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Abstract: The transponder-style deception jamming implemented by Digital Radio Fre-
quency Memory (DRFM) exhibits high similarity to real target radar echoes, while tradi-
tional detection methods suffer severe performance degradation under low signal-to-noise
ratio (SNR) conditions. To address this issue, this paper proposes a DRFM active deception
jamming detection method based on diagonal integral bispectrum, aiming to overcome the
bottleneck of jamming detection under low-SNR conditions. By establishing a harmonic
effect signal model for DRFM deception jamming, the cross-term generation mechanism
in the bispectrum domain is revealed: the jamming signal generates dense cross-terms
due to harmonic distortion, whereas the real target energy exhibits single-peak aggrega-
tion. To quantify this difference, the Diagonal Integral Bispectrum Relative Peak Height
(DIBRP) is proposed to characterize the energy aggregation of true and false targets in the
diagonal integral bispectrum, and the Diagonal Integral Bispectrum Approximate Entropy
(DIBAE) is introduced to describe their complexity. A joint detection framework combining
the DIBRP-DIBAE dual-feature space and a polynomial kernel support vector machine
(SVM) is constructed to achieve active deception jamming detection. The proposed method
demonstrates excellent performance under low-SNR conditions. Simulations and experi-
mental results show that the correct detection rate reaches 92% at a jamming-to-signal ratio
(JSR) and SNR of 0 dB, validating the effectiveness of the algorithm.

Keywords: radar jamming detection; active deception jamming; Diagonal Integral
Bispectrum; Diagonal Integral Bispectrum Relative Peak Height (DIBRP); Diagonal Integral
Bispectrum Approximate Entropy (DIBAE)

1. Introduction
Over recent decades, the emergence and advancement of Digital Radio Frequency

Memory (DRFM) technology have enabled jammers to generate active deceptive signals
highly coherent with radar-transmitted waveforms, posing significant challenges to ac-
curate target identification [1–3]. By leveraging diverse modulation schemes and flexible
parameter configurations, jammers further exacerbate the difficulty of radar recognition.
To counter such threats, researchers have explored anti-jamming strategies from multiple
dimensions. However, whether focusing on signal-level countermeasures [4] or radar
network-layer defenses [5], the core objective remains focused on improving target iden-
tification accuracy. In real-world electronic warfare scenarios, rapidly and effectively
distinguishing jamming signals is critical to maintaining operational superiority.
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In studies on DRFM repeater jamming, Hill identified that DRFM jammers introduce
harmonic components during signal interception and storage due to sampling and quanti-
zation processes [6]. He pioneered the use of harmonic effects from sampling quantization
as a means for jamming detection. Lu further developed a theoretical harmonic model for
DRFM deception signals and validated the regularity of harmonic components using the
fractional Fourier transform (FRFT) [7], clarifying their correlation with jammer parameters.
Zhang theoretically confirmed the harmonic effects induced by DRFM sampling quantiza-
tion and demonstrated the distinct differences between jamming signals and target echoes
through time–frequency domain analysis [8]. Ding proposed a novel detection method
by extracting singular values of jamming signals [9], normalizing them into histogram
features (e.g., variance, skewness, entropy, and kurtosis), and training an SVM classifier
using these feature vectors. Li employed singular spectrum analysis (SSA) and introduced
a constant false alarm rate (CFAR) detection framework [10]. Conversely, the aforemen-
tioned studies predominantly focus on the harmonic effects of DRFM-based jammers. In
addition to utilizing the harmonic effects of DRFM jammers to counteract active decep-
tion jamming, Hao proposed a dense false target jamming recognition method based on
time–frequency atomic decomposition theory and an SVM. The extracted time–frequency
parameters of Gabor atoms can effectively characterize the intrinsic features of both target
jamming and dense false target jamming [11]. Dong introduced a blind source separation
method based on tensor decomposition (TD-BSS) to suppress mainlobe DRFM jamming,
enabling the separation of target echo signals and jamming signals [12]. However, both
studies share similar limitations: Traditional time–frequency domain analysis struggles
to extract frequency–phase coupling features of DRFM deception jamming signals. Since
jammers cannot fully simulate the entire radar signal transmission process, nonlinear phase
distortion during modulation cannot be accurately characterized, leading to differences in
frequency–phase coupling between deceptive jamming signals and genuine target echoes.
Moreover, in low signal-to-noise ratio (SNR) scenarios, the time–frequency feature resolu-
tion deteriorates sharply. Methods based on the short-time Fourier transform (STFT) or the
Wigner–Ville distribution fail to distinguish time–frequency energy distribution differences
between genuine target echoes and jamming signals, resulting in increased false alarms
and reduced detection probability. With the continuous advancement of deep learning
models, an increasing number of studies have applied such models to signal recognition
tasks. Yang proposed a neural network architecture based on a hybrid attention module
(HAM) and transformer to identify DRFM deception jamming, achieving a balance between
accuracy and computational complexity [13]. Kong designed a deep convolutional separa-
tion network with a dilation mechanism that was inspired by the principle of blind source
separation. This approach expands the receptive field of the convolution and enhances the
network’s ability to capture the temporal dependencies of the input signals [14]. Although
deep learning techniques have demonstrated their effectiveness in signal recognition, most
existing methods still suffer from the following limitations: (1) low classification accuracy
under low-JSR conditions and (2) a large number of network parameters, which hinder
their deployment on resource-constrained mobile and embedded devices.

To address these issues, this study introduces bispectral analysis for distinguishing
genuine target echoes and jamming signals. The bispectrum retains phase information,
extracts phase coupling characteristics, and suppresses Gaussian noise, enabling the ex-
traction of subtle features that traditional methods overlook. Among the existing research
methods, Li compared the distinct characteristics of target echoes and deception jamming
in terms of higher-order cumulants and the bispectrum. Simulation results revealed notable
differences between target echoes and deception jamming in these higher-order statistical
domains [15]. However, the study directly processed the bispectral data, which resulted in
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relatively high computational complexity. To reduce the computational complexity of the
algorithm, it is advisable to consider applying dimensionality reduction to the bispectrum.
Existing research shows that a dimensionality-reduced bispectrum performs well under
harmonic conditions [16]. To address these limitations, this paper proposes an innovative
solution by pioneering the application of higher-order statistical analysis (HOSA) to decep-
tion jamming detection, particularly HOSA. HOSA excels in capturing phase information,
phase coupling, and non-Gaussian characteristics while maintaining phase preservation
and scale invariance, significantly enhancing signal processing robustness.

As a powerful tool in signal processing, a higher-order spectrum (HOS) can intuitively
reveal the frequency and phase coupling relationships between harmonic components in
signals. In recent years, it has demonstrated broad application potential in fields such as
image processing and object recognition. Particularly, the bispectrum—the lowest-order
HOS—offers minimal computational complexity while retaining all the advantageous
properties of HOS, including complete suppression of Gaussian noise interference. This
makes bispectral analysis the preferred choice in HOS applications. However, despite
being the lowest-order HOS, the bispectrum is inherently a two-dimensional function
due to its computational formulation. Direct computation imposes a significant compu-
tational burden, making it impractical for real-time monitoring requirements. To address
computational complexity, Li [17] proposed an innovative approach by extracting only
the diagonal slices of the bispectrum for analysis, thereby reducing the computational
load. Meng [18] adopted another method, leveraging diagonal integration to compress the
originally high-dimensional bispectral data into two dimensions. Both strategies enhance
efficiency and lower algorithmic complexity for specific applications, demonstrating practi-
cal utility. A critical consideration lies in preserving the intrinsic discriminative features
between genuine and deceptive targets within the bispectral space during dimensionality
reduction, thereby avoiding information obscuration caused by compression. The core
challenge resides in designing dimensionality reduction mapping functions that maintain
the nonlinear separability of target categories—originally embedded in the full-dimensional
bispectrum—within the compressed feature space.

