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Abstract: Understanding the nonlinear relationship between human activity intensity
(HAI) and ecosystem resilience (ER) is crucial for sustainability, yet underdeveloped areas
are often overlooked. This study examines the Xuzhou Urban Agglomeration (XZUA)
from 2012 to 2022, creating a framework to assess both ER and HAI. Both frameworks
utilize multi-source datasets, such as remote sensing, statistical yearbooks, and geospatial
data. The ER framework uniquely combines dynamic and static indicators, while the HAI
framework differentiates explicit and implicit human activity dimensions. We used spatial
analysis, the Optimal Parameter Geodetector (OPGD), and Multi-Scale Geographically
Weighted Regression (MGWR) to examine the nonlinear spatiotemporal interaction between
HAI and ER. Results show the following: (1) ER exhibited a “shock-recovery” pattern
with a net decline of 3.202%, while HAI followed a nonlinear “rise-fall” trend with a net
decrease of 0.800%. (2) Spatial mismatches between HAI and ER intensified over time.
(3) The negative correlation in high-HAI regions remained stable, whereas neighboring
low-HAI areas deteriorated, indicating a spillover effect. (4) OPGD identified the change
in HAI (Sen’s slope) as the primary driver of ER change (q = 0.512), with the strongest
interaction observed between HAI Sen’s slope and precipitation (q = 0.802). (5) Compared
to HAI intensity (mean), its temporal variation had a more spatially stable influence on
ER. These findings offer insights for ecological management and sustainable planning in
underdeveloped regions, highlighting the need for targeted HAI and ER interventions.

Keywords: ecosystem resilience; human activity intensity; OPGD; MGWR; spatiotemporal
analysis; Xuzhou Urban Agglomeration; multi-source remote sensing data

1. Introduction
Rapid urban growth and increased human activities have significantly altered ecosys-

tems in the Anthropocene. One-fifth of marine ecosystems [1] and one-third of protected
areas [2] have faced major disturbances, reducing their ability to self-regulate and withstand
external shocks [3]. Understanding how human activity intensity (HAI) affects ecosystem
resilience (ER) is a core objective of the Sustainable Development Goals (SDGs), particularly
under accelerating urbanization and increasing pressures in developing regions [4].
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1.1. Conceptual Evolution and Analytical Frameworks of ER

Resilience refers to a system’s capacity to remain stable in the face of disruptions
through feedback, adaptive learning, and transformative responses [5]. The concept
has evolved through three phases: engineering resilience (returning to pre-disturbance
states) [6]; ecological resilience (absorbing shocks and maintaining function) [7,8]; and
evolutionary resilience (adapting and innovating across scales) [5,9]. This evolution in
resilience thinking has prompted a shift from single-dimensional, static models to complex,
dynamic system models.

Resilience assessments have generally followed two trajectories. One emphasizes
external system interactions, such as ecological–urban–economic coupling [10–12]. The
other focuses on internal ecosystem capacities, including absorption, adaptation, and
recovery [5,13]. However, inconsistent terminology and assessment methods continue
to limit cross-study comparability. Among available models [14,15], the recently pro-
posed Resistance–Adaptability–Recovery (RAR) framework provides a structured, process-
oriented perspective to capture long-term resilience dynamics [16]. Drawing conceptually
from earlier work on resilience metrics [17], RAR distinguishes three phases: resistance
(buffering capacity), adaptability (structural flexibility), and recovery (trajectory toward
a stable or improved state). Unlike traditional models such as DPSIR (Drivers, Pressures,
States, Impacts, and Responses) [18] or coefficient-based land use weighting [19], RAR
explicitly incorporates temporal sequencing and system evolution. Given the cumulative
construction pressures in potential urban agglomerations, this framework better captures
the long-term ecological consequences of sustained human activity.

1.2. Quantification of HAI and Its Impact on ER

HAI describes the extent to which human actions reshape natural systems. The idea
was first introduced by Marsh in Man and Nature [20]. These human activities often manifest
as urban sprawl, excessive resource extraction, and emissions of pollutants and waste
heat, all of which impose significant pressure on ER [21–23]. It is quantified using two
main approaches: indirect methods, which rely on proxies like vegetation indices [24]
and disturbance indicators [25], and direct methods, which use data such as the Human
Footprint Index, nighttime lights, and land use intensity [19,26,27]. The UN New Urban
Agenda reports that 54% of the world’s population resided in urban areas in 2014, with
an expected increase to 60.4% by 2030 [28]. As a result, HAI has become a key variable in
ER-related research [29,30].

Early ER driving studies employed simple correlation and Ordinary Least Squares
(OLS) models. More sophisticated approaches have included segmented regressions (e.g.,
threshold models) and spatial methods such as Geographically Weighted Regression
(GWR) [31,32]. More recently, nonlinear models—including Geodetector (GD) and neural
networks—have been employed to better capture the complexity and spatial heterogeneity
of HAI–ER interactions [16,19,23].

This evolving understanding of HAI reveals a dual role: while often associated with
ecological degradation, human activities—if properly managed—may also foster ER and
cultural diversity [33]. Such complexity calls for more sophisticated analytical approaches
to uncover the nonlinear and spatially heterogeneous dynamics between HAI and ER,
especially in the context of rapid urban expansion.

1.3. Potential Urban Agglomeration: XZUA

The 12th Five-Year Plan (2011–2015) first established “ecological security” as a national
strategic goal, signaling a shift toward integrated environmental governance [34]. However,
despite this strategic goal, China’s urbanization continued unabated. By 2030, the urban-
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ization rate is expected to reach 73%, accompanied by rapid expansion of construction
land [35]. This creates a clear tension between ecological protection and urban expansion.
Urban agglomerations have since become key units for coordinating spatial planning,
infrastructure, and ecological goals [36]. Existing studies mostly focus on large and mature
agglomerations, such as the Yangtze River Delta, the Pearl River Delta, and the Chengdu-
Chongqing region [13,30,37]. In contrast, smaller or emerging agglomerations—despite
their strategic potential—remain underexplored.

The Xuzhou Urban Agglomeration (XZUA) is one of seven nationally designated
potential agglomerations. As a representative of small and underdeveloped urban agglom-
erations, it holds unique value for exploring the dynamics of HAI and ER. The XZUA
is characterized by low urban primacy, weak inter-city linkages, and limited functional
integration [38]. Unlike developed or rapidly growing regions like the Wuhan Metropoli-
tan Area, the XZUA relies heavily on external economic support and has a highly fluid
population [39]. These conditions may heighten the sensitivity of ER to changes in human
activity intensity, offering a distinct perspective on urban–ecological interactions.

1.4. Research Gaps, Innovations, and Fundamental Hypotheses

Although increasing efforts have examined the relationship between HAI and ER,
several key research gaps persist. First, temporal dynamics are often neglected. Many
studies rely on static indicators or single-year observations, failing to capture how long-
term changes in HAI shape ER. Even when time-series data are used, interactions are
often reduced to pointwise correlations, overlooking cross-temporal feedbacks between
systems [5,13,19]. Second, nonlinear responses remain underexplored. Most models assume
linearity, limiting the detection of ecological thresholds or tipping points under varying
levels of human pressure [16,19,23]. Third, potential urban agglomerations—despite their
strategic significance—have rarely been the focus of HAI–ER research.

To address these gaps, this study introduces three methodological innovations: (1) time
window-based ER indicators are integrated into the RAR framework, and Sen’s slope is
used to construct temporal trends of HAI and ER, replacing static single-year measures;
(2) the Optimal Parameter Geodetector (OPGD) model is employed to identify nonlinear-
ities and threshold effects across spatial scales; and (3) a case study of the XZUA offers
context-specific insights into HAI–ER dynamics within potential urban agglomerations.

Building on previous evidence of ecological degradation under intensified human
pressure [16,19], we assume that HAI generally reduces ER. However, this relationship
may exhibit nonlinearity, vary across time, and differ spatially. Accordingly, we propose
the following hypotheses: H1: HAI, ER, and their interactions show significant nonlinear
and threshold effects over time. H2: The dynamic trend of HAI (measured by Sen’s slope)
has a stronger influence on ER than static HAI levels. H3: The spatial relationship between
HAI and ER is heterogeneous. Limited synergistic zones may exist beyond spillover effects,
and these zones are shaped by local environmental and administrative contexts. To test
these hypotheses, this study develops a multi-scale framework that integrates long-term
trend analysis and high-temporal-resolution remote sensing. This framework aims to reveal
the spatiotemporal coupling and nonlinear mechanisms between HAI and ER, thereby
informing ecosystem management in potential urban agglomerations.

