditions
and complex terrain scenarios.

3.1. Experimental Setup
3.1.1. Experimental Configurations

In this study, the experimental platform uses an Intel(R) Xeon(R) Gold 6248R CPU
(Intel Corporation, Beijing, China) with 72 GB of memory. The GPU is NVIDIA RTX4090
(NVIDIA Corporation, Beijing, China). The operating system is Ubuntu 20.04, PyTorch 2.3.0,
Python 3.9, and CUDA version is 11.8. For network training, the learning rate is set to
1 × 10−3, batch size is 16, epochs are 500, the optimizer is Adam, and L1 regularization
is applied.

3.1.2. Metrics

The main evaluation metrics of this study are listed in Table 3. First, the primary
function of the UGSAM is to segment vegetation areas in streetscape images, so we need
to evaluate the accuracy of image segmentation. The image segmentation metrics include
OA (overall accuracy), mIoU (mean intersection over union), recall, and precision. Second,
the function of the WRPM within the UGSAM is to dehaze urban streetscape images,
and its performance needs to be assessed. The evaluation metrics for this include MSE
(mean squared error), PSNR (peak signal-to-noise ratio), SSIM (structural similarity index
measure), and LPIPS (learned perceptual image patch similarity).

Table 3. Summary of calculation formulas for performance metrics.

Abbreviation Formula

OA TP+TN
TP+TN+FN+FP

Recall TP
TP+FN

Precision TP
TP+FN

mIoU
TP

TP+FN+FP +
TN

TN+FN+FP
2
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Table 3. Cont.

Abbreviation Formula

MSE MSE = 1
mn ∑m−1

i=0 ∑n−1
j=0 [I(i, j)− K(i, j)]2

PSNR PSNR = 10 · log10

(
MAX2

I
MSE

)
SSIM SSIM(x, y) = (2µxµy+C1)(2σxy+C2)

(µ2
x+µ2

y+C1)(σ
2
x+σ2

y+C2)

LPIPS LPIPS(x, x0) = ∑l
1

HlW l ∑h,w dl
h,w

Where m and n are the dimensions of the image, I(i, j) is the pixel value of the original image at position (i, j),
K(i, j) is the pixel value of the processed image at position (i, j), MAXI is the maximum possible pixel value of the
image, x and y are two image patches being compared, and µx and µy are the average pixel values of x and y,
respectively. σ2

x and σ2
y are the variances of x and y, respectively. σxy is the covariance between x and y.

3.2. Comparative Experiments

To comprehensively evaluate the performance of different methods in the task of
vegetation region segmentation in street view data, we designed and conducted a series
of comparative experiments. The experiments consist of two main parts: the first part
compares the performance of dehazing networks, and the second part compares the overall
segmentation effectiveness of the UGSAM.

In the dehazing network performance comparison experiment, we compared our
designed dehazing network, WRPM, with several state-of-the-art methods, including
DCP [29], AOD-Net [30], EMRA-Net [31], GCANet [32], Dehamer [33], DehazeFormer [34],
and PMNet [35]. In the segmentation effectiveness comparison experiment, we evaluated
the urban street view green space segmentation network, the UGSAM, against K-means,
FCN [13], PointNet++ [14], and the SAM [22] under both normal weather conditions and
adverse weather conditions.

For each method, we trained and tested the models using the same street view dataset
under identical hardware and software configurations to ensure a fair comparison. To quan-
titatively assess the segmentation performance of each method, we selected representative
evaluation metrics.

3.2.1. Dehazing Effectiveness

Table 4 provides a detailed list of performance metrics for the model in image dehazing.
The WRPM significantly outperforms other methods in terms of MSE, PSNR, and

SSIM, achieving 52.3697, 30.94, and 0.9728, respectively. This indicates that the WRPM
can more effectively restore image details and structural information, producing dehazing
results that are closer to real haze-free images. Additionally, the LPIPS value of the WRPM
is 0.0067, significantly lower than other methods, showing that its dehazed images are
more perceptually close to real images with richer details. The above results show that
the difference between the dehazed images generated by the WRPM and real haze-free
images is the smallest. Overall, the WRPM demonstrates superior performance in dehazing
compared to other methods, proving its effectiveness in handling complex hazy scenes.