To address the above challenges, this study proposes a difference-guided dimension-
ality reduction mechanism—bispectral projection based on diagonal integration paths.
By constraining the alignment between the integration path and the principal compo-
nents of signal nonlinear coupling, this method ensures that dimensionality reduction not
only compresses data dimensions but also directionally enhances discriminative features
between genuine and deceptive targets. Specifically, DRFM deception jamming mani-
fests in the bispectral domain as phase coupling distortion at specific frequency points.
The diagonal integration path accumulates these distortion features through integration
along interference-sensitive directions, thereby amplifying inter-class separability in the
low-dimensional space.

This study proposes a diagonal integrated bispectrum (DIB)-based DRFM deception
jamming detection method, leveraging the unique advantages of bispectral analysis in
extracting nonlinear phase coupling through third-order cumulants while inherently sup-
pressing Gaussian noise due to the vanishing third-order cumulants of Gaussian processes.
By computing the bispectrum of the received signal, the method captures essential dis-
criminative features between jamming and genuine targets, particularly under low-SNR
conditions. To address the computational complexity of high-dimensional bispectral data,
a dimensionality reduction strategy is implemented via diagonal integration along the
bispectral sub-diagonal, which not only compresses the feature space but also concen-
trates the nonlinear distortion patterns induced by DRFM artifacts. Two discriminative
metrics—Diagonal Integrated Bispectrum Relative Peak Height (DIBRP) and Diagonal
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Integrated Bispectrum Approximate Entropy (DIBAE)—are subsequently extracted to
quantify energy concentration and dynamic complexity, respectively. These features are fed
into a polynomial kernel support vector machine (SVM) to resolve nonlinear separability
challenges in the compressed feature space. The framework achieves robust detection
performance by directionally amplifying DRFM-specific phase coupling signatures, en-
abling reliable discrimination even in noise-dominated environments, as validated through
simulations and field-measured data experiments.

The structure of this paper is organized as follows: Section 2 constructs a signal model
of DRFM deceptive jamming, serving as the theoretical foundation of this study. Section 3
provides a systematic explanation of bispectral analysis, introduces the symmetry proper-
ties of the bispectrum, and demonstrates the rationality and superiority of the bispectral
dimensionality reduction method employed in this work. Section 4 investigates the dif-
ferences between DRFM deceptive jamming and genuine target echoes in the diagonal
integrated bispectrum and further analyzes the theoretical basis and discriminative effec-
tiveness of the proposed features. Section 5 validates the proposed method through a series
of simulation experiments, covering performance evaluations under various jamming sce-
narios. A comparative analysis with existing methods is conducted to verify the superiority
and robustness of the proposed approach. Moreover, experiments based on measured data
are designed across multiple datasets with different types of jamming to further demon-
strate the practical applicability of the algorithm. Finally, Section 6 summarizes the main
conclusions of this work.

2. DRFM-Based Deception Jamming Signal Model
In this section, a signal model for deception jamming based on DRFM is constructed.

The variations in the central frequency and chirp rate of the jamming signal are analyzed,
providing a foundation for subsequent research. This facilitates the use of bispectral analysis
to characterize the differences between deception jamming signals and real target echoes.

Given that pulse compression technology effectively addresses the trade-off between
detection range and range resolution in conventional pulse radar systems, this study
will consistently adopt the commonly used linear frequency modulation (LFM) signal for
subsequent analyses. Let the transmitted radar signal have a bandwidth of B, a pulse
width of τ, a chirp rate of µ = B/τ, and a pulse repetition period of Tr, with a central
frequency of fc. The transmitted radar signal can be expressed in terms of these parameters
as follows [8]:

s(t) =

[
p(t) ∗

n=−∞
∑
∞

δ(t − nTr)

]
· ejπµt2 · ej2π fct (1)

p(t) =

{
1, − τ

2 ⩽ t ⩽ τ
2

0, else
(2)

Once the DRFM receiver successfully intercepts the radar signal, it first performs
frequency conversion, modulating the signal to the receiver’s intermediate frequency (IF).
Subsequent modulation is then carried out in the IF domain. Let the intermediate frequency
of the DRFM receiver be f0. After down-conversion, the received signal at the DRFM
receiver can be expressed as follows:

x(t) = s(t) · ej2π f0t · e−j2π fct (3)



Remote Sens. 2025, 17, 1957 5 of 26

Assuming that the quantization bit number of the jammer receiver during sampling
quantization is M and it undergoes N = 2M bit quantization, according to reference [19],
the signal after N = 2M bit quantization can be expressed as

y(t) =
∞

∑
m=−∞

sin c(m +
1
N
) · ej(Nm+1)·(2π f0t+πµt2) (4)

A DRFM jammer modulates signals that have undergone phase quantization by
introducing false Doppler shifts and time delays. The signal is then upconverted to restore
carrier information before being transmitted. The emitted signal can be expressed as

ŷ(t) = y[t − c(t)] · ej2π fjt · ej2π( fc− f0)t · p(t) (5)

In the above equation, f j represents the false Doppler shift, while c(t) is a time delay
function. It is typically assumed that c(t) = at follows a linear function; however, in
practical DRFM jammers, it is often approximated using a staircase function. Consequently,
c(t) is quantized into a piecewise continuous time function denoted as c(t) = at. Based on
this, a mathematical model for the deceptive jamming signal generated by a DRFM jammer
can be established.

ŷ(t) ≈
∞
∑

n=−∞
p(t − nTr) · ej2π( fc− f0+ fj)t·

∞
∑

m=−∞
sin c(m +

1
N
) · ej(Nm+1)[2π f0(1−a)t+πµ(1−a)2t2]

(6)

Thus, after down-conversion, the radar receiver detects the deceptive jamming LFM
signal retransmitted by the DRFM jammer, which can be expressed as follows:

z(t) = ŷ(t) · e−j2π fct = p(t) · ej2π(− f0+ fj)t·
∞
∑

m=−∞
sin c(m +

1
N
) · ej(Nm+1)[2π f0(1−a)t+πµ(1−a)2t2] (7)

After receiving the deception signal retransmitted by the DRFM jammer at the radar
receiver, it is necessary to further analyze the spectral characteristics of the signal. Therefore,
for ease of representation, the above equation can be rewritten as

z(t) = p(t) ·
∞

∑
m=−∞

sin c(m +
1
N
) · ej(Nm+1)[πµ(1−a)2t2] · ej(Nm+1)[2π f0(1−a)t] · ej2π(− f0+ fj)t (8)

Let the primary term be denoted as f1(t) = ej(Nm+1)[πµ(1−a)2t2], and the secondary
term is denoted as f2(t) = ej(Nm+1)[2π f0(1−a)t] · ej2π(− f0+ fj)t. Performing a Fourier transform
on the secondary term yields F2( f ) = δ[ f − (Nm + 1)(1 − a) f0 − fj + f0]. Given the com-
plexity of the primary term, a fractional Fourier transform is considered for its analysis [20].