2. Materials and Methods
2.1. Flowchart

The research workflow (Figure 1) includes four components: (1) spatial analysis of HAI
and ER to reveal distribution and interaction patterns; (2) bivariate multi-scale correlation
analysis to examine scale-dependent relationships; (3) trend analysis using Sen’s slope and
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the Mann–Kendall test on the HAI and ER time series; (4) driving mechanism analysis
using OPGD and MGWR. These models assess the effects of both static HAI mean and
dynamic HAI trend (Sen’s slope) on ER changes.

Figure 1. Flowchart.

2.2. Study Area

The XZUA covers an area of 66,395.89 km2 and spans four provinces—Jiangsu, Shan-
dong, Henan, and Anhui—encompassing eight prefecture-level cities: Xuzhou, Suzhou,
Huaibei, Shangqiu, Heze, Jining, Lianyungang, and Zaozhuang (Figure 2) [40]. Geographi-
cally, it lies between 117◦34′56.78′′–121◦45′12.45′′E and 33◦56′12.34′′–35◦48′22.67′′N. The
region features diverse terrain types, including coastal and inland zones, plains, and hilly
areas. Xuzhou serves as the core city and a major transportation hub in eastern China,
supported by an extensive railway and highway network. The ecological environment
includes the Huang-Huai-Hai Plain and Weishan Lake Wetland, which support a range of
ecosystem services. However, long-term agricultural expansion and urban development
have imposed considerable ecological stress on the region. These geographic and ecological
conditions provide a valuable context for analyzing human–nature interactions in potential
urban agglomerations.
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Figure 2. Location map of Xuzhou Urban Agglomeration.

2.3. Data Sources

The data used in this study were derived from a combination of multi-source remote
sensing datasets and socio-economic datasets. The primary satellite data included the
Terra MODIS Surface Reflectance (SR) dataset, which was used to calculate several remote
sensing indices. Although the study period was set to 2012–2022, earlier MODIS data
from 2002 onward were also utilized to construct time window-based dynamic indicators.
The datasets utilized can be categorized as follows: (1) land use and land cover (LULC):
spatial data representing land use patterns and changes; (2) population density (POP):
statistical data reflecting population distribution. (3) NOAA VIIRS nighttime light (NTL):
data capturing artificial light intensity as a proxy for human activity; (4) land surface
temperature (LST): data measuring surface thermal emissions; (5) vegetation indices,
including the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index
(EVI), leaf area index (LAI), and gross primary productivity (GPP), all derived from MODIS
products; (6) meteorological data, including precipitation (Pr), temperature (Tem), surface
net solar radiation (SNSR), actual evapotranspiration (AET), and runoff, sourced from
meteorological databases; (7) digital elevation model (DEM), obtained from Copernicus
DEM datasets; (8) soil erodibility (K Factor), reflecting soil susceptibility to erosion [41];
(9) cultural and tourism resources: point-of-interest (POI) data encompassing Intangible
Cultural Heritage (ICH), A-level Scenic Spots (SSs), and Heritage Conservation Units
(HCs); (10) socio-economic data, including grain production, tourism revenue, education
statistics, and GDP panel data. (11) Unless otherwise specified, all remote sensing data
were accessed and processed via the Google Earth Engine platform (GEE, https://code.
earthengine.google.com/, accessed on 10 December 2024) (Table 1).

To ensure spatial and temporal consistency across datasets, we applied a series of
preprocessing steps, including cloud removal, annual compositing, spatial resolution
standardization (resampled to 500 m), and the imputation of missing values using temporal
and spatial neighborhood principles. Population data were corrected using pixel-level
regression models and outlier detection via a moving-window IQR test. MODIS land cover

https://code.earthengine.google.com/
https://code.earthengine.google.com/
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data were reclassified into 8 categories to meet analysis needs. Detailed procedures are
provided in Appendix A.

Table 1. Details about the basic data.

Data Source Period Temporal
Resolution

Spatial
Resolution

MODIS GEE, MODIS/061/MOD09A1 2002–2022 8-day 500 m
LULC GEE, MODIS/061/MCD12Q1 (LC_Type1)

2002–2022

Yearly 500 m
POP GEE, WorldPop/GP/100m/pop Yearly 100 m
NTL GEE, NOAA/VIIRS/001/VNP46A2 Daily 500 m
LST GEE, MODIS/061/MOD11A2 8-day 1000 m

NDVI GEE, MODIS/061/MOD13A1 16-day 500 mEVI
LAI GEE, MODIS/061/MCD15A3H 4-day 500 m
GPP GEE, MODIS/061/MOD17A2H 8-day 500 m
Pr GEE,

ECMWF/ERA5_LAND/MONTHLY_BY_HOUR Monthly 11,132 mTem
SNSR
AET GEE, IDAHO_EPSCOR/TERRACLIMATE Monthly 4638.3 mRunoff
DEM GEE, COPERNICUS/DEM/GLO30 2015 - 30 m

K Factor [42]
(China) National Tibetan Plateau Science Data Center

(https://www.tpdc.ac.cn/, accessed on
10 December 2024)

2020 - 25 m

ICH POI
Global Change Research Data Publishing &

Repository (https://www.geodoi.ac.cn/, accessed on
2 June 2023)

2011, 2014,
2021 Multi-Year -

HC POI
National Cultural Heritage Administration Integrated

Administrative Platform (http://gl.ncha.gov.cn/,
accessed on 2 June 2023)

2019 - -

SS POI Provincial Department of Culture and Tourism 2020–2024 Yearly -

Railway Network
China Basic Geographic Information Database

(https://www.webmap.cn/, accessed on
12 December 2024)

2019, 2021 Multi-Year -

China Urban
Statistical
Yearbook

(China) National Bureau of Statistics
(https://www.stats.gov.cn/, accessed on

12 December 2024)
2013–2023 Yearly -

2.4. Methods
2.4.1. Multi-Source Data Human Activity Intensity Model

To explore how human activity influences ER, this study constructs a HAI model
based on multi-source data. Similar to land use, HAI is divided into two components:
explicit intensity, which reflects direct landscape changes, and implicit intensity, which
captures latent activity through population and socio-economic factors [43,44]. The final
HAI is computed as the mean of the explicit and implicit components:

HAI = Mean(Explicit HAI + Implicit HAI) (1)

(1) Explicit Indicator

Explicit indicators primarily capture direct changes in the physical environment caused
by human activities. These indicators are derived from land use and land cover (LULC)
data combined with nighttime light (NTL) imagery. Following previous studies, land use
types were converted into construction land equivalents using the Construction Land
Equivalent Index (CI) [27]. The CI values were recalibrated to match the land classification
system of the XZUA region [19], as shown in Table A1.

NTL data are widely recognized as a reliable proxy for human activity intensity. To
account for non-light-related activities, we employed the LST and EVI Regulated NTL City
Index (LERNCI), which incorporates land surface temperature (LST) and the enhanced
vegetation index (EVI) [45]. The formula for explicit HAI is as follows:

https://www.tpdc.ac.cn/
https://www.geodoi.ac.cn/
http://gl.ncha.gov.cn/
https://www.webmap.cn/
https://www.stats.gov.cn/
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ExplicitHAI = W1 × CI + W2 × nor+(LERNCI), (2)

Here, W represents the weight of the corresponding indicator. Objective weights
for each indicator were calculated using the Criteria Importance Through Intercrite-
ria Correlation (CRITIC) method, which jointly considers each indicator’s contrast
intensity—measured by its standard deviation—and its level of conflict with other
indicators—measured by intercriteria correlation. Indicators with higher variability and
lower redundancy (i.e., weaker correlations with others) are assigned higher weights [46]
(detailed computation steps are provided in Appendix B.1). Normalization was then
performed according to each indicator’s positive or negative contribution to the assess-
ment framework:

nor+ =
X − Xmin

Xmax − Xmin
, nor− =

Xmax − X
Xmax − Xmin

(3)

Here, nor+ is used to normalize positive indicators, and nor− is for normalizing
negative indicators. X stands for the original data point, while Xmin and Xmax are the
dataset’s minimum and maximum values.