Table 4. Experimental results comparing dehazing effectiveness with conventional methods.

Models MSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓

DCP 2373.0352 17.51 0.8614 0.0600
AOD-Net 3377.9227 15.10 0.8049 0.0404

EMRA-Net 2154.2254 18.30 0.8651 0.0466
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Table 4. Cont.

Models MSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓

GCANet 2100.5785 19.22 0.8705 0.0455
Dehamer 943.6245 19.14 0.8399 0.1202

DehazeFormer 151.7440 27.34 0.9553 0.0102
PMNet 181.8680 26.69 0.9194 0.0689
WRPM 52.3697 30.94 0.9728 0.0067

The best results are highlighted in bold. ↓ means the smaller the better, ↑ means the bigger the better.

To intuitively demonstrate the effectiveness of WRPM, we show the application exam-
ples of five fog removal methods on some images in Figures 5–7.

Figure 5. The effectiveness of image dehazing, including DCP, AOD-Net, EMRA-Net, GCA-Net,
Dehamer, DehazeFormer, and the WRPM.

Figure 6. Comparative visualization of detail enhancement effects among DCP, AOD-Net, and
the WRPM.

Figure 7. Comparative visualization of detail enhancement effects among EMRA-Net, GCANet,
and the WRPM.

As illustrated in Figure 6, although the DCP algorithm achieves relatively thorough
haze pixel removal, this comes at the expense of significant original detail loss, resulting
in severe color distortion in the restored image. While AOD-Net partially alleviates the
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color distortion issue, it still suffers from an overall dark color cast and persistent detail
loss. In contrast, the proposed WRPM demonstrates exceptional performance in both
detail recovery and color restoration. The generated images exhibit enhanced clarity in
texture representation and more natural color reproduction, achieving visual quality that
substantially outperforms both the DCP and AOD-Net algorithms. The restored results
closely approximate real scenes, indicating the superior capability of WRPM in maintaining
photorealistic fidelity during the dehazing process.

The selected hazy image in Figure 7 represents a typical scenario with nonuniform haze
density distribution between distant and nearby areas. While the distant regions suffer from
extremely dense haze, the foreground areas exhibit relatively light fog contamination. As
shown in Figure 7, EMRA-Net demonstrates moderately effective haze removal in nearby
regions but shows significant limitations in addressing dense haze within distant areas,
manifesting substantial residual haze artifacts. GCANet, conversely, overly concentrates
on distant haze elimination, resulting in suboptimal restoration of foreground regions
where considerable haze persists, particularly evident in the building area marked by the
red rectangle.

In comparison, the proposed WRPM achieves more balanced dehazing performance.
Our method not only demonstrates remarkable haze removal capability in distant heavy-
haze regions (as indicated by the blue frame), it also maintains superior restoration quality
in near-view areas. The foreground building within the red frame exhibits minimal haze
residue with clear detail restoration and natural color reproduction, closely resembling
haze-free reference images. This comparative analysis indicates that the WRPM effectively
addresses the challenging task of nonuniform haze distribution by adaptively balancing
regional restoration priorities, thereby achieving comprehensive haze removal across both
distant and nearby regions.

3.2.2. Green Space Segmentation Accuracy

We compared the accuracy of K-means, FCN, PointNet++, the SAM, and the UGSAM
in segmenting green regions in images under normal weather conditions. Through this
performance evaluation, we aimed to demonstrate the superiority of the UGSAM in the field
of green region segmentation. Table 5 provides a detailed comparison of the performance
metrics of these models for green region segmentation in streetscape data under normal
weather conditions.

Table 5. Experimental results comparing the UGSAM with conventional methods in normal condition.
The checkpoint of the SAM is ViT-H.