F1( f ) =
√

1+jtanα
1+k(m) tan α

ej π f 2 [k(m)−tan α]
1+k(m) tan α

k(m) = (Nm + 1)µ(1 − a)
(9)

According to the principles of the Fourier transform, the spectrum of the product
of f1(t) and f2(t) in the time domain corresponds to the convolution of their respective
spectra, F1( f ) and F2( f ), in the frequency domain. Considering the frequency-domain
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representation of F2( f ), this operation results in an F2( f )-to-F1( f ) spectral shift. Under the
condition of α = π/2, we obtain

Z( f ) = P( f ) ∗
∞
∑

m=−∞
sin c(m +

1
N
) · F1( f ) ∗ δ[g( f )]

g( f ) = f − (Nm + 1)(1 − a) f0 − fj + f0

,

P( f ) =
τ

Tr
sin c(πτ f )

k=−∞
∑
∞

δ( f − k
Tr
)

(10)

where p(t) represents the spectrum of P( f ). The spectrum of the interference signal z(t),
as can be seen from the above equation, is composed of multiple distinct components.

The component of Z( f ) when m = 0 lies within the same frequency band as the
genuine target echo is important. Therefore, the component of Z( f ) when m = 0 can play
a deceptive role. Thus, the component of Z( f ) when m = 0 is referred to as the main
term. Aside from the main term, the interference spectrum still contains components for
m ̸= 0, which are referred to as harmonic components or interference spurious terms. As
observed from the frequency spectrum analysis of F1( f ) in Equation (9), the amplitude term
|F1( f )| decreases with increasing m, while the bandwidth of the spurious terms increases
accordingly. The intensity of the spurious terms is primarily determined by |F1( f )|, and
it undergoes attenuation by a factor of sin c(m + 1/N). These harmonic components,
exhibiting a certain regularity, provide the potential for distinguishing between true and
false targets.

Based on the above analysis, the following conclusion can be drawn: the frequency
information of both the main and spurious components in the deceptive jamming signal
can be calculated. For clarity, let µ

(m)
N denote the modulation frequency of the harmonic

components under a quantization bit depth of M and N = 2M, and let f (m)
N represent the

center frequency of the harmonic components under the same quantization condition. In
practical applications, since the towing rate is generally on the order of 10−6 [7], (1 − a)2 is
approximately equal to 1. Thus, the following equation holds [7]:{

f (m)
N = (Nm + 1) f0 − f I

µ
(m)
N = (Nm + 1)µ

(11)

In the above equation, m = 0, ±1, ±2, · · · . Based on this equation, the center fre-
quency and modulation frequency of both the main component and harmonic components
in the jamming signal can be uniquely determined. Specifically, the center frequency de-
pends on two variables, M and f0, indicating that the center frequency of the interference
harmonics is related to the quantization bit depth of the jammer. Here, f0 is given by
f0 = f I + fd,where f I represents the down-conversion frequency of the jammer and fd

corresponds to the Doppler frequency of the target. Similarly, the modulation frequency
also depends on two variables, M and µ, meaning that the modulation frequency of the
interference harmonics is determined by both the quantization bit depth of the jammer and
the modulation frequency of the radar-transmitted signal.

Next, simulations will be conducted to validate the aforementioned theoretical analysis.
The experiment simulates two types of signals: the genuine target echo and the deceptive
jamming signal generated by a DRFM jammer. A time–frequency domain comparison of
these two signal types is performed.

Figure 1 presents a time–frequency domain comparison between the true genuine
echo and the deceptive jamming signal generated by the DRFM jammer, as received by the
radar receiver in a noise-free environment. The interference signal is an LMF signal with a
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bandwidth of 10 MHz, a sampling frequency of 1.024/2 GHz, and a pulse width of 1 µs.
From the figure, the modulation characteristics of the spurious components can be clearly
observed. In the left panel, only a single linear modulation component is present. However,
in the right panel, in addition to the frequency modulation characteristic similar to that in
the left panel, two additional modulation components with steeper slopes can be observed.
Since the slope corresponds to the modulation frequency, a steeper slope indicates a higher
modulation frequency. These steeper modulation components represent the modulation
characteristics of the spurious terms.

(a) (b) 

Figure 1. Comparison of the genuine target echo with the DRFM jamming signal in the time–
frequency domain: (a) time–frequency diagram of the genuine target echo; (b) time–frequency of the
DRFM jamming signal.

In conclusion, when the radar echo contains only the genuine target echo, it appears
as a single independent LFM signal. However, once the radar receives a deceptive jamming
signal modulated and generated by the DRFM jammer, the harmonic effect causes multiple
LFM signals with specific frequency characteristics to appear simultaneously in the received
echo [7]. The theoretical analysis aligns well with the experimental results.

3. Bispectral Analysis and Dimensionality-Reduced Bispectrum via
Diagonal Integration

Through the analysis in the previous section, it is established that when radar re-
ceives deceptive jamming signals forwarded by DRFM jammers, multiple LFM signals will
simultaneously appear in radar echoes. Within this research framework, this section intro-
duces higher-order cumulants and the bispectrum based on the definition of higher-order
statistics. Theoretical validation was conducted to demonstrate the feasibility of bispectral
analysis in addressing this specific problem. Furthermore, we propose the implementation
of diagonal integration as a dimensionality reduction technique for bispectral features. This
approach enables directional focusing of nonlinear phase coupling characteristics in DRFM
jamming signals through bispectral feature concentration and extraction.

To achieve accurate radar signal identification and detection, it is essential to extract
discriminative key parameters from signal characteristics. Compared with traditional
time–frequency analysis methods, higher-order cumulants exhibit significant theoretical
advantages in feature extraction. Notably, their inherent blindness to Gaussian noise
stems from the theoretical property that third-order and higher cumulants vanish for
Gaussian processes, thereby effectively suppressing interference from additive Gaussian
noise. Moreover, compared to second-order statistical methods, higher-order cumulants
not only preserve the phase information, non-Gaussian characteristics, and discriminative
classification properties of signals but also enable the extraction of higher-order spectral
domain features through multidimensional Fourier transforms, thereby transcending the
inherent limitations of second-order statistics in feature representation dimensionality.
Consequently, this study adopts bispectral features derived from higher-order cumulants
as the core analytical framework.
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Let x be defined as a random variable, where x = [x1, x2, . . . , xn]
T , and let f (x) denote

the probability density function of random variable x. The first and second characteristic
functions are defined as follows [21]:{

ϕ(ω) =
∫ +∞
−∞ f (x)ejωtdx = E[ejωt]

ψ(ω) = ln[ϕ(ω)]
(12)

The kth-order cumulant, ck, of random variable x is defined as

ck = ψ(ω)|ω=0 (13)

For a stationary random signal s(t), the third-order cumulant with time delays τ1, τ2

is defined as [18]

c3(τ1, τ2) = E{s∗(t)s(t + τ1)s(t + τ2)} (14)

The bispectrum is defined as the two-dimensional Fourier transform of the third-order
cumulant, expressed mathematically as [18]

B(ω1, ω2) =∫ ∞
−∞

∫ ∞
−∞ E(s∗(t)s(t + τ1)s(t + τ2))e−jω1τ1e−jω2τ2dτ1dτ2 =

S(ω1)S(ω2)S∗(ω1 + ω2)

(15)

Based on the analysis in the preceding section, when radar systems are subjected to
DRFM-based deception jamming, the received echoes will contain multiple LFM signal
components. Conversely, in the absence of DRFM jamming, only a single LFM component
corresponding to the genuine target echo exists. This section conducts bispectral analysis on
both signal models and theoretically investigates whether discriminative bispectral features
exist between genuine target echoes and DRFM-generated deceptive jamming signals.