(2) Implicit Indicator

Implicit indicators, in contrast, are derived from population (POP) data and further
capture the Activity Level (AL) of the population, which reflects the degree of engagement
in urban life. AL is measured across three dimensions: (1) social—measured by railway
network density [47]; (2) economic—represented by two yearbook index-derived indica-
tors (per capita GDP and per capita retail sales) [48,49]; (3) cultural—represented by the
proportion of primary school students in the total population and per capita library book
collections (Yearbook). The formulas for AL and implicit HAI are as follows:

Implicit HAI = POP × AL = POP × ∑ i
s=1Wi × nor+(Indicator) (4)

Here, Wi represents the weight assigned to each indicator, and nor+ (Indicator) denotes
the normalized value of the corresponding indicator.

2.4.2. Ecosystem Resilience Assessment Framework

This study adopts an “evolutionary resilience” perspective, focusing on an ecosystem’s
capacity to buffer risks, adapt to external disturbances, and recover successfully (https://
www.resalliance.org/resilience, accessed on 10 February 2025). Accordingly, we utilize the
framework of RAR to evaluate ER [16]:

ER = 3
√

nor+(Resistance)× nor+(Adaptation)× nor+(Recovery) (5)

To emphasize the inherent “dynamics” of resilience, this study incorporates historical
data within a defined time window as dynamic indicators, complementing traditional
static metrics. Therefore, the ER framework consists of two parts, a conventional static
assessment framework and a dynamic framework introduced in this research:

Resistance/Adaptation/Recovery = Mean(Static Indicator + Dynamic Indicator) (6)

This integration of dynamic and static indicators allows for a more comprehensive
evaluation of ER, capturing both temporal and spatial dimensions of ecosystem responses
to disturbances.

(1) Static Indicator

Resistance: It is closely tied to ecosystem vitality (EV) and ecosystem services (ES),
reflecting a system’s self-sustaining and support capacities, respectively [19]. The formula
for resistance is

https://www.resalliance.org/resilience
https://www.resalliance.org/resilience
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Static Resistance =
√

nor+(ES)× nor+(EV) (7)

EV indicates vegetation growth and productivity, typically measured using NDVI
and derived metrics [50], such as annual maximum NDVI values [19]. To address NDVI
saturation, additional indicators such as fractional vegetation cover (FVC), leaf area index
(LAI), and gross primary productivity (GPP) are included (HJ 1172-2021):

EV = Mean (nor+(FVC) + nor+(LAI) + nor+(GPP)) (8)

There are four categories of ES: supporting, regulating, provisioning, and cultural.
For the XZUA, key services include grain yield (GY) [51], water conservation (WC) [52],
soil retention (SR), and cultural benefits (CB), reflecting the region’s unique geography
dominated by plains and hills, as well as its emphasis on water conservation and soil
preservation. Methods for quantifying these services are summarized in Table 2:

Table 2. Methods of ES qualification.

Service Category Indicator Methodology

Support GY Measurable Proxies, y = ax + b, where x = nor+(NDVI), a is calibrated
based on regional GY.

Regulation WC Water Balance Equation, Q = P – R − AET, Q is water conservation, P
is precipitation, R is runoff, and AET is evapotranspiration.

Provision SR
RUSLE = R × K × L × S × C × P, accounting for rainfall (R), soil

erodibility (K), topographic factors (L, S), and vegetation/management
factors (C, P).

Culture CB Measurable Proxies, y = ax + b, where x = nor+POI density; a is
calibrated based on regional tourism revenue.

Adaptation: The spatial pattern of an ecosystem reflects its structural stability, which
is positively correlated with its adaptability [53]. Adaptability metrics are typically derived
from landscape heterogeneity and connectivity indices [54]. Landscape patterns describe
land texture arrangements, where higher heterogeneity indicates interwoven functions,
promoting mixed land use and associated benefits.

Heterogeneity is quantified using Shannon’s Diversity Index (SHDI) and the area-
weighted mean patch fractal dimension (PFD). Connectivity considers both cross-type
connections at the landscape scale and within-type connections at the class scale, measured
using contagion indices (CONTs).

Drawing on prior studies [16,19], the weighting scheme for Equation (9) was designed
to reflect the ecological importance of spatial structure. The principles are as follows:
(1) landscape-scale metrics are prioritized over class-level metrics to capture broader spatial
patterns; (2) cross-type connectivity indices, which represent material and energy flows
between land types, receive greater weight than within-type indices; and (3) heterogeneity
and connectivity metrics are equally weighted within the same spatial level, as they are
considered complementary dimensions of ecological adaptability:

PatternLandscape = 0.25 × nor+(SHDI) + 0.1 × nor+(PFD) + 0.35 × nor+(CONT1)

PatternClass = 0.1 × nor+(CONT2) + 0.1 × nor+(CONT3) + 0.1 × nor+(CONT4)

Static Adaptation = PatternLandscape + PatternClass

(9)

Here, CONT1 is contagion at the landscape scale, while CONT2, CONT3, and CONT4

represent class-level connectivity for forests, grasslands, and water.
Recovery: It indicates the system’s capacity to remain stable and bounce back from

disruptions. Research indicates that areas near natural ecosystems have a higher likelihood
of recovery, whereas human-dominated regions, like built-up areas, may not. Recovery is
quantified using resilience coefficients (RLC) assigned to different land use types [19,55]:
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Static Recovery = ∑ n
i=1RLCi × Ai (10)

Here, RLCi represents the recovery coefficient of the ith LULC, and Ai is the propor-
tional area of that type (Table A1). This traditional approach relies on fixed coefficients
derived from expert judgment or empirical estimates, providing a static, land use-based
assessment of resilience.

(2) Dynamic Indicator

Dynamic indicators were constructed using a 10-year time window, with the Remote
Sensing Ecological Index (RSEI) as the core metric. This window balances ecological inertia
and temporal sensitivity: shorter spans (e.g., 5 years) capture short-term fluctuations
but fail to reflect long-term resilience, while longer spans (e.g., 15 years) tend to smooth
out early warning signals [56]. Selection details are shown in Section 3.1. To depict the
overall ecosystem quality, RSEI merges the NDVI, WET, NDBSI, and LST through principal
component analysis [57]. The computational procedure is detailed in Appendix B.2. The
dynamic framework consists of the following components [15,58].

Resistance: The resistance indicator reflects not only the intrinsic strength of the ecosys-
tem in resisting external disturbances but also its external performance in response to dis-
turbances over an extended time window. This external performance, termed “Variability,”
is a negative indicator used to quantify the ecosystem’s ability to withstand disturbances.
Variability is measured using the coefficient of variation (CV):

Variability = CV = nor−(
STD

Mean
) (11)

Here, STD and Mean represent the standard deviation and mean of RSEI over the time
window, respectively.

Adaptation: Adaptation is assessed by the proportion of high-value years of the RSEI
index within the time window, serving as a dynamic suitability indicator for the ecosystem.
High-value years are identified using the median absolute deviation (MAD) model. The
higher the proportion of high-value periods, the greater the ecosystem’s adaptability:

Consistency = nor+(
Outlier Year

∑ Time Window
) (12)

In this formula, Outlier Year represents the number of years with values significantly
exceeding 2.5 times the MAD threshold, and ∑Time Window denotes the total number of
years within the time window.

Recovery: Recovery is quantified by analyzing the trend of RSEI values after the lowest
point within the time window. A linear fit is applied to RSEI values following the lowest year,
and the slope of the fitted line is extracted as the recovery strength indicator:

RSEIt = a × t + b, t > tmin (13)

where RSEIt is the RSEI value at year t; a is the slope of the fitted line, representing the
rate of post-disturbance recovery; b is the intercept; tmin is the year when RSEI reaches its
minimum value within the analysis window.