Models OA Recall Precision mIoU

K-means 0.6667 0.7761 0.7429 0.6118
FCN 0.7755 0.8846 0.8415 0.7582

PointNet++ 0.8061 0.9091 0.8537 0.7865
SAM 0.8673 0.9506 0.8953 0.8556

UGSAM 0.8776 0.9634 0.8977 0.8681
The best results are highlighted in bold.

The UGSAM achieved an OA of 0.8776, which represents a 7.15% improvement over
PointNet++ and a 1.03% improvement over the SAM. Its mIoU reached 0.8681, showing an
8.25% improvement over PointNet++ and a 1.25% improvement over the SAM. The recall
score of 0.9634 indicates that the model excels at detecting vegetation regions to the greatest
extent. Additionally, the UGSAM achieved a precision score of 0.8977, surpassing all other
models. The final results demonstrate that the UGSAM significantly improves segmentation
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accuracy compared to K-means, FCN, PointNet++, and the SAM, highlighting its superior
performance in green region segmentation tasks.

Figure 8 shows an example of the original data input. We spatially matched the
acquired street view data and ultimately formed a 360-degree panoramic input image.

Figure 8. The 360° panoramic streetscape imagery after haze removal.

Figure 9 shows the streetscape data completed by UGSAM segmentation. As can be
seen from the images, the UGSAM demonstrates powerful performance, with extremely
high accuracy in segmenting objects.

Figure 9. The panoramic image after segmentation using the UGSAM in normal weather conditions.

After completing the segmentation, the mask decoder of the UGSAM segments
the specified regions based on the prompt information encoded in the prompt encoder.
Figure 10 displays the final segmented vegetation areas.

Figure 10. Extracted streetscape images with vegetation areas separated.
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Meanwhile, under adverse urban weather conditions, we compared the accuracy of
K-means, FCN, PointNet++, the SAM, and the UGSAM in segmenting green regions in
images. Through this performance evaluation, we aimed to demonstrate the capability
of the UGSAM to handle diverse and challenging urban climate conditions. Table 6
provides a detailed comparison of the performance metrics of these models for green region
segmentation in streetscape data under adverse weather conditions.

Table 6. Experimental results comparing UGSAM with conventional methods in adverse condition.
The checkpoint of the SAM is ViT-H.

Models OA Recall Precision mIoU

K-means 0.4982 0.4906 0.3768 0.2708
FCN 0.5796 0.6625 0.5521 0.4309

PointNet++ 0.5595 0.6301 0.5257 0.4017
SAM 0.6986 0.8135 0.7394 0.6322

UGSAM 0.8615 0.9345 0.9027 0.8490
The best results are highlighted in bold.

The UGSAM achieved an OA of 0.8615, an mIoU of 0.8490, a recall of 0.9345, and
a precision of 0.9027, outperforming all other models. The accuracy of other models
significantly decreases compared to their performance under normal weather conditions.
The final results indicate that, compared to K-means, FCN, PointNet++, and the SAM, the
UGSAM delivers the most outstanding performance in adverse weather scenarios, further
validating its robustness and effectiveness in challenging environments.

Figure 11 demonstrates the segmentation results of images under adverse weather
conditions, both with and without the WRPM module. As can be observed from the figure,
the original images exhibit a certain degree of haze, resulting in reduced clarity. In the
segmentation results of the images without WRPM processing, some trees are not identified,
and multiple trees are incorrectly grouped into a single object. Additionally, the distinction
between trees and buildings is not clearly defined. However, after applying WRPM for
haze removal, these issues are significantly alleviated, and the segmentation accuracy is
largely restored to the level achieved under normal weather conditions.

Figure 12 presents a detailed comparison, illustrating the segmentation results of
images under adverse weather conditions with and without the WRPM module. From the
left-side images, it can be observed that after WRPM processing, the vegetation areas are
correctly segmented, whereas the original image fails to achieve the segmentation target.
From the right-side images, it is evident that only a small portion of the vegetation area is
segmented in the unprocessed image, with the majority of the vegetation regions remaining
unrecognized by the model. In contrast, the processed image successfully segments all
vegetation areas, with clear boundaries between trees distinctly visible.

