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Abstract: Phytoplankton size classes (PSC), which categorize phytoplankton into pico-
(<2 pm), nano- (2-20 pm), and microphytoplankton (>20 um), have been widely used to
describe functional group responses to environmental variability. Distribution of PSCs
heavily influences marine ecosystems and biogeochemical processes. Despite the impor-
tance of PSC distributions, especially in the face of climate change, long-term studies on
PSC variability and its driving factors are lacking. This study aimed to identify the key
environmental drivers affecting summer PSC variability in the northern East China Sea
(NECS) by analyzing 27 years (1998-2024) of satellite-derived data. Statistical analyses
using random forest and multiple linear regression models revealed that euphotic depth
(Zeu) and suspended particulate matter (SPM) were the primary factors influencing PSC
variation; deeper Z,, values favored smaller picophytoplankton, whereas higher SPM con-
centrations supported larger PSCs. Long-term trend analysis showed a clear shift toward
increasing picophytoplankton contributions (+2.4% per year), with corresponding declines
in nano- and microphytoplankton levels (2.2% and 0.4% annually, respectively). These long-
term changes are hypothesized to result from a persistent decline in SPM concentrations,
which modulate light attenuation and nutrient dynamics in the euphotic zone. Marine
heat waves intensify these shifts by promoting picophytoplankton dominance through
enhanced stratification and reduced nutrient availability. These findings underscore the
need for continuous monitoring to inform ecosystem management and predict the impacts
of climate change in the NECS.
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1. Introduction

Phytoplankton are responsible for approximately 49% of global net primary produc-
tion (~108 Pg C annually) but account for less than 1% of the total global photosynthetic
biomass because of their rapid turnover [1-5]. Chlorophyll-a (Chl-a) is a widely used
proxy for phytoplankton biomass but does not distinguish between phytoplankton size
groups [6,7]. Therefore, further classification methods have been developed to divide
phytoplankton into three size classes: micro- (>20 pm), nano- (2-20 um), and picophy-
toplankton (<2 um) [8]. Plankton size classes (PSCs) influence carbon export, nutrient
cycling, and trophic interactions [9,10]. In the northern East China Sea (NECS), recent shifts
in phytoplankton communities from diatoms to dinoflagellates and cyanobacteria reflect
increasing N/P nutrient ratios and rising sea surface temperatures (SSTs) [11].

Remote Sens. 2025, 17, 1954

https:/ /doi.org/10.3390/rs17111954


https://doi.org/10.3390/rs17111954
https://doi.org/10.3390/rs17111954
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-2216-2601
https://orcid.org/0000-0003-3026-3285
https://doi.org/10.3390/rs17111954
https://www.mdpi.com/article/10.3390/rs17111954?type=check_update&version=1

Remote Sens. 2025, 17, 1954

2 of 24

Microphytoplankton, representing the largest PSC, are often dominated by diatoms
and dinoflagellates. They play a vital role in supporting higher trophic levels, such as
zooplankton and fish, and are key contributors to bloom events that drive short-term
increases in primary production [11,12]. In addition, their larger size and denser cellular
structure facilitate the rapid sinking of organic carbon to the ocean floor, contributing to
biological carbon pumps [10]. Nanophytoplankton, which include small flagellates and
coccolithophores, serve as an important link between the microbial loop and the classical
food web [13]. They efficiently utilize dissolved nutrients and play an important role
in oceanic carbon cycling by producing calcium carbonate shells, which enhance carbon
export during sedimentation [14]. Picophytoplankton, the smallest group, predominantly
comprises cyanobacteria and small eukaryotic phytoplankton. Despite their small size,
picophytoplankton contribute heavily to primary production, especially in oligotrophic
(nutrient-poor) regions, such as the open ocean and the Kuroshio Current [15]. Rising SSTs
in the East China Sea (ECS) have been linked to increased picophytoplankton contribution,
particularly during summer, underscoring their adaptability to nutrient-poor, stratified
conditions [16]. They form the basis of the microbial loop, recycling nutrients and main-
taining ecosystem stability [17]. As each size class plays a distinct role, investigating PSC
distribution and variability is crucial for understanding the intricate interactions within
marine ecosystems. PSC research provides insights regarding phytoplankton community
structures, responses to environmental changes, and contributions to global carbon and
nutrient cycles.

Given the crucial role of phytoplankton in global biogeochemical cycles, it is impera-
tive to investigate how these processes manifest in specific regions, particularly in dynamic
marginal seas, such as the NECS. The NECS, spanning 30-32°N and 125.5-127.5°E, is
shaped by the interplay between nutrient-rich Yangtze River discharge and the warm,
oligotrophic Kuroshio Current [16,18-21]. Phytoplankton dynamics in this transitional
zone are driven by various environmental factors, including freshwater content (FWC),
euphotic depth (Z,,), mixed-layer depth (MLD), photosynthetically active radiation (PAR),
suspended particulate matter (SPM), wind stress, and nutrient availability [18,19,22]. These
variations also affect light penetration, which modulates phytoplankton productivity and
community structure [21,23]. In the NECS, riverine inputs from the Yangtze River substan-
tially influence hydrography by altering water clarity through changes in SPM, affecting Z,,,
and nutrient availability [23]. SST further regulates the phytoplankton community structure
by influencing stratification and nutrient flux. Warmer conditions enhance stratification,
reduce nutrient upwelling, and favor smaller PSCs, such as picophytoplankton, which
thrive in nutrient-depleted environments [15,16,24]. The MLD determines the vertical
distributions of nutrients and phytoplankton. A shallower MLD enhances light availability
but limits nutrient supply, favoring small phytoplankton, whereas a deeper MLD promotes
nutrient mixing, benefiting larger phytoplankton, such as diatoms [25,26]. Since PAR mea-
sures the light available for photosynthesis, it regulates primary production. Reduced PAR,
which is often associated with increased SPM, limits phytoplankton growth by decreasing
light penetration in the euphotic zone [27,28]. Additionally, FWC, primarily influenced
by Yangtze River discharge, modulates salinity and stratification, further shaping PSC
distribution [29,30]. Z,, and SPM are key factors that influence phytoplankton productivity
and community structure [23]. Nutrient availability influences PSC variability, especially
near the Yangtze River mouth. Therefore, understanding the interplay of these factors is
essential for explaining the spatial and temporal variations in PSCs.