2.4.3. Sen’s Slope and Mann–Kendall Test Model

Using multi-year HAI and ER data, Sen’s slope method (Theil–Sen estimator) was
applied in ArcGIS Pro 3.0 to calculate trends in HAI and ER. This method calculates
the slope between every pair of observations and uses the median slope as the trend
estimate [59]. Specifically, for any two points (xi, yi) and (xj, yj), the slope is computed
as follows:

Sij =
yj − yi

xj − xi
(14)
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The median of all computed slopes is then taken as the final trend estimate. For
monotonic trend detection, the Mann–Kendall (M-K) method was employed. This method
assesses the presence and direction of a trend in time series data by calculating the M-K
statistic S, which reflects the trend’s strength and direction: S > 0 indicates an upward trend;
S < 0 indicates a downward trend; S = 0 indicates no trend. The significance of the trend
is determined by calculating the p-value [60]. In this study, a more relaxed significance
threshold (p < 0.1) was adopted to support the subsequent driver analysis.

2.4.4. MGWR and OPGD Models

To account for spatial non-stationarity in the relationship between HAI and ER, the
Multi-Scale Geographically Weighted Regression (MGWR) model was applied. MGWR ex-
tends traditional GWR by assigning each explanatory variable an independently optimized
spatial bandwidth, allowing effects to vary across space. Model fitting was conducted using
MGWR 2.2, with bandwidths selected via the Golden Section Search algorithm based on
AICc minimization [61]. Variables with smaller bandwidths exhibit stronger local variation,
while larger bandwidths suggest spatially consistent effects [62]. Control variables (terrain
and climate) were included to isolate the net impact of HAI.

To assess nonlinear and interactive effects, we employed the Optimal Parameter Geo-
graphical Detector (OPGD), which improves upon the traditional GD method by optimizing
the discretization strategy and category number [63]. The OPGD model estimates both the
independent explanatory power of each factor (via the q-value) and the interaction effects
between factor pairs [64].

Detailed model formulations, parameter settings, and diagnostic metrics are provided
in Appendix B.3 (MGWR) and Appendix B.4 (OPGD).

2.4.5. Bivariate Spatial Autocorrelation

Bivariate spatial autocorrelation analysis evaluates the spatial dependency between
two variables. In this study, the bivariate Moran’s I coefficient was calculated using the
GeoDa and ArcGIS Pro platforms to assess the spatial correlation between ER and HAI.
This method identifies how these variables influence each other spatially and reveals the
patterns of their interactions [65].

The results are categorized into four types of spatial clustering: HH (high–high)
clustering; LL (low–low) clustering; HL (high–low) outliers; LH (low–high) outliers. By
distinguishing these spatial patterns, the analysis provides critical insights into the inter-
actions between ER and HAI across different regions, highlighting areas of alignment,
divergence, and potential mismatches.

3. Results
3.1. HAI and ER Assessment Results

Figure 3 presents the integrated evaluation results for both HAI and ER across the
study area. For HAI, the Moran’s I index increased from 0.324 to 0.356, indicating an
increasingly clustered spatial pattern, with human activities concentrating toward urban
areas. Globally, a nonlinear “rise–fall” trend was observed (Figure 3w), with an increase
between 2012 and 2017, followed by a gradual decline. The net change in HAI over the
study period was –0.800%.

In parallel, the temporal analysis of ER showed a generally stable spatial aggregation
pattern, as indicated by its Moran’s I. High-ER regions were primarily located around
the Weishan Lake wetlands. In contrast, low-ER zones were mostly confined to built-up
areas, especially within Xuzhou’s core, where the most distinct low-value patches were
observed. Temporally, ER demonstrated a distinct “shock-recovery” dynamic (Figure 3x).
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After a sharp decline in 2013, ER gradually recovered to peak in 2020, then declined again,
resulting in a net decrease of 3.202% over the entire period.

Figure 3. HAI and ER assessment results, 2012–2022.
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Using 2022 as the reference year, a 5–15-year moving window analysis was performed,
revealing a general decline in all three dynamic ER indicators. Resistance decreased most
rapidly and stabilized at its lowest level—indicating maximum ER variability—between the
9- and 11-year windows (Figure 4a, Stage 1). Adaptability remained low and stable from
years 11 to 15 (Figure 4a, Stage 2), although resistance fluctuated significantly during this
period. Recovery maintained a consistently low value between years 12 and 13 (Figure 4a,
Stage 3). Considering both indicator behavior and consistency with the static assessment
period, a 10-year window was selected for ER dynamics in this study.

Figure 4. Time window screening and spatial distribution of ER indicators, 2022.

The spatial distribution and descriptive statistics of the three sub-indices of ER—resistance,
adaptation, and recovery—are shown in Figure 4. Due to the predominantly flat terrain, none
of the sub-indices exhibited pronounced hot or cold spots. No clear clustering cores were ob-
served at the regional scale. Both resistance and recovery showed similar spatial trends, with
Zaozhuang recording the lowest values (0.529 and 0.256, respectively) and Suqian achieving
the highest (0.629 and 0.290, respectively). For the adaptation index, Huaibei demonstrated
the highest value (0.335), while Lianyungang registered the lowest (0.296).

3.2. Spatial Pattern and Correlation Analysis
3.2.1. Shift in Center of Gravity Analysis

Figure 5 shows the spatial shifts of the centers of gravity for HAI and ER. The center
for HAI remained near Xuzhou’s urban core, shifting slightly eastward, with a maximum
displacement of less than 500 m (Figure 5(a1)). Similarly, the center for ER was located near
Xuzhou’s urban core and shifted southward, with a maximum movement of under 700 m
(Figure 5(a2)). From 2012 to 2022, Zaozhuang exhibited the highest HAI and lowest ER. In
contrast, Suzhou recorded the lowest HAI, while Suqian had the highest ER (Figure 5b–g).
Additionally, the centers of gravity for HAI and ER were approximately 6000 m apart.
The major axes of the standard deviation ellipses for both indicators were aligned in the
northwest–southeast direction.
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Figure 5. Center of gravity shift and city-level statistical analysis, 2012, 2017, 2022. (a) Center of
Gravity and standard deviation ellipses (1σ) of HAI and ER; (a1) HAI center of gravity shift; (a2) ER
center of gravity shift.

3.2.2. Multi-Scale Correlation Analysis

In further spatial correlation analysis, the multi-year mean Spearman correlation be-
tween HAI and ER reached a stable threshold at the 2000 m scale (|r| = 0.474). Bivariate
Moran’s I values for 2012, 2017, and 2022 were –0.296, –0.325, and –0.380, respectively
(|z| > 2.58). These results indicate a progressively strengthening spatial negative corre-
lation between HAI and ER. LH (low HAI–high ER) outlier data points constituted the
majority, remaining consistently around 1000 points. HL outliers followed, with counts in-
creasing annually from 609 to 737. In contrast, the ideal HH scenario consistently included
only about 50 points, while LL cases were more prevalent, reaching approximately 600.

In the multi-scale analysis, the correlation between HAI and ER was strongest at the
district-level administrative scale (|r| = 0.526), surpassing correlations at all grid-based
scales. At this scale, spatial relationships between HAI and ER were classified into nine
scenarios based on intensity levels. Between 2012 and 2022, the number of high-HAI areas
(HL/HM) remained stable, while low-HAI areas (LH/LM) experienced a shift in ER from
high to moderate levels. As shown in Figure 6e–g, many districts surrounding Xuzhou
transitioned from deep blue LH zones to light blue LM zones. This suggests that even in
low-HAI areas, ER continued to decline, underscoring the expanding spillover effects of
human activity on ER.
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Figure 6. Multiscale spatial correlation analysis of HAI and ER.

3.3. Trend Analysis
3.3.1. Temporal Dynamics

Based on Sen’s slope analysis (p > 0.1), both HAI and ER exhibited negative global
mean trends, indicating overall declines from 2012 to 2022. HAI increases were mainly ob-
served along urban peripheries and major highways—typically in emerging development
zones—with a maximum trend of 6.041 × 10−2 (presented as 6.041 after multiplying by
100 for clarity; Figure 7). In contrast, traditional urban cores and many township areas re-
mained stable or declined slightly. Rural areas—particularly those within Tengzhou District
(Zaozhuang) and surrounding counties—showed marked decreases. This spatial pattern
aligns with earlier evidence indicating an increasing concentration of human activity in
urban centers.