Figure 13 provides a detailed comparison, showcasing the segmentation results with
and without the application of SCP-Net. The differences within the black boxes promi-
nently highlight the effectiveness of SCP-Net. In the image without SCP-Net processing,
certain vegetation areas are missed during segmentation. However, after correction, the
previously unsegmented regions are accurately segmented, successfully improving the
overall segmentation accuracy.
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Figure 11. Visualization of the impact of the WRPM on segmentation accuracy. (a) The street view
image captured under harsh weather conditions. (b) The segmentation result obtained without
any preprocessing. (c) The segmentation result after applying the WRPM. (d) The ground truth
for comparison.

Figure 12. Visualization of segmentation details for both the original image and the image processed
with the WRPM. The arrows indicate a magnified view of the details within the red box in the
original images.
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Figure 13. Visualization of the correction effects of SCP-Net on image segmentation results. The ar-
rrows indicate a magnified view of the details within the red box in the original images. The black
boxes highlight the areas where SCP-Net has performed corrections.

3.3. Ablation Experiments
3.3.1. WRPM

To verify the effectiveness of the WRPM, we conducted ablation experiments on
the UGSAM framework. The experimental group removes the WRPM component while
retaining other identical network structures, with comparative tests conducted on mixed
datasets containing both normal and severe weather conditions and adverse weather street
scenes in a ratio of 2:1. This design aims to isolate the specific contribution of the WRPM in
enhancing segmentation robustness.

As shown in Table 7, the experimental results demonstrate significant performance
improvements after incorporating the WRPM. In the defogging module of the UGSAM, the
use of the WRPM leads to superior performance in all four metrics—OA, recall, precision,
and mIoU—compared to using FFA-Net or LS-UNet alone. Specifically, OA improves
by 1.17% and 0.89%, respectively. Meanwhile, experiments on FCN and PointNet++ also
validate the generalizability of these results. Although the recall of WRPM applied to FCN
is slightly lower than that of FFA-Net, the difference is only 0.39%, and all other metrics
show improvement. This experiment indicates that the WRPM, which integrates FFA-Net
and LS-UNet, is the optimal choice as a defogging module.

Table 7. Performance comparison of FFA-Net, LS-UNet, and the WRPM in the defogging module
of UGSAM.

Models WRPM OA Recall Precision mIoU

FFA-Net 0.6809 0.8077 0.7820 0.6968
FCN LS-UNet 0.6872 0.7914 0.7793 0.6935

WRPM 0.6935 0.8038 0.7878 0.7028

FFA-Net 0.7529 0.7596 0.8171 0.6903
PointNet++ LS-UNet 0.7471 0.7544 0.8204 0.6880

WRPM 0.7562 0.7665 0.8242 0.6989

FFA-Net 0.8515 0.9152 0.8941 0.8316
UGSAM LS-UNet 0.8543 0.9116 0.8935 0.8274

WRPM 0.8632 0.9277 0.9048 0.8452
The best results are highlighted in bold.
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3.3.2. SCP-Net

An important aspect of our study is the use of SCP-Net to correct the results of
SAM segmentation to improve accuracy. To test the impact of this module on UGSAM
performance, we designed an ablation experiment. We tested among FCN, PointNet++,
and the UGSAM, where the experimental group removes the SCP-Net and the control
group retains the SCP-Net, to analyze the pattern of change in model performance. The
data used for the test consisted of normal weather street scenes and adverse weather street
scenes in a ratio of 2:1.

Table 8 shows the experimental results for different models and schemes. We con-
ducted four sets of experiments, and the experimental results show that after using SCP-Net
for correction, the OA of FCN is improved by 0.58%, the mIoU is improved by 0.47%, and
both recall and precision are improved. The OA of PointNet++ is improved by 0.94%, mIoU
is improved by 1.58%, and recall and precision are improved significantly. The OA of the
UGSAM is improved by 1.04%, mIoU is improved by 0.61%, and recall and precision are
also improved significantly. The experimental results show that the addition of SCP-Net
helps to correct the image segmentation results and improve the segmentation accuracy.