Let the DRFM jamming signal be represented as A(t) = A1(t) + A2(t) + A3(t), where
Ai(t) = ai(t)ej(ϕi(t)). Here, ai(t) denotes the amplitude envelope (typically a constant).
ϕi(t) = 2π( f0t + ki

2 t2), where f0 represents the initial frequency and ki corresponds to the
chirp rate. Similarly, for the genuine target echo B(t) = B1(t), an analogous parameteriza-
tion can be expressed as B1(t) = aB(t)ej(ϕB(t)).

To simplify computation, the bispectrum is defined as the expectation of the triple
product of the signal’s Fourier transform [19]:

S( f1, f2) = E{X( f1)X( f2)X∗( f1 + f2)} (16)

where X( f ) denotes the Fourier transform of signal x(t), E{·} represents the expectation
operator, and X∗( f ) indicates complex conjugation.

In the frequency domain, the Fourier transform of the DRFM jamming signal is
expressed as

XA( f ) = XA1( f ) + XA2( f ) + XA3( f ) (17)

Substituting this representation into the bispectrum formula yields

SA( f1, f2) = E
{
(XA1( f1) + XA2( f1) + XA3( f1))(XA1( f2) + XA2( f2) + XA3( f2))

(X∗
A1
( f1 + f2) + X∗

A2
( f1 + f2) + X∗

A3
( f1 + f21))

} (18)

A detailed expansion of the aforementioned equation reveals that the bispec-
trum of the DRFM jamming signal comprises 27 combinatorial terms, categorized
into self-product terms and cross-product terms. The self-product terms, such as
E
{

XA1( f1)XA1( f2)X∗
A1
( f1 + f2)

}
, account for 3 terms, which are analogous to the bispec-
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trum of a single LFM signal. The remaining 24 cross-product terms
E
{

XA1( f1)XA2( f2)X∗
A3
( f1 + f2)

}
arise from nonlinear interactions between distinct sig-

nal components; here, it refers to the phase coupling phenomena induced by DRFM
modulation mechanisms.

The bispectrum of the genuine target echo, which corresponds to a single LFM signal,
is expressed as

SB( f1, f2) = E{XB( f1)XB( f2)X∗
B( f1 + f2)} (19)

Since no multiple signal components are present in this scenario, cross-product terms
are inherently absent, leaving only self-product terms in the bispectral representation.

By comparing Equation (18) and Equation (19), the following conclusions can be
drawn: The bispectrum of DRFM jamming signals contains three self-product terms and
multiple cross terms, resulting in a higher number of coupling frequencies and bispectral
peaks compared to genuine target echoes. Consequently, bispectral analysis serves as
an effective tool for discriminating between genuine target returns and DRFM deception
jamming in this context.

Prior to bispectral dimensionality reduction, the symmetry properties of the bispec-
trum must be thoroughly investigated to ensure that the selected reduction approach
effectively extracts discriminative bispectral features between the two genuine and DRFM-
jammed signals.

The third-order cumulant, C3x(τ1, τ2), of a real-valued stationary random sequence
{x(k)} satisfies the following six fundamental symmetry relations in the two-dimensional
temporal domain [19]:

c3x(τ1, τ2) = c3x(τ2, τ1) = c3x(−τ2, τ1 − τ2)

= c3x(τ2 − τ1,−τ1) = c3x(τ1 − τ2,−τ2)

= c3x(−τ1, τ2 − τ1)

(20)

In radar systems, complex-valued signals are conventionally employed due to their
inherent capability to simultaneously preserve both amplitude and phase information. This
necessity underscores the critical importance of bispectral analysis for complex signals in
such applications.

For a complex-valued stationary signal {x(k)}, the conjugation operator in the
third-order cumulant definition (Equation (14)) may be applied to any one term or
two terms within the product. However, for each distinct conjugation configuration, only
one of the six symmetry relations in Equation (18) remains valid. The bispectrum of a
complex signal typically exhibits symmetry about a specific axis S in the ( f1, f2) frequency
plane, where S ∈

{
f1 = f2, f2 = − 1

2 f1, f1 = − 1
2 f2, f1 = − f2

}
. Table 1 enumerates the six

conjugation configurations and their corresponding bispectral symmetry relations [19],
where {x(ω)} denotes the Fourier transform of the complex signal {x(k)}.

Table 1. Corresponding symmetry relations.

E{x∗(t)x(t + τ1)x(t + τ2)} S( f1, f2) = E{X( f1)X( f2)X∗( f1 + f2)}
S( f1, f2) = S( f2, f1)

E{x(t)x∗(t + τ1)x(t + τ2)} S( f1, f2) = E{X∗(− f1)X( f2)X(− f1 − f2)}
S( f1, f2) = S( f1,− f1 − f2)

E{x(t)x(t + τ1)x∗(t + τ2)} S( f1, f2) = E{X( f1)X∗(− f2)X(− f1 − f2)}
S( f1, f2) = S(− f1 − f2, f2)

E{x(t)x∗(t + τ1)x∗(t + τ2)} S( f1, f2) = E{X∗(− f1)X∗(− f2)X(− f1 − f2)}
S( f1, f2) = S( f2, f1)

E{x∗(t)x∗(t + τ1)x(t + τ2)} S( f1, f2) = E{X∗(− f1)X( f2)X∗( f1 + f2)}
S( f1, f2) = S(− f1 − f2, f2)

E{x∗(t)x(t + τ1)x∗(t + τ2)} S( f1, f2) = E{X( f1)X∗(− f2)X∗( f1 + f2)}
S( f1, f2) = S( f1,− f1 − f2)
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The analysis in this study adopts the first definition, as enumerated in Table 1.
Third-order cumulant: c3(τ1, τ2) = E{s∗(t)s(t + τ1)s(t + τ2)}.
Bispectrum: S( f1, f2) = E{X( f1)X( f2)X∗( f1 + f2)}.
Symmetry axis: S( f1, f2) = S( f2, f1); this implies symmetry about the

principal diagonal.
To address the high computational complexity inherent in bispectral analysis due to

the massive data volume of two-dimensional bispectral representations, dimensionality
reduction techniques are conventionally employed in higher-order spectral analysis.

In this study, the bispectral data is processed as follows: it is integrated along the
sub-diagonal direction, and the resulting output is termed the DIB [18]. Due to the inherent
symmetry of the bispectrum about the main diagonal, sub-diagonal integration super-
imposes symmetrical discriminative features with respect to the main diagonal, thereby
amplifying their distinctiveness. The mathematical representation is given by [22]:

DIB( f ) = DIB( f ′1) =
∫ ∣∣∣∣B( f ′1, f ′2)

∣∣∣∣d f ′2 (21)

The coordinate system, ( f ′1, f ′2), is derived by rotating the original ( f1, f2) coordinate
system 45◦ counterclockwise about the origin [22].