ER declined most severely in high-HAI regions—particularly urban cores and areas
with dense road networks. A fitted trend line (y = −78x − 0.099) confirms this pattern.
Additional clusters of ER decline were also observed in the northwest farmland regions.
In regional correlation analysis, Yunlong District (Xuzhou) showed the most rapid HAI
growth and the sharpest ER decline, fitting the HL scenario. Conversely, in low-HAI regions
such as Dangshan District (Suzhou, LL scenario), ER continued to decline, highlighting the
pervasiveness of ecosystem degradation even under reduced human pressure.

3.3.2. Linear and Non-Linear Driving Analysis

To analyze the drivers of ER Sen’s slope, we included both core explanatory
variables—HAI mean and HAI Sen’s slope—and additional controls, including digital
elevation model (DEM), precipitation (Pr), temperature (Tem), and surface net solar ra-
diation (SNSR). All variables passed significance tests using Spearman correlation and
variance inflation factor (VIF) checks, thereby ruling out multicollinearity (Table 3).
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Figure 7. HAI and ER Sen’s slope, district-level statistics, and spatial relationships.

Table 3. Spearman correlation and VIF results for HAI and control variables.

Variable HAI Sen’s HAI Mean DEM Rain Tem PAR
Spearman Correlation −0.645 *** −0.267 ** 0.247 * 0.299 ** 0.272 ** −0.396 ***

VIF 1.069 1.328 1.617 1.201 1.499 1.077
Note: */**/*** indicate statistical significance at the 10%, 5%, and 1% levels.

According to OPGD results, HAI Sen’s slop had the highest q-value (0.512), indicating
it was the most significant single-factor driver of ER, surpassing HAI mean, as well as
climatic and topographic factors (Figure 8a). The magnitude of change better explains the
spatial heterogeneity of ER Sen’s slope than does the absolute strength of HAI. Temperature
(q = 0.478) also had a significant effect on ER distribution. While individual natural factors
exhibited limited explanatory power, their interactions with anthropogenic variables were
substantial, suggesting synergistic effects in shaping ER patterns.

 

Figure 8. Results of OPGD analysis: factor-driven intensity and factor interaction analysis.
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The risk detection analysis (Figure 8b) revealed that within the low-value range of
HAI Sen’s slope (0.08–0.09), the mean value of ER Sen’s slope was highest, whereas in the
high-value range (0.19–1.00), the mean value of ER Sen’s slope was lowest. The HAI mean
indicator exhibited a similar trend in its influence.

In regions with low HAI levels, even minor increases can greatly impact ER, whereas
improvements in ER are more probable in areas with moderate HAI/HAI Sen’s levels. As
shown in Figure 8c, the interaction between HAI and Pr exhibits a nonlinear enhancement
effect, yielding the strongest explanatory combination (q = 0.802) and underscoring drought
as a critical factor in the trade-off between human activity and ER.

Introducing MGWR revealed spatial heterogeneity in driver effects (R2 = 0.786,
AICc = 132.898). The results confirmed that most spatial variations were statistically ro-
bust (Figure 9d). HAI Sen’s slope and the intercept were identified as global drivers
(bandwidth = 56, 100%, Figure 9a,b), exhibiting consistent effects across the region. In
contrast, the HAI mean indicator exhibited strong heterogeneity (bandwidth = 12, 21.429%,
Figure 9c), with its influence shifting from negative in western areas to positive in
the east. Notably, in several northwestern and eastern regions, high HAI spurred ER
growth—deviating from the global trend—while in several western Henan districts, high
HAI strongly inhibited ER recovery. The intercept term, representing uncontrolled variables,
displayed a north–south gradient influenced by latitude and provincial boundaries, further
underscoring the impact of regional policies and geographic context on ER dynamics.

 

Figure 9. Heterogeneity drivers for HAI (Sen’s slope, mean) and intercept, analyzed by MGWR.

4. Discussion
4.1. Nonlinear Dynamics and Spatiotemporal Mismatch in HAI–ER

This study confirms that the relationship between HAI and ER is fundamentally
nonlinear and temporally unstable. By integrating explicit and implicit HAI dimensions
with both dynamic and static ER indicators, we reveal human–ecological interactions that
deviate from gradual or proportional patterns. The observed inverse correlation between
HAI and ER intensifies over time, suggesting that development pressure increasingly
exceeds ecological capacity [66,67]. This imbalance may push urban agglomerations toward
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an environmental Malthusian scenario, where surpassing ecological thresholds renders
recovery extremely difficult [68]. In such contexts, urbanization exacerbates ecological
stress while limited resilience capacity constrains system adaptation [47].

Temporal patterns reflect distinct nonlinear dynamics. HAI follows an inverted U-
shaped trajectory with a net change of –0.800%, whereas ER exhibits a “shock–recovery”
trend with a net loss of –3.202%. Although ER partially recovers, it remains below the 2013
baseline. The sudden drop in ER between 2013 and 2014, despite minor HAI fluctuations,
points to the existence of ecological thresholds [69]. Such abrupt responses support the
notion of switching effects and ecosystem hysteresis, where degradation may escalate
nonlinearly under sustained stress [6,70].

Spatially, high-HAI regions—especially around Xuzhou’s urban core and major trans-
port corridors—show consistent ER losses. Urban centers experience severe resilience
decline due to land development, infrastructure expansion, and resource overuse [19,66].
In contrast, nonurban areas generally maintain higher ER levels [71]. However, even low-
HAI rural zones, particularly in Tengzhou and surrounding townships, exhibit degradation,
reflecting indirect pressures and ecological spillovers [72]. These impacts are often driven
by upstream land conversion, hydrological disruption, and economic linkages [73–75]. This
supports earlier findings that ecological risks are interconnected and transmitted across
urban areas [76]. Given the cross-regional diffusion of ecological risks, it is insufficient to
analyze ecosystem changes based on isolated factors. Instead, integrated and multi-scalar
governance strategies are essential to strengthen the stability and adaptive capacity of
urban ecological systems [77,78].

4.2. Threshold Effects and Interactive Drivers of HAI Impact

According to the China Population Census Yearbook (2020), regions encompassing
the XZUA—such as Henan, Anhui, southern Shandong, and northern Jiangsu—have expe-
rienced a net population outflow of approximately 36.22 million. While this demographic
decline aligns with a reduction in HAI, ER has not improved accordingly. This discon-
nect indicates that shrinking cities may still exert ecological pressure due to inefficient
infrastructure, outdated industrial systems, and underutilized land [47,72].

To better understand this mismatch, spatial analysis confirms predominantly negative
HAI–ER correlations (i.e., HL and LH patterns), consistent with prior findings [29,67] and
as shown in Figure 6b–d. OPGD results further indicate that the rate of HAI change (Sen’s
slope) is a stronger predictor of ER variation than static levels, with the highest explanatory
power among all factors (q = 0.512), surpassing topographic and climatic variables. This
highlights the ecological impact of activity dynamics—especially in transitional or peri-
urban zones—over absolute intensity alone.

Threshold detection reveals that ER declines sharply when both HAI mean and Sen’s
slope exceed 0.59 and 0.19, respectively [31]. In contrast, moderate HAI levels correspond
to peak ER, suggesting an optimal activity range within which ecosystems maintain or
enhance resilience. These findings counter a strictly antagonistic view of the HAI–ER
relationship. Notably, some high-HAI areas, such as parts of the Yangtze River Delta, have
shown ER improvement—likely due to sustainability policies, technological upgrades, and
ecological restoration [47,50].

These nonlinear effects are not uniformly negative. Between 2012 and 2017, certain
areas with rising HAI also exhibited partial ER recovery [19]. This implies that moderate or
stable HAI, when managed properly, may even support ecological improvement through
urban green infrastructure, land use optimization, and ecological compensation [79–81].
Over 90% of China’s protected areas have shown long-term improvement in ES [82].
This highlights the potential of targeted strategies such as vegetation restoration, zoning
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management, and government regulation to curb anthropogenic disturbances and restore
fragile ecosystems.

Finally, natural factors significantly interact with HAI [83]. Precipitation combined
with HAI Sen’s had the strongest joint effect on ER (q = 0.802), while temperature was the
second most influential single factor (q = 0.478). Similar patterns in the Yellow River Basin
show that favorable climatic conditions can buffer anthropogenic stress [84]. Given that the
XZUA is located at the junction of Anhui, Jiangsu, Henan, and Shandong provinces—and
a drought-prone agricultural zone [85,86]—these climatic interactions are critical for under-
standing regional ER dynamics.