Table 8. Effects of SCP-Net on segmentation accuracy.

Models SCP-Net OA Recall Precision mIoU

FCN ✗ 0.6877 0.7961 0.7757 0.6981
FCN ✓ 0.6935 0.8038 0.7878 0.7028

PointNet++ ✗ 0.7468 0.7554 0.8188 0.6831
PointNet++ ✓ 0.7562 0.7665 0.8242 0.6989

UGSAM ✗ 0.8528 0.9166 0.8980 0.8391
UGSAM ✓ 0.8632 0.9277 0.9048 0.8452

The best results are highlighted in bold.

Another key innovation of SCP-Net lies in its multicomponent loss function, which
combines cross-entropy (CE) and Dice loss. To investigate the influence of different loss
functions on the performance of the UGSAM, a second ablation study was designed.
Four experimental groups were established: Group 1 employed focal loss, Group 2 used
standalone CE loss, Group 3 utilized standalone Dice loss, and Group 4 integrated all three
loss functions. The control group replicated the original methodology, combining CE and
Dice loss. The data used for the test consisted of normal weather street scenes and adverse
weather street scenes in a ratio of 2:1.

Table 9 presents the experimental results for different models and configurations. It
can be observed that when using the combination of CE loss and Dice loss, PointNet++
achieves the best performance across all four metrics. FCN and the UGSAM achieve the
best results in OA, recall, and mIoU, but their precision is slightly lower than that of the
combination of all loss functions.

Among the two metrics, recall and precision, recall reflects the proportion of actual
positive samples that are correctly predicted, while precision focuses on the proportion
of predicted positive samples that are actually positive. We prioritize models with higher
recall because, in large-scale data, it is extremely difficult to manually identify vegetation
areas that are not detected, whereas identifying errors in already segmented regions is
easier due to the smaller area that needs to be checked.
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Table 9. Effects of different loss functions on SCP-Net performance. Focal loss (i.e., FL), cross-entropy
loss (i.e., CEL), Dice loss (i.e., DL), recall (i.e., Re), precision (i.e., Pr).

Models FL CEL DL OA Re Pr mIoU

✓ ✗ ✗ 0.6889 0.7984 0.7779 0.6993
✗ ✓ ✗ 0.6913 0.7996 0.7772 0.6998

FCN ✗ ✗ ✓ 0.6908 0.8001 0.7831 0.7006
✗ ✓ ✓ 0.6935 0.8038 0.7878 0.7028
✓ ✓ ✓ 0.6921 0.7996 0.7895 0.7003

✓ ✗ ✗ 0.7516 0.7592 0.8192 0.6863
✗ ✓ ✗ 0.7524 0.7604 0.8210 0.6886

PointNet++ ✗ ✗ ✓ 0.7552 0.7597 0.8199 0.6907
✗ ✓ ✓ 0.7562 0.7665 0.8242 0.6989
✓ ✓ ✓ 0.7531 0.7614 0.8231 0.6897

✓ ✗ ✗ 0.8542 0.9173 0.9001 0.8403
✗ ✓ ✗ 0.8599 0.9246 0.9027 0.8417

UGSAM ✗ ✗ ✓ 0.8603 0.9196 0.9035 0.8410
✗ ✓ ✓ 0.8632 0.9277 0.9048 0.8452
✓ ✓ ✓ 0.8620 0.9264 0.9062 0.8437

The best results are highlighted in bold.

4. Discussion
4.1. Analysis of Method Performance Superiority

This study demonstrates the significant advantages of the UGSAM model in image
defogging and semantic segmentation tasks through multidimensional metrics. The WRPM
module within UGSAM employs a dual-channel branch structure to process dense fog and
light fog regions in images in parallel, and subsequently integrates the extracted features
via a fusion module. This approach maximizes defogging effectiveness while preserving as
many original image characteristics as possible. The WRPM is capable of addressing images
with reduced clarity caused by adverse weather conditions such as rain and fog, thereby
enhancing the accuracy of vegetation localization. Additionally, the SCP-Net component
of the UGSAM refines the segmentation results produced by the SAM, further improving
localization precision.