Subsequent experimental validation of the theoretical analysis was conducted using
both simulated and field-measured datasets [23–27]. The bispectral characteristics and
diagonally integrated bispectral profiles of genuine and DRFM-jammed signals were
systematically analyzed. Experimental results are summarized as follows:

Figure 2 shows the bispectra of DRFM-jammed signals and genuine target echoes
obtained through simulations. The simulation parameters were set as follows: a sampling
frequency of 150 MHz, a bandwidth of 10 MHz, a pulse width of 1 µs, and an SNR of 0 dB.
The Fourier transform length is set to 1024; the window length is 128; the sliding step is 64,
and the direct method is used to estimate the bispectrum. As can be seen from the figure,
the bispectrum of the authentic target echoes exhibits more concentrated energy, while the
bispectrum of the deceptive jamming signals displays numerous glitches and distinct peaks
at specific frequency positions, corresponding to the cross-product terms and self-product
terms mentioned in the theoretical analysis above.

Figures 3 and 4 present the bispectrum and DIB of genuine target echoes and DRFM
deceptive jamming signals derived from field-measured datasets [23–27].

    
(a) (b) 

(c) (d) 

Figure 2. Bispectrum of the genuine target echo signal and the DRFM deception jamming sig-
nal: (a) bispectrum of the genuine target; (b) bispectrum of the DRFM deception jamming signal.
Figure (c) is the top view of Figure (a). Figure (d) is the top view of Figure (b).
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(c) (d) 

Figure 3. Bispectrum of the genuine target echo signal and the DRFM deception jamming sig-
nal: (a) bispectrum of the genuine target; (b) bispectrum of the DRFM deception jamming signal.
Figure (c) is the top view of Figure (a). Figure (d) is the top view of Figure (b).
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Figure 4. Diagonal integral bispectral of the genuine target echo and the DRFM deception jamming
signal: (a) DIB of the genuine target echo signal; (b) DIB of the DRFM deception jamming signal.

A comparative analysis of bispectral plots between simulated genuine target echoes
and DRFM deception jamming signals demonstrates that the simulated signals exhibit high
fidelity in replicating measured data, thereby corroborating the theoretical feasibility of the
proposed framework.

A comparative analysis of the dimensionally reduced bispectral plots between the
two signal classes reveals significant discrepancies in their diagonally integrated bispec-
tral profiles. As illustrated in the plots (generated from field-measured datasets), the
diagonally integrated bispectrum of the genuine target exhibits a localized energy peak
with minimal surrounding fluctuations (left panel). In stark contrast, the diagonally in-
tegrated bispectrum of the DRFM-jammed signal demonstrates extensive undulations
around the primary energy concentration, particularly along the frequency axis ( f = 0)
and principal diagonal ( f1 = f2) (right panel). These distinctive fluctuations originate from
spurious modulation artifacts introduced by DRFM-generated false components during
frequency-agile deception.

Figure 5 presents the feature extraction results for DRFM deception jamming signals
under 0 dB SNR conditions, obtained through spectral analysis and DIB analysis. This study
demonstrates that both methodologies effectively detect spurious modulation features
inherent in the jamming signals. To validate the robustness of bispectral analysis in low-
SNR environments, comparative experiments were conducted at a reduced SNR of −5 dB,
with results illustrated in Figure 6.
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Figure 5. Spectrograms and DIB plots of genuine and deceptive targets at 0 dB: (a) spectrogram of the
genuine target at 0 dB; (b) spectrogram of the deceptive target at 0 dB; (c) DIB of the genuine target at
0 dB; (d) DIB of the deceptive target at 0 dB.

  
(a) 

 
(c) 

(b) 

(d) 

Figure 6. Spectrograms and DIB plots of genuine and deceptive targets at −5 dB: (a) spectrogram of
the genuine target at −5 dB; (b) spectrogram of the deceptive target at −5 dB; (c) DIB of the genuine
target at −5 dB; (d) DIB of the deceptive target at −5 dB.

As shown in Figure 6, conventional spectral analysis exhibits significant degradation
in spurious component detection under low-SNR conditions, while the diagonal integrated
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bispectrum maintains high feature discriminability. This observation aligns with the
theoretical analysis of bispectral noise suppression: The third-order cumulant calculation
in bispectral analysis inherently suppresses Gaussian noise while retaining critical phase
information neglected by conventional power spectrum methods.

4. Discriminative Feature Extraction from Diagonally Integrated
Bispectral Differences

As demonstrated in the preceding analysis, significant discriminative disparities exist
between genuine radar targets and DRFM deception jamming signals within the bispectral
domain. The diagonal integration method not only reduces bispectral dimensionality
but also accentuates and extracts these discriminative features, thereby amplifying the
observable differences between the two signal classes in the DIB domain. To establish
an effective detection model, this approach requires the transformation of morphological
differences in diagonal integrated bispectra into quantifiable statistical features, providing
a foundation for subsequent classifier design based on third-order statistical properties.

4.1. Diagonal Integral Bispectrum Relative Peak Height Feature

To enable quantitative detection, a systematic analysis was conducted. As illustrated
in Figure 4, the DIB of genuine target echoes demonstrates a compact energy concentration
profile, whereas the DIB of DRFM deception jamming exhibits significant spurious fluc-
tuations characterized by pronounced glitches. This disparity motivates the extraction of
relative peak height discrepancies in their diagonal integrated bispectral representations.
Accordingly, we propose the DIBRP metric to quantify the energy concentration disparity
between the two signal types through third-order statistical analysis. The DIBRP parameter
effectively captures the fundamental difference in energy aggregation patterns caused by
nonlinear phase coupling characteristics inherent to genuine radar returns.

The DIBRP is mathematically defined as the ratio of the DIB peak amplitude in the test
unit to the average DIB peak amplitude of reference units. This metric reflects the energy
magnitudes contained in different signal components.

The calculation formula of DIBRP is as follows:

Peak(z) = max
fd

{DIB( fd)} (22)

In Equation (22), fd denotes the normalized frequency of the DIB, while X( fd) repre-
sents the magnitude spectrum obtained through bispectral diagonal integration.

The offset of the DIB is

f max
d (z) = arg max

fd
{DIB( fd)} (23)

The DIBRP is defined as

DIBRP(z) =
Peak(z)

1/#∆ ∑ fd∈ f max
d +∆ DIB( fd)

(24)

In Equation (24), where ∆ = [−δ1,−δ2] ∪ [δ2,−δ1], δ1 denotes the interval width of
reference units for the DIB; δ2 represents the maximum possible bandwidth of the target; ∆
is the set composed of reference units; and #∆ indicates the number of elements in the set ∆.

Building upon the theoretical analysis of the DIBRP, the following conclusion is
derived: the concentrated energy distribution in the DIB of genuine target echoes results in
significantly higher DIBRP values compared to DRFM deception jamming signals, whose
dispersed bispectral energy profiles yield attenuated DIBRP magnitudes. To validate
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this hypothesis, a comparative simulation study was conducted using 300 samples of
radar returns from both genuine targets and DRFM-generated deception jamming signals
under an SNR of 5 dB. The DIBRP features extracted from these datasets were statistically
analyzed, with the resultant feature histogram presented in the figure below:

As evidenced in the Figure 7, the DIBRP exhibits substantial discriminative capability
between genuine radar target echoes and DRFM-generated deception signals. The experi-
mental results align rigorously with theoretical predictions, thereby validating DIBRP as
an effective discriminative feature for integration into the proposed detection algorithm.