4.3. Spatial Drivers and Heterogeneity in HAI–ER Relationships

The MGWR results reveal pronounced spatial heterogeneity in the HAI–ER relation-
ship. The static indicator, HAI mean, exhibits a localized effect with a small bandwidth
(12), indicating high spatial variation. In the XZUA, HAI mean is negatively correlated
with ER Sen’s slope (r = –0.267) [19,87], but this effect varies across regions. In the west,
high HAI levels correspond with ecological degradation, while in eastern coastal zones,
moderate HAI increases appear to support resilience. These results indicate that high HAI
does not uniformly suppress ER. Instead, the HAI–ER relationship varies in direction
and intensity across regions [62,88]. This suggests that the influence is not centered on
Xuzhou City, highlighting the core city’s lack of dominance in the XZUA. The inland–coastal
economic/geographic division appears more distinct than the city cluster structure.

Such lateral variation—from inland to coastal areas—has also been observed in other
urban clusters [5], often linked to differences in urbanization stages and planning maturity [35].
Developed regions benefit from strategic spatial planning and ER investments that buffer
environmental pressures. In contrast, underdeveloped zones often suffer from inefficient land
use, limited green infrastructure, and weaker institutional capacity, intensifying ecological
risks [47]. Alternatively, this divergence may stem from disparities in ES supply—regions
unable to meet concentrated human demands are more prone to degradation [89].

HAI Sen’s slope, reflecting temporal fluctuations in human activity, acts as a global
explanatory factor (Bandwidth = 56) and shows a much stronger negative correlation
with ER Sen’s slope (r = –0.645). This implies that rapid or unstable growth in human
activity poses greater ecological stress than sustained high levels. Population mobility,
a hallmark of urbanization, plays a key role in this dynamic by intensifying human–
environment interactions [90]. According to the Environmental Kuznets Curve (EKC)
and typical urban trajectories, cities in rapid-growth stages (30–70% urbanization) often
undergo resource depletion and ecological decline before achieving sustainability [88,91].
However, for potential urban agglomerations like the XZUA, such a shift is not automatic.
Without proactive governance, long-term ecological investment, and effective land use
coordination, cumulative pressures may exceed local adaptive capacities, resulting in
irreversible resilience loss [92,93].

These findings highlight the importance of context-specific planning for potential
urban agglomerations. Compared to more established regions such as the Yangtze River
Delta and Pearl River Delta, these areas often exhibit weaker inter-city structures, less robust
development foundations, and greater demographic volatility [94]. Against this backdrop,
the case of the XZUA provides valuable insights into how government readiness, ecological
investment, and coordinated urban development can jointly shape resilience outcomes.

4.4. Policy Recommendations Based on the Zoning Strategy

Although HAI and ER are often treated as trade-offs, they do not always exhibit
inverse relationships. In some of the study districts, HAI and ER both declined simul-
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taneously, suggesting that suppressing HAI is not a sustainable path. A more effective
approach is to optimize spatial interactions between HAI and ER across multiple scales
to support socio-ecological transformation. Regulating the speed and magnitude of HAI
change within ecological thresholds can help prevent environmental overload while sus-
taining development momentum. This aligns with evolutionary resilience theory, which
emphasizes managing variability rather than eliminating it [66,95]. In the XZUA, where
HAI–ER coupling is strongest at the district level, spatial heterogeneity in both the direction
and strength of interaction supports differentiated planning. Accordingly, recommenda-
tions should consider both the local effects of HAI on ER, as revealed by MGWR, and
region-specific HAI intensity and change.

(1) Eastern regions (HAI local positive coefficients): Where HAI positively contributes
to ER, coordinated development can yield mutual benefits. In low-HAI areas—such
as peri-urban or agricultural zones—planning should promote synergistic growth
through green infrastructure, compact development, and transit-oriented develop-
ment (TOD). Integrating the development of production space within urban–rural
planning frameworks is essential. As potential pilots for balanced growth, these areas
must also guard against ecological spillovers from adjacent high-HAI regions [96].
Where HAI is already high, policy should shift from expansion to consolidation,
focusing on land use efficiency and ecological protection.

(2) Western and central regions (HAI local negative coefficients): In areas where HAI in-
tensity undermines ER, regulation must be strengthened. In high-HAI zones, compact
development can curb sprawl but must be accompanied by investments in environ-
mental quality, public services, and housing to avoid the “compact city paradox” [97].
Urban growth boundaries should align with EKC thresholds to avoid irreversible
ecological stress. In low-HAI zones, policy should focus on conserving ecological
buffers and preventing premature development through zoning regulations, habitat
restoration [98], and advanced irrigation systems [99]. Fiscal ecological compensation
mechanisms should be implemented to manage ecological spillovers and incentivize
local stewardship [79].

(3) Zones with steep HAI Sen’s slopes, often located in peri-urban belts of potential
urban agglomerations, reflect rapid transitions and weak ER. The goal is to moderate
HAI fluctuations and stabilize regional dynamics. Three strategies are recommended:
support green and low-carbon industries while enhancing inter-city industrial co-
ordination to improve self-organization [77]; stabilize population flows by improv-
ing access to services, housing, and employment in high out-migration areas; and
reinforce governance capacity through spatial monitoring and better institutional
integration. These measures can mitigate systemic uncertainty and strengthen the
adaptive capacity of potential urban agglomerations.

In potential urban agglomerations characterized by high mobility but weak coordina-
tion, one-size-fits-all strategies are inadequate. Instead, resilience planning must remain
context-sensitive, responsive to local ecological sensitivity, urbanization patterns, and
governance capacity to achieve sustainable socio-ecological transitions.

4.5. Limitations and Future Directions

This study has several limitations. First, the implicit HAI indicators—such as railway
density and cultural proxies—may not fully capture the complexity of human activity.
These coarse, yearbook-based metrics may overlook real-time dynamics. Future research
could incorporate higher-frequency or behavioral data, such as mobile phone signals or
internet usage, to better reflect spatiotemporal activity patterns.
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Second, we adopted an equal-weighted approach to combine explicit and implicit HAI
components. While straightforward, this may not reflect their actual influence. Future work
should explore data-driven weighting methods—such as entropy or sensitivity analysis—to
test the robustness of HAI construction.

Finally, our findings indicate that high ER can persist under moderate HAI levels,
suggesting opportunities for balancing development and ecological goals. Future research
could apply multi-objective spatial optimization models, such as NSGA-II, to support land
use restructuring and sustainable planning in rapidly urbanizing regions.

5. Conclusions
This study developed an integrated framework to assess ER by combining dynamic

and static indicators within the RAR model. Leveraging multi-source datasets and an
explicit–implicit classification of HAI, we employed spatial analysis, OPGD, and MGWR to
explore the spatiotemporal coupling mechanisms between HAI and ER in the XZUA from
2012 to 2022. The key findings are as follows:

(1) Nonlinear Dynamic Trends: ER followed a “shock–recovery” trajectory with a net
decline of 3.202%, while HAI exhibited a “rise–fall” pattern with an overall decrease
of 0.800%, indicating non-linear human–ecological dynamics.

(2) Strengthening Spatial Mismatch: A growing mismatch between HAI and ER
was observed (bivariate Moran’s I increased from 0.296 to 0.380), with both in-
dices trending downward (Sen’s slope < 0), underscoring the need to enhance
human–land coordination.

(3) Spillover Effects: ER degradation occurred in low-HAI areas adjacent to high-HAI
zones, revealing indirect ecological pressures linked to urban expansion.

(4) Dynamic HAI as a Dominant Driver: HAI Sen’s slope exerted the strongest impact on
ER change (q = 0.512), exceeding static HAI mean and natural factors. Its interaction
with precipitation (q = 0.802) highlights climate–human co-regulation mechanisms.

(5) Spatial Stability of HAI Variation: Compared to intensity, temporal fluctuations in
HAI showed more consistent spatial influence on ER, emphasizing the importance of
monitoring change dynamics.