In the comparative experiments, on one hand, we conducted a performance compari-
son between the defogging WRPM and other defogging networks. The results are presented
in Table 4. In the experimental results, the LPIPS metric indicates that the defogged images
by the WRPM are perceptually closer to ground truth and possess richer details. The results
of SSIM and PSNR suggest that the defogged images generated by the WRPM have the
minimal difference from the ground truth. In Figures 5–7, the results processed by different
defogging methods are visualized. Through comparison, it can be found that the WRPM is
always the closest to the ground truth.

On the other hand, we tested the vegetation segmentation performance of the UGSAM
method under normal and adverse weather conditions. The segmentation accuracy directly
determines the positioning accuracy. The results under normal weather conditions are
presented in Table 5, and those under adverse weather conditions are shown in Table 6. In
adverse weather conditions, the UGSAM achieved extremely significant improvements
over the SAM in multiple indicators, with OA increasing by 16.29%, and realized high-
precision positioning of vegetation areas. Under normal weather conditions, the OA of the
UGSAM was only 1.03% higher than that of the SAM, which is not significant. However,
the main contribution of this study lies in the scenarios of severe weather. Therefore, the
improvement brought about by normal weather is an additional contribution. In the future,
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we hope to achieve a breakthrough in the positioning accuracy of vegetation under normal
weather conditions.

In the ablation experiments, we conducted three distinct tests. Firstly, we performed
split tests on the three modules within the WRPM, with the results detailed in Table 7.
The findings indicate that the integration of FFA-Net and LS-UNet via FIM yields opti-
mal performance. Secondly, we evaluated the performance of SCP-Net, as presented in
Table 8. The results demonstrate that SCP-Net significantly enhances positioning accuracy.
Finally, we examined various loss functions employed in SCP-Net, with the outcomes re-
ported in Table 9. The experimental data reveal that our proposed composite loss function
outperforms all alternatives tested.

4.2. Computational Resource Cost

The primary objective of this study is to implement the proposed method in the
practical application of vegetation area positioning within urban environments. A critical
discussion on the feasibility of deploying this method at the edge in urban scenarios
is essential. The challenges associated with model deployment and the computational
resources consumed during operation are the key determinants of its deployment viability.
Given that this research involves large-scale models, which are typically characterized by
high computational demands, it is imperative to evaluate the computational resources
required for operation. For this analysis, the arithmetic power of the NVIDIA RTX4090
(82.58 TFLOPS with FP32) was used as a benchmark.

As illustrated in Table 10, we compared the number of parameters and GFLOPs of the
model in this study with those of multimodal large models during the training phase. The
results indicate that WRPM trains 34.4 M parameters and consumes 3.72 GFLOPs, whereas
SCP-Net trains 1.7 M parameters and consumes 0.46 GFLOPs. These figures demonstrate
significantly lower computational resource consumption compared to the training require-
ments of the three SAM weight variants, highlighting superior cost-effectiveness and
enabling scalable, low-cost deployment of the algorithm in urban settings.Models based on
the Transformer architecture have a large amount of computation due to the self-attention
mechanism and generally have more than 100 M parameters, which is much higher than
the computational cost of the UGSAM [33,34].

Table 10. The parameter quantity and computational power consumption of each module in
the UGSAM.

Method Params (M) GFLOPs

WRPM (FFA-Net) 17.6 1.75
WRPM (LS-UNet) 14.5 1.51

WRPM (FIM) 2.3 0.48
SCP-Net 1.7 0.46

SAM (Vit-H) 636 81.34
SAM (Vit-L) 308 39.39
SAM (Vit-B) 91 11.64

Table 11 presents the training time of the SAM, the WRPM and SCP-Net, as well as
the time required for inferring a standard image. All computations were carried out on a
single NVIDIA RTX4090 graphics card.