Figure 7. Discrimination capability of DIBRP features.

4.2. Diagonally Integrated Bispectrum Approximate Entropy Feature

As illustrated in Figure 4, the energy concentration characteristics of genuine target
echoes and DRFM deception jamming signals exhibit significant divergence, which can
be conceptualized as restructured signal ensembles. These restructured ensembles exhibit
distinct complexity profiles, a disparity that can be quantified using entropy features—a
well-established metric for evaluating signal sequence complexity—as demonstrated in
prior studies [28,29].

Considering that approximate entropy (ApEn) serves as a robust method for detecting
sequence randomness and unpredictability, it effectively quantifies the complexity of
signal sequences and the likelihood of novel information generation. By incorporating
permutation concepts, this metric combines inherent noise resistance with computational
efficiency. This paper proposes the Diagonal Integral Bispectrum Approximate Entropy
(DIBAE) to measure the structural complexity of diagonal integrated bispectral sequences
and quantify their discriminative characteristics. The DIBAE is formally defined as

For an n-point DIB{x1, x2, · · · , xn} sequence, the sequence is sequentially partitioned
into m-dimensional pattern vectors u(1), u(2), · · · , u(n − m + 1), where
u(i) = [xi, xi+1, · · · , xi+m−1], 1 ≤ i ≤ n − m + 1. The distance between two pattern vectors,
u(i) and u(j), is defined as the Chebyshev distance (maximum absolute difference):

d[u(i), u(j)] = max
k=0,1,··· ,m−1

[|DIB(i + k)− DIB(j + k)|] (25)

Given a threshold tolerance r, count the number of pattern vectors u(j) whose Cheby-
shev distance from u(i) is less than r. For Nm

i (r) = num(d[u(i), u(j)] ≤ r)(1 ≤ i, j ≤
n − m + 1), compute the ratio of Nm

i (r) to (n − m + 1):

Cm
i (r) =

Nm
i (r)

n − m + 1
(1 ≤ i ≤ n − m + 1) (26)
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For all pattern vectors u, take the natural logarithm of their corresponding Cm
i (r)

values and compute the average:

φm(r) =

i=1
Σ

n−m+1
ln Cm

i (r)

n − m + 1
(27)

Repeating the aforementioned procedure in the m + 1 dimensional space yields
φm+1(r). The approximate entropy of the DIB sequence, termed DIBAE, is then
computed as

A(m, r) = φm+1(r)− φm(r) (28)

Building upon the theoretical analysis of the DIBAE, the following conclusion is
derived: due to the inherently higher complexity of DRFM deception signals in the DIB
domain compared to the relatively stable and low-complexity DIB profiles of genuine
target radar echoes, the DIBAE values extracted from genuine target returns are expected
to be significantly lower than those of DRFM-jammed signals. To validate this hypothesis
and empirically assess the discriminative capability of DIBAE, a simulation study was
conducted using 300 independent samples of radar returns—150 from genuine targets and
150 from DRFM-based deception jammers—under an SNR of 5 dB. The computed DIBAE
distributions for both signal classes are statistically summarized in Figure 6.

As can be seen from the Figure 8, the DIBAE feature can completely distinguish
between genuine radar target echoes and DRFM interference signal echoes, without any
aliasing. This indicates that DIBAE exhibits strong discriminative capability in feature
separation. The experimental results are consistent with the theoretical analysis. Therefore,
DIBAE can be used as an effective feature for algorithm detection in this paper.

Figure 8. Discrimination capability of DIBAE features.

4.3. Nonlinear Decision Modeling Based on Polynomial Kernel SVM

To address the nonlinear separability characteristics inherent in the authentic/deceptive
target classification task, this study employs a polynomial kernel-based support vector
machine (SVM) to construct nonlinear decision boundaries, significantly enhancing clas-
sification robustness under low-SNR conditions. Unlike conventional linear SVM that
only generates linear hyperplanes, the polynomial kernel effectively captures interaction
effects between DIBAE and DIBRP feature spaces through kernel-induced mapping into
the higher-dimensional Hilbert space [30].
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The polynomial kernel function is defined as K
(
Xi, Xj

)
=

(
γXi•Xj

)d
+ r, where d

denotes the polynomial degree, γ represents the kernel coefficient, and r indicates the
bias term. This kernel mapping projects the original 2D feature space into a d-th-order
polynomial-combined space, thereby transforming the originally nonlinearly inseparable
deceptive jamming signals and genuine target echoes into linearly separable representations
within the transformed space. By adjusting the polynomial degree d, the complexity of the
decision boundary can be dynamically controlled: Lower degrees (e.g., d = 2) construct
smooth nonlinear boundaries to mitigate overfitting, while higher degrees (e.g., d = 3)
precisely capture localized nonlinear structures in the feature distribution.

After obtaining the two types of discriminative features mentioned above, the true
and false targets are separately subjected to feature extraction of these differences. These
two categories of discriminative features are then input into a polynomial kernel SVM
classifier, resulting in a well-defined decision boundary.

Using simulated data, radar target echo signals and DRFM deceptive jamming signals
were generated under a JSR of 0 dB, with SNRs of 10 dB, 8 dB, 6 dB, and −2 dB, respectively.
For each SNR level, 500 samples of genuine radar echoes and 500 samples of DRFM
deception jamming signals were selected. Discriminative features were extracted from each
dataset and subsequently fed into the polynomial kernel SVM classifier. The corresponding
decision boundaries were numerically reconstructed based on spatial feature distributions,
with visualization results presented in Figure 9.

  
(a) (b) 

 
(c) (d) 
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AE
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Figure 9. SVM decision boundaries of genuine radar echoes and DRFM jamming signals: (a) 10 dB;
(b) 8 dB; (c) 6 dB; (d) −2 dB.

From Figure 7, it can be observed that genuine radar echo signals exhibit smaller
DIBAE values and larger DIBRP values, indicating superior energy concentration
(i.e., better energy aggregation) and lower complexity. In contrast, DRFM deception jam-
ming signals, due to the presence of coupling phenomena, display larger DIBAE values
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and smaller DIBRP values, reflecting poorer energy concentration (i.e., energy dispersion)
and higher complexity.

4.4. Implementation Steps of the Algorithm

In summary, the flowchart of the DRFM deception jamming detection method based
on the DIB is illustrated in Figure 10, and the procedure can be summarized as follows:

 

Target and 
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Figure 10. Flow chart of the DRFM jamming signal detection method.

1. Signal Preprocessing: The raw signal is subjected to third-order cumulant compu-
tation, generating a two-dimensional bispectrum matrix that preserves phase infor-
mation while exhibiting enhanced noise robustness. Leveraging the higher-order
statistical properties of the bispectrum enables the effective characterization of non-
linear coupling phenomena, demonstrating superior discriminative capability over
conventional power spectrum-based approaches.

2. Dimensionality Reduction via Diagonal Integration: An integration operation is per-
formed along the bispectrum’s sub-diagonal direction, compressing the 2D bispectral
representation into a 1D DIB. This methodology circumvents interpolation artifacts
inherent in axial or radial integration strategies while preserving the concentrated
expression of bispectral differences between genuine and deceptive targets.