Overall, this study enhances the understanding of non-linear, scale-dependent, and
regionally differentiated HAI–ER relationships. It offers empirical evidence to inform
adaptive, context-sensitive resilience planning in potential urban agglomerations.
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Appendix A
The data preprocessing workflow consists of three major components: (1) cloud removal

and compositing—cloud pixels in MODIS MOD09A1 data were removed using the StateQA
band to filter out cloudy imagery; (2) temporal resolution standardization—because the
datasets have different temporal resolutions, we resampled all data to an annual resolution,
and missing values due to cloud removal (or other factors) were interpolated (for sparse
datasets like POI, we used the nearest-neighbor principle on the time axis); (3) spatial reso-
lution standardization—all geographic data were resampled to a uniform 500 m resolution,
which served as the base for analysis.

Targeted data processing includes the following: (1) Population data adjustment and
correction: Due to the time constraints of the WorldPop dataset, we constructed a spatio-
temporal cube using the official data. A linear regression model was established for each
pixel to predict future population values. To address anomalies, predictions were validated
using an interquartile range (IQR) test with a 10 × 10 moving window. Outliers were
removed, and missing pixels were filled using the mean value of a 3 × 3 neighborhood
window. (2) Reclassification of MODIS land use data: MODIS (Type 1) land cover data,
originally classified into 17 categories, were reclassified into 8 categories based on the
requirements of this study (Table A1). All remote sensing data were accessed and processed
via the Google Earth Engine (GEE, https://code.earthengine.google.com/, accessed on
10 December 2024).

Table A1. Reclassification scheme of MODIS land cover types.

No. Land Type Description CI * RLC **

1 Forest
Type 1–5, including evergreen

needleleaf/broadleaf forests, deciduous
needleleaf or broadleaf forests, mixed forests.

0.010 1.000

2 Shrubland Type 6–7, including closed/open shrublands. 0.133 0.800

3 Grassland Type 8–10, including woody savannas,
savannas, grasslands. 0.067 0.700

4 Wetland Type 11, including permanent wetlands. 0.067 0.600

5 Farmland Type 12, 14, including croplands,
cropland/natural vegetation mosaics. 0.200 0.500

6 Artificial Surface Type 13, including urban and built-up lands. 1.000 0.300
7 Barren Type 16, including barren land. 0.000 0.200

8 Water Type 15, 17, including permanent snow and ice,
water bodies. 0.000 0.800

* CI: Construction Land Equivalent Index; ** RLC: Resilience Land Coefficient. For details on assignment methods,
see Section 2.4.1 (1) for CI and Section 2.4.2 (2) for RLC.

Appendix B
Appendix B.1

The CRITIC (Criteria Importance Through Intercriteria Correlation) method, proposed
by [46], is used to calculate the objective weights of multiple indicators by simultaneously
considering their variability and redundancy. As a multi-criteria decision-making (MCDM)
approach, CRITIC provides an objective mechanism for determining indicator weights
based on both the contrast intensity and the degree of conflict among indicators.

The method considers three key aspects for each indicator j:
Sj is the standard deviation of indicator j, representing contrast; Rj is the conflict

intensity of indicator j, based on its correlation with other indicators; Cj =Sj . . . Rj is the
combined information content of indicator j. The final normalized weight for indicator j is
then calculated as

Wj =
Cj

∑
p
j=1 Cj

(A1)

https://code.earthengine.google.com/
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where p is the number of indicators. This approach offers two major advantages: (1) It
automatically down-weights indicators that are highly correlated with others, mitigating
the influence of redundant information. (2) It preserves the contribution of indicators that
carry unique or high-contrast information.

Appendix B.2

The Remote Sensing-based Ecological Index (RSEI), developed by [100], is widely
used to assess ecological quality due to its transparency, objectivity, and comparability. It
integrates four indicators—NDVI (greenness), WET (wetness), NDBSI (dryness), and LST
(surface temperature)—derived from remote sensing imagery during the growing season
(May to October) [57].

Each of the four indicators is first normalized to a [0, 1] scale. Principal component
analysis (PCA) is then applied to extract the dominant eigenvector structure. The first
principal component (PC1) is typically selected, as it captures the majority of variance
and jointly represents the ecosystem’s overall condition. To ensure interpretability and
comparability, PC1 is re-normalized to form the final RSEI:

RSEI = 1 − nor+(PC1 (NDVI, WET, NDBSI, LST)) (A2)

where nor+ indicates min-max normalization across the spatial extent. Note that the use
of “PC1” versus “1–PC1” reflects only the direction of the eigenvector and does not affect
its eigenvalue.

Appendix B.3

To better capture the spatial heterogeneity in the relationships between explanatory
variables and ER, this study employs the Multi-Scale Geographically Weighted Regression
(MGWR) model. MGWR was developed to address the spatial scale limitations of tradi-
tional Geographically Weighted Regression (GWR), enabling each explanatory variable to
be evaluated at its own optimal spatial bandwidth [61]. This flexibility allows the model to
distinguish between globally consistent and locally varying effects across space, providing
more accurate estimates of spatial processes. The model takes the following form:

yi =
k

∑
j=1

βbwj(ui, vi)xij + ϵi (A3)

where yi is the dependent variable, xij is the value of the j-th explanatory variable at location
i, βbwj(ui, vi) is the spatially varying coefficient at location i with bandwidth bwj, and ϵi is
the error term [64].

An adaptive kernel framework was used, where the bandwidth of each variable was
determined through the Golden Section Search algorithm, using the corrected Akaike
Information Criterion (AICc) as the optimization objective. Smaller bandwidths reflect
spatial non-stationarity—suggesting local influence—whereas larger bandwidths indicate
spatial stationarity. Thus, bandwidth serves as a proxy for spatial heterogeneity.

Model quality was assessed using R2, AICc, and p-values. Spatial distribution maps of
coefficients were generated for key predictors.

Appendix B.4

While MGWR captures spatial variation in linear relationships, it is limited in de-
tecting nonlinear associations and interaction effects between variables. To address this,
the Optimal Parameter Geographical Detector (OPGD) model is introduced as a comple-
mentary approach. OPGD identifies both the nonlinear explanatory power of individual
factors and the synergistic or antagonistic interactions between them. Compared with the
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standard Geographical Detector (GD), OPGD enhances result stability and objectivity by
automatically optimizing discretization strategies, including classification methods and the
number of intervals [63]. The explanatory power of a factor X on the dependent variable Y
is measured by the q-value, defined as

q = 1 − ∑L
h=1 Nhσ

2
h

Nσ2 = 1 − SSW
SST

SSW =
L
∑

h=1
Nhσ

2
h, SST = Nσ2

(A4)

where N is the number of samples in the study area, L is the number of categories of
factor X, σ2 is the total variance of Y in the study area, and σ2

h is the variance of Y within
category h of factor X. SSW is the within-category sum of squares, and SST is the total sum
of squares.

The q-value ranges from 0 to 1, with higher values indicating stronger explanatory
power [64]. Additionally, the model evaluates the combined effect of two factors (X1
and X2) to determine whether their joint contribution to Y is synergistic, antagonistic,
or independent.
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77. Büyüközkan, G.; Ilıcak, Ö.; Feyzioğlu, O. A Review of Urban Resilience Literature. Sustain. Cities Soc. 2022, 77, 103579. [CrossRef]
78. Zhang, W.; Liu, G.; Ghisellini, P.; Yang, Z. Ecological Risk and Resilient Regulation Shifting from City to Urban Agglomeration: A

Review. Environ. Impact Assess. Rev. 2024, 105, 107386. [CrossRef]
79. Deng, H.; Zheng, P.; Liu, T.; Liu, X. Forest Ecosystem Services and Eco-Compensation Mechanisms in China. Environ. Manag.