Long-term studies have revealed significant hydrographic and biological changes
in the ECS over the past decades. In marine ecosystems, phytoplankton communities
are highly sensitive to environmental fluctuations. Consequently, shifts in physical and
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chemical conditions can lead to notable alterations in community composition and standing
stocks. Rising SSTs, driven by both natural variability and anthropogenic climate change,
are associated with increased thermal stratification and reduced nutrient flux to surface
waters, resulting in altered phytoplankton community composition [19,24]. Moreover,
changes in light conditions and SPM have been noted, with associated impacts on PSCs.
For example, Ref. [31] reported distinct differences between nearshore and offshore regions,
where nearshore waters were dominated by microphytoplankton and offshore waters by
pico- and nanophytoplankton, reflecting gradients in environmental conditions such as
turbidity and nutrient supply. Furthermore, primary productivity in waters adjacent to the
Yangtze River decreased by approximately 86% after the construction of the Three Gorges
Dam, and the phytoplankton community structure in the ECS underwent corresponding
changes [32,33]. However, more data on this issue is needed.

To further investigate these processes, early studies, such as that of [19], employed
in situ observations to explore nutrient patterns and Chl-a distribution, emphasizing the
impact of the Yangtze River plume during summer. Recent advances in satellite remote
sensing tools, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and
the Visible Infrared Imaging Radiometer Suite (VIIRS), have greatly enhanced our ability
to observe PSCs over broad spatial and temporal scales [34,35]. Using remote sensing,
Refs. [21,22] linked PSC variability to physical forcing and nutrient availability. Ref. [31]
combined in situ and satellite observations for their investigation on PSC variability be-
tween nearshore and offshore regions. Studies on the ECS have revealed significant shifts
in hydrographic and biological systems. Rising SSTs in the ECS, driven by both natural
variability and anthropogenic climate change, have been associated with increased thermal
stratification and reduced nutrient flux to surface waters [23,36]. These changes have
profound implications on primary productivity and phytoplankton community composi-
tion [18,37].

Research in the ECS is particularly relevant because of its dual role as a nutrient-rich
area that supports high biological productivity and as a vulnerable ecosystem subject to
anthropogenic pressures, including eutrophication and climate change [30]. The NECS
serves as a particularly suitable region for studying PSC variability due to its ecological
importance, productive fishing grounds, and dynamic summer hydrographic conditions
driven by freshwater inputs from the Yangtze River and the Kuroshio Current [18,38].
Additionally, frequent marine heat wave (MHW) events during summer further influence
phytoplankton community dynamics, making it an optimal period for investigating envi-
ronmental impacts on PSC distribution [39,40]. MHWs are defined as prolonged periods
of anomalously high SSTs, typically exceeding the 90th percentile of local climatological
distribution [39,40]. MHWs alter stratification and, by reducing water turbidity through
suppressed mixing, increase light penetration, leading to shifts in phytoplankton commu-
nity structure [40,41]. Recent studies have suggested that MHWSs coupled with elevated
SPM from riverine inputs create complex conditions that reshape PSC distributions, with
warmer conditions linked to the increased dominance of smaller size classes [16].

Despite extensive research on PSC variability in the ECS, most studies have focused
on short-term observations or specific environmental conditions, leaving the long-term
combined influence of Yangtze River-driven nutrient enrichment, rising SSTs, and episodic
MHW events on PSCs poorly understood [21,31]. In particular, the interplay between
nutrient ratio shifts (e.g., N/P increases) and thermal anomalies in driving transitions from
diatoms to dinoflagellates and cyanobacteria remains underexplored [42]. To address these
gaps, this study aimed to elucidate the biological responses of phytoplankton to MHW
events in the NECS by integrating 27 years of satellite data from the Ocean Colour Climate
Change Initiative (OC-CCI [43]) with in situ measurements and modeling, providing
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new insights into the biogeochemical and ecological functioning in this region. This
study examined the response of phytoplankton dynamics, particularly changes in PSC
distribution, to MHWS, with a particular emphasis on the ecological implications of thermal
anomalies, focusing on summer (June-September), when Yangtze River discharge and
MHWs peak, offering an optimal window to explore PSC variability. Although nutrient
availability significantly influences PSC dynamics, this study focused on physical drivers
due to data limitations, leaving nutrient-related effects for future research [44]. We adopted
the semi-analytical model proposed by [45], which uses inherent optical properties to
estimate PSCs. To identify the key environmental drivers of PSC variability, we employed
two complementary statistical approaches, random forest and multiple linear regression.
Random forest was chosen because of its ability to capture complex nonlinear relationships
and variable interactions [46]. In contrast