3. Multi-Dimensional Feature Extraction: From the dimensionality-reduced diagonal
integrated bispectrum, two complementary discriminative features are derived: the
DIBRP, which quantifies the energy concentration by measuring the relative amplitude
of the dominant spectral peak, and the DIBAE, which evaluates nonlinear dynamical
complexity through approximate entropy analysis. These features synergistically
enhance separability by exploiting distinct signal characteristics: DIBRP captures
amplitude-domain energy aggregation differences, while DIBAE isolates nonlinearity-
driven irregularities induced by DRFM modulation artifacts.

4. Kernel SVM-Based Classification: A polynomial kernel support vector machine
(SVM) is employed to address nonlinear separability challenges in the feature space.
The kernel function parameters are optimized through cross-validation to balance
model complexity and generalization performance, effectively mitigating overfitting
risks associated with conventional linear classifiers.

5. Experiments and Results
5.1. Simulation Experiment Validation

To validate the effectiveness of the proposed method, simulation experiments were
conducted using MATLAB R2020a and the HOSA toolbox, with the following experimental
parameters. The simulation conditions were set according to the configurations described
in reference [8], as detailed in Table 2 below:
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Table 2. Simulation parameters.

Parameter Parameter Value

Signal Bandwidth (MHz) 10
Number of Training Samples 750
Number of Testing Samples 250

Sampling Rate (MHz) 150
Pulse Width (µs) 1

Referencing the architecture of typical DRFM jammers, the DRFM quantization bit
number was set to M = 2 (a low value reflecting the prevalence of miniaturized jam-
mers in practical airborne systems [8]). The noise was modeled as zero-mean additive
white Gaussian noise (AWGN) following a Gaussian distribution. The SNR is defined as
SNR = |s(t)|2/|n(t)|2, where s(t) and n(t) denote the signal and noise, respectively.
The jamming-to-signal ratio (JSR) is defined as JSR = |j(t)|2/|s(t)|2, where j(t) rep-
resents the jamming signal. Since jamming signals typically exhibit higher energy than
target signals, three JSR conditions (0 dB, 3 dB, and 5 dB) were specifically designed for
experimental validation.

Figures 11–13 present the jamming detection performance curves derived from
1000 Monte Carlo simulations under varying SNRs (from −10 dB to 10 dB) with a quan-
tization bit number of M = 2. For each SNR, 750 samples were used for training, and
250 samples were reserved for testing. Figure 11 illustrates the overall correct detection rate
of the test dataset, reflecting the algorithm’s comprehensive detection accuracy. Figure 12
demonstrates the target misclassification rate (TMR), defined as the probability of genuine
targets being erroneously classified as jamming signals. Figure 13 quantifies the jamming
misclassification rate (JMR), characterizing the probability distribution of jamming signals
being misidentified as target echoes.

Figure 11. Overall accuracy recognition rate curves.

Figure 12. Target misidentification rate curves.
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Figure 13. Jamming misclassification rate curves.

As illustrated in Figure 11, under identical SNR conditions, the overall detection
rate exhibits an upward trend as the JSR decreases, indicating improved classification
accuracy. Conversely, for a fixed JSR, increasing the SNR progressively reduces the impact
of environmental noise on jamming harmonic features, thereby enhancing the quality of
discriminative features that can be effectively extracted. This results in a monotonic increase
in detection probability, which ultimately converges to a stable level.

As shown in Figures 12 and 13, under identical SNR conditions, both the TMR and JMR
decrease as the JSR decreases. Furthermore, for a fixed JSR, elevating the SNR progressively
reduces misclassification rates for both the target and jamming signals until they ultimately
approach zero.

In [10], a phase-quantized representation model for jamming signals was constructed,
and the spectral characteristics of quantized jamming were analyzed. The analysis revealed
that quantized jamming contains multiple spurious components distinct from genuine
target echoes. Subsequently, the study extracted singular-value energy distribution charac-
teristics induced by these spurious components from the discrepancies between jamming
and target echoes by utilizing the SSA algorithm for jamming detection.

Figures 14–16 present a comparison between the algorithm proposed in this paper and
the method from reference [10]. The jamming detection performance curves were derived
under the following conditions: a quantization bit number of M = 2, JSR = 3 dB, an
SNR ranging from −10 dB to 10 dB, and 300 Monte Carlo simulations conducted at each
SNR level.

Figure 14. Comparison curve of overall recognition accuracy.

As shown in the figures, the proposed algorithm achieves superior correct detection
rates under low-SNR conditions compared to the reference algorithm, enabling reliable
jamming detection even in low signal-to-noise ratio scenarios. To provide a more intuitive
comparison of the performance between the proposed algorithm and the reference algo-
rithm, a table has been created. In the table, the overall detection performance is compared
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under a JSR of 3 dB and SNR values of 0 dB and 4 dB, where the reference algorithm is
evaluated with parameter q set to 4, 8, and 10.

0.6 
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-+-ssAq = • 
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Figure 15. Target misidentification rate comparison curve.

Figure 16. Jamming misidentification rate comparison curve.

As clearly shown in Table 3, the proposed algorithm achieves a 14.8% improvement
in recognition accuracy under a low SNR of 0 dB. Even when the SNR increases to 4 dB,
it still maintains a 0.5% improvement over the reference algorithm. These results clearly
demonstrate the superior performance of the proposed method in low-SNR scenarios.

Table 3. Comparison of overall recognition accuracy at SNRs of 0 dB and –4 dB.

Algorithm 0 dB 4 dB 0 dB

Proposed algorithm 88.8% 97.8% 88.8%
SSA q = 4 61.8% 75.3% 61.8%
SSA q = 8 69.3% 95.4% 69.3%
SSA q = 10 74% 97.3% 74%

In [7], a chirp rate matching method based on harmonic components was proposed
to address the detection of retransmitted LFM active deception jamming. This approach
analyzes the spectral characteristics of jamming signals and constructs a database of chirp
rates for harmonic components. The chirp rate of echoes is estimated using FRFT tech-
niques, followed by matching the estimated chirp rates against the database to detect
jamming signals.

Figure 17 presents a comparative analysis between the proposed algorithm and the
method in [7]. Due to differences in the training sample size and parameter settings used in
the aforementioned simulations, a separate comparative experiment was conducted. The
simulation settings were adjusted to align with [7], including the intermediate frequency,
sampling frequency, and target Doppler frequency. The jamming-to-noise ratio (JNR) is
defined as JNR = |j(t)|2/|n(t)|2, where j(t) and n(t) denote the power of jamming
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and noise, respectively. Following the experimental conditions in [7], where jamming
signals are typically 1.3 ∼ 1.5 times stronger than genuine signals, the JNR was set as
JNR = SNR + 1.5 dB. The SNR range spanned from −15 dB to 15 dB, with 1000 Monte
Carlo simulations performed at each SNR level. The test results are illustrated in Figure 17.

Figure 17. Comparison of interference detection performance with Reference [7].

In reference [9], a classification and detection method based on SSA feature extraction
and the SVM was proposed, which is used for comparison with the algorithm presented in
this paper. According to the experimental setup in [9], with M = 2, a JSR of 3 dB, and an SSA
decomposition window length of 100, 1000 training samples and 500 testing samples were
generated for each SNR level. Figure 18 illustrates the detection performance comparison
between the proposed algorithm and the method from ref. [9].