2011, 48, 1079–1085. [CrossRef] [PubMed]
80. Zhang, S.; Lei, J.; Zhang, X.; Fan, L.; Duan, Z. Urban Human Settlement Quality Refined Assessment and Its Spatial Relationship

with Human Activity Intensity in Arid Area: A Case Study of Urumqi, China. Habitat Int. 2025, 161, 103422. [CrossRef]
81. Gao, L.; Ma, C.; Wang, Q.; Zhou, A. Sustainable Use Zoning of Land Resources Considering Ecological and Geological Problems

in Pearl River Delta Economic Zone, China. Sci. Rep. 2019, 9, 16052. [CrossRef] [PubMed]
82. Yu, C.; Zhang, Z.; Jeppesen, E.; Gao, Y.; Liu, Y.; Liu, Y.; Lu, Q.; Wang, C.; Sun, X. Assessment of the Effectiveness of China’s

Protected Areas in Enhancing Ecosystem Services. Ecosyst. Serv. 2024, 65, 101588. [CrossRef]
83. Pan, Y.; Xu, Z.; Wu, J. Spatial Differences of the Supply of Multiple Ecosystem Services and the Environmental and Land Use

Factors Affecting Them. Ecosyst. Serv. 2013, 5, 4–10. [CrossRef]
84. Fang, L.; Wang, L.; Chen, W.; Sun, J.; Cao, Q.; Wang, S.; Wang, L. Identifying the Impacts of Natural and Human Factors on

Ecosystem Service in the Yangtze and Yellow River Basins. J. Clean. Prod. 2021, 314, 127995. [CrossRef]
85. QI, H.; ZHI, X.; BAI, Y. Interdecadal variation and trend analysis of the drought occurrence frequency in China (Chinese). Trans.

Atmos. Sci. 2011, 11, 447–455. [CrossRef]
86. Shi, P.; Wang, G.J.; Xie, Y. A Preliminary Study of the Climatic Change, Natural Disasters of Agriculture and Grain Yield in China

during the Past 15 Year. J. Nat. Resour. 1997, 12, 7. (In Chinese) [CrossRef]
87. Kan, D.; Lv, L. The Impact of New Urbanization on Water Ecological Resilience: An Empirical Study from Central China. PLoS

ONE 2024, 19, e0313865. [CrossRef]
88. Lu, X.; Ke, S. Evaluating the Effectiveness of Sustainable Urban Land Use in China from the Perspective of Sustainable Urbaniza-

tion. Habitat Int. 2018, 77, 90–98. [CrossRef]
89. Luan, G.; Peng, Z.; Zhao, F.; Xia, J.; Zou, F.; Xiong, Y.; Wang, Z.; Zhang, Y.; Wang, X.; Sun, W. Spatiotemporal Dynamics of

Ecosystem Supply Service Intensity in China: Patterns, Drivers, and Implications for Sustainable Development. J. Environ. Manag.
2024, 367, 122042. [CrossRef] [PubMed]

90. Cai, B.; Shao, Z.; Fang, S.; Huang, X.; Huq, M.E.; Tang, Y.; Li, Y.; Zhuang, Q. Finer-Scale Spatiotemporal Coupling Coordination Model
between Socioeconomic Activity and Eco-Environment: A Case Study of Beijing, China. Ecol. Indic. 2021, 131, 108165. [CrossRef]

91. Wang, J.; Da, L.; Song, K.; Li, B.-L. Temporal Variations of Surface Water Quality in Urban, Suburban and Rural Areas during
Rapid Urbanization in Shanghai, China. Environ. Pollut. 2008, 152, 387–393. [CrossRef] [PubMed]

92. Liang, J.; Li, Y. Resilience and Sustainable Development Goals Based Social-Ecological Indicators and Assessment of Coastal
Urban Areas—A Case Study of Dapeng New District, Shenzhen, China. Watershed Ecol. Environ. 2020, 2, 6–15. [CrossRef]

93. Ren, Y. Sustainable Urbanization: Imbed Sustainable Development within the Urbanization Process in China. Soc. Sci 2017, 2,
66–71. (In Chinese) [CrossRef]

94. Li, Q.; Ge, J.; Zhang, X.; Wu, X.; Fan, H.; Yang, L. Assessment of the Interaction between Digital Infrastructure and Ecological
Resilience: Insights from Yangtze River Delta Urban Agglomeration in China. J. Clean. Prod. 2025, 486, 144364. [CrossRef]

95. Xu, K.; Wang, J.; Wang, J.; Wang, X.; Chi, Y.; Zhang, X. Environmental Function Zoning for Spatially Differentiated Environmental
Policies in China. J. Environ. Manag. 2020, 255, 109485. [CrossRef]

96. Yin, S.; Zhou, Y.; Zhang, C.; Wu, N. Impact of Regional Integration Policy on Urban Ecological Resilience: A Case Study of the
Yangtze River Delta Region, China. J. Clean. Prod. 2024, 485, 144375. [CrossRef]

97. Neuman, M. The Compact City Fallacy. J. Plan. Educ. Res. 2005, 25, 11–26. [CrossRef]
98. Halperin, S.; Castro, A.J.; Quintas-Soriano, C.; Brandt, J.S. Assessing High Quality Agricultural Lands through the Ecosystem

Services Lens: Insights from a Rapidly Urbanizing Agricultural Region in the Western United States. Agric. Ecosyst. Environ. 2023,
349, 108435. [CrossRef]

99. He, X.; Miao, Z.; Wang, Y.; Yang, L.; Zhang, Z. Response of Soil Erosion to Climate Change and Vegetation Restoration in the
Ganjiang River Basin, China. Ecol. Indic. 2024, 158, 111429. [CrossRef]

100. Xu, H. A remote sensing urban ecological index and its application. Acta Ecol. Sin. 2013, 33, 7853. (In Chinese) [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/s41597-019-0048-z
https://doi.org/10.1016/j.scitotenv.2023.161465
https://doi.org/10.1016/j.scs.2021.103579
https://doi.org/10.1016/j.eiar.2023.107386
https://doi.org/10.1007/s00267-011-9742-0
https://www.ncbi.nlm.nih.gov/pubmed/21882001
https://doi.org/10.1016/j.habitatint.2025.103422
https://doi.org/10.1038/s41598-019-52355-7
https://www.ncbi.nlm.nih.gov/pubmed/31690842
https://doi.org/10.1016/j.ecoser.2023.101588
https://doi.org/10.1016/j.ecoser.2013.06.002
https://doi.org/10.1016/j.jclepro.2021.127995
https://doi.org/10.13878/j.cnki.dqkxxb.2011.04.011
https://doi.org/10.1007/BF02951625
https://doi.org/10.1371/journal.pone.0313865
https://doi.org/10.1016/j.habitatint.2017.10.007
https://doi.org/10.1016/j.jenvman.2024.122042
https://www.ncbi.nlm.nih.gov/pubmed/39083947
https://doi.org/10.1016/j.ecolind.2021.108165
https://doi.org/10.1016/j.envpol.2007.06.050
https://www.ncbi.nlm.nih.gov/pubmed/17681654
https://doi.org/10.1016/j.wsee.2020.06.001
https://doi.org/10.13644/j.cnki.cn31-1112.2017.02.006
https://doi.org/10.1016/j.jclepro.2024.144364
https://doi.org/10.1016/j.jenvman.2019.109485
https://doi.org/10.1016/j.jclepro.2024.144375
https://doi.org/10.1177/0739456X04270466
https://doi.org/10.1016/j.agee.2023.108435
https://doi.org/10.1016/j.ecolind.2023.111429
https://doi.org/10.5846/stxb201208301223

	Introduction 
	Conceptual Evolution and Analytical Frameworks of ER 
	Quantification of HAI and Its Impact on ER 
	Potential Urban Agglomeration: XZUA 
	Research Gaps, Innovations, and Fundamental Hypotheses 

	Materials and Methods 
	Flowchart 
	Study Area 
	Data Sources 
	Methods 
	Multi-Source Data Human Activity Intensity Model 
	Ecosystem Resilience Assessment Framework 
	Sen’s Slope and Mann–Kendall Test Model 
	MGWR and OPGD Models 
	Bivariate Spatial Autocorrelation 


	Results 
	HAI and ER Assessment Results 
	Spatial Pattern and Correlation Analysis 
	Shift in Center of Gravity Analysis 
	Multi-Scale Correlation Analysis 

	Trend Analysis 
	Temporal Dynamics 
	Linear and Non-Linear Driving Analysis 


	Discussion 
	Nonlinear Dynamics and Spatiotemporal Mismatch in HAI–ER 
	Threshold Effects and Interactive Drivers of HAI Impact 
	Spatial Drivers and Heterogeneity in HAI–ER Relationships 
	Policy Recommendations Based on the Zoning Strategy 
	Limitations and Future Directions 

	Conclusions 
	Appendix A
	Appendix B
	 
	 
	 
	 

	References