It can be observed from the table that the total training duration for the entire UGSAM
is approximately 16 h and 30 min. Additionally, the time required to infer a single im-
age using the Vit-B weights is around 32 s. Compared to the extensive training periods
lasting several months and the requirement for hundreds of high-memory GPUs associ-
ated with large models, the UGSAM introduced in this study demonstrates remarkable
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cost-effectiveness and efficiency, rendering it highly suitable for large-scale deployment in
urban environments.

Table 11. The training and inference time of each module in the UGSAM.

Method Training Time (h) Inferencing Time (s)

WRPM (FFA-Net) 7.3 4.22
WRPM (LS-UNet) 5.5 3.68

WRPM (FIM) 3.1 3.07
SCP-Net 0.6 0.94

SAM (Vit-H) 0 (Freeze) 56.13
SAM (Vit-L) 0 (Freeze) 32.19
SAM (Vit-B) 0 (Freeze) 19.87

4.3. Limitations and Scalability

Although the UGSAM offers low cost and high accuracy, its application may be
constrained in certain urban environments. In regions susceptible to natural disasters or
those affected by conflict, the spatial layout alterations may diverge from established social
and economic development models, complicating the model’s ability to provide consistent
estimates. In these specific urban contexts, employing the UGSAM necessitates relabeling
the data and training the SCP-Net.

Fortunately, SCP-Net has a relatively small parameter count, resulting in significantly
lower time and cost requirements for training compared to larger models. If deployment
is essential in these particular scenarios or if enhanced accuracy is desired, we can opt to
freeze both the encoder and decoder of the SAM while flexibly increasing the number of
network layers during SCP-Net training to improve precision. This approach will incur
a slight increase in cost. However, it remains substantially less than that associated with
fine-tuning the SAM.

Additionally, the WRPM serves as a universal defogging module characterized by
strong transferability and is not limited by scene transitions.

5. Conclusions
This study proposes an efficient real-time monitoring method for urban street vege-

tation conditions. The research develops an innovative solution using deep learning and
multimodal visual large models. We present the UGSAM, a method for real-time analysis
of street view images to extract vegetation areas, which meets urban greening management
requirements with high accuracy and low operational costs.

The UGSAM integrates feature fusion with a multiattention mechanism Weather-
Robust Processing Module, the WRPM, combined with a segmentation correction protocol
network, SCP-Net. This architecture enables effective handling of image degradation
caused by variable urban weather conditions while improving recognition accuracy. The
correction network helps refine vegetation segmentation results by identifying overlooked
vegetation areas, enhancing overall segmentation precision.

We conducted comprehensive comparative experiments and ablation studies on bench-
mark datasets. The superior performance of the UGSAM was validated through multiple
perspectives and task scenarios. In standard weather conditions, the OA of the UGSAM
achieved 0.8776 for vegetation segmentation tasks, representing a 1.2% improvement over
the SAM. The mIoU reached 0.8681, showing a 1.5% enhancement compared with the SAM.
Under adverse weather conditions, the UGSAM demonstrated exceptional capability, with
OA and mIoU surpassing the SAM by 18.9% and 25.5%, respectively, showing significant
performance advantages.
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In the ablation experiments, we designed three sets of experiments to validate the
effectiveness and superiority of each component in the UGSAM. First, we tested the
performance of the UGSAM using the WRPM with fused features against using FFA-Net
and LS-UNet individually. The results showed that the model with the WRPM performed
the best. Second, we tested the performance of the UGSAM with and without SCP-Net,
and the results demonstrated that the incorporation of SCP-Net improved the model’s
performance. Finally, we experimented with multiple loss function strategies during the
training of SCP-Net to determine the optimal approach. The results indicated that the
combination of cross-entropy loss and Dice loss yielded the best performance, which is
consistent with the strategy used in the UGSAM.

In conclusion, these results are of significant importance, as they are likely to be used
for potentially important findings in the field of urban greening distribution recognizing.
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