Figure 18. Comparison of interference detection performance with Reference [9].

As evident from the figures, compared to other algorithms, the proposed method
maintains robust detection performance even when the SNR is below 0 dB. At an SNR
of −4 dB, the correct detection rate reaches 90%, enabling the effective identification of
DRFM jamming. This robustness stems from the algorithm’s utilization of higher-order
spectral analysis (bispectrum), as discussed earlier. Specifically, higher-order cumulants
exhibit inherent blindness to Gaussian noise, thereby effectively suppressing the impact of
Gaussian noise during signal feature extraction.

Figure 19 compares the detection performance of different dimensionality reduction
methods. Since the bispectrum is symmetric with respect to the main diagonal, integrating
along the anti-diagonal can superimpose the symmetric differences relative to the main
diagonal, thereby enhancing the distinguishability. As shown in the figure, anti-diagonal
integration outperforms both main diagonal slicing and main diagonal integration.
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Figure 19. Comparison of detection performance of different dimensionality reduction methods.

Figure 20 presents a comparison of detection performance under different quantization
bit numbers M. According to Equation (10), as the quantization bit number increases, the
bandwidth of the spurious components increases, but their corresponding power decreases,
making it more difficult to extract spurious features and thereby degrading detection
performance. As shown in Figure 20, the detection performance decreases with increasing
quantization bit numbers, which is consistent with the theoretical analysis.

Figure 20. Comparison of detection performance under different M values.

5.2. Validation Experiment with Field-Measured Data

The experimental data selected in this study were obtained from maritime target
detection trials conducted by the Maritime Target Detection Research Group of the Naval
Aviation University [23–27]. The data were acquired using the X-band solid-state fully
coherent radar illustrated in Figures 21 and 22, with key radar parameters summarized in
Table 4. The radar was deployed at a test site in Yantai, it operated in scanning mode at an
elevation of approximately 80 m.

 
Figure 21. Radar antenna.
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Figure 22. Display and control terminal interface.

Table 4. Radar parameter list.

Radar Parameter Parameter Settings

Operating Band X
Operating Frequency Range 9.3~9.5 GHz

Range 0.0625~96 nm
Scan Bandwidth 25 MHz

Range Resolution 6 m
Pulse Repetition Frequency (PRF) 1.6 k, 3 k, 5 k, 10k

Peak Transmit Power 50 W
Antenna Rotation Speed 2, 12, 24, 48 rpm

Antenna Length 1.8 m
Antenna Operation Mode Stare, Scan

Antenna Polarization HH, VV
Antenna Horizontal Beamwidth 1.2◦

Antenna Vertical Beamwidth 22◦

The trial involved cooperative targets including Vessel A, Vessel B, Vessel C, and
Vessel D, with off-board active jamming deployed by Vessel C. All subsequent analyses
reference Vessel C as the target. The estimated SNR and JNR of the collected echoes and
deception jamming signals ranged from −12.6 dB to 10.5 dB, where the jamming signals
were typically 1.3 ∼ 1.6 times stronger than genuine signals. The dataset encompasses
multiple active jamming types, such as dense false target jamming, smart noise jamming,
range gate pull-off jamming, and range–velocity synchronized pull-off jamming. The data
are categorized by jamming type, with each type further divided into multiple frames
based on radar scan start/stop times. Each frame corresponds to a 1 s scan, with a 2.5 s
interval between consecutive frames.

The proposed algorithm was applied to detect field-measured data, selecting multiple
jamming types including range gate pull-off jamming, range–velocity synchronized pull-off
jamming, and dense false target jamming. For each jamming type, one or two frames of
data were extracted, with each frame consisting of 8900 pulses and 8100 range cells. Ap-
proximately 300 samples, including both real targets and DRFM-based deceptive jamming
targets, were selected from each frame to form a dataset. Furthermore, the environmental
conditions in the dataset corresponded to a sea state of Level 2, with a wave height of 0.2 m,
a wave direction of 63◦, a wind speed of 2.7 m/s, a wind direction of 246◦, and a Beaufort
wind force of Level 2 [23–27]. A total of nine datasets were selected for experimental
validation using field-measured data. The experimental results are summarized as follows:

The proposed algorithm and the method in [10] were applied to different datasets, and
the overall correct detection rate bar chart shown in Figure 23 reveals that the proposed
algorithm outperforms the comparative method across all test scenarios. Specifically, the
proposed algorithm achieves a minimum correct detection rate exceeding 91.3% and an
average correct detection rate of 94.20%. This superior performance is attributed to the fact
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that, in field-measured data, jamming signals typically exhibit higher intensity than genuine
target signals, thereby enhancing detection robustness compared to simulated experiments.

Figure 23. The overall recognition accuracy of different datasets.

6. Conclusions and Discussion
This study establishes a transceiver model for genuine target echoes and DRFM de-

ception jamming signals by analyzing the harmonic distortion mechanism inherent to
DRFM-based spoofing. Leveraging higher-order statistical signal processing, the bispec-
trum is utilized to preserve phase information while suppressing Gaussian noise. We
innovatively apply the diagonal integral bispectrum to active deception jamming detec-
tion. At the feature engineering level, a joint discriminative framework combining the
DIBRP, which quantifies energy concentration via dominant spectral peak analysis, and the
DIBAE, which characterizes modulation discrepancies through nonlinear complexity met-
rics, is proposed. A polynomial kernel SVM is subsequently designed to address nonlinear
separability challenges in the high-dimensional feature space via kernel mapping.

Experimental validation indicates that under simultaneous SJR and SNR conditions of
0 dB, the proposed system achieves a detection accuracy of 92%. In practical measured-
data validation, the algorithm attains a minimum detection accuracy of 91.3%, with its
average accuracy further increasing to 94.2%. Furthermore, cross-comparative experiments
reveal that the system maintains a detection accuracy of 90% even when the SNR deterio-
rates to −5 dB, highlighting the robustness and advantages of the proposed algorithm in
low-SNR environments.

The core assumption of this study—that DRFM jammers consistently produce de-
tectable harmonic distortion when generating deceptive interference—is based on the
hardware characteristics of current-generation DRFM systems and is applicable to most
existing DRFM jammers. However, as future DRFM systems incorporate advanced quan-
tization, sampling, and digital compensation techniques, such harmonic effects may be
significantly suppressed. Therefore, future research will focus on extending the proposed
framework to scenarios involving low or negligible harmonic distortion.
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Abbreviations
The following abbreviations are used in this manuscript:

DRFM Digital Radio Frequency Memory
SNR signal-to-noise ratio
DIBRP Diagonal Integral Bispectrum Relative Peak Height
DIBAE Diagonal Integral Bispectrum Approximate Entropy
SVM support vector machine
JSR jamming-to-signal ratio
FrFT fractional Fourier transform
SSA singular spectrum analysis
CFAR constant false alarm rate
STFT short-time Fourier transform
HOSA higher-order statistical analysis
HOS higher-order spectrum
DIB diagonal integrated bispectrum
IF intermediate frequency
LFM linear frequency modulation
ApEn approximate entropy
AWGN additive white Gaussian noise
TMR target misclassification rate
JMR jamming misclassification rate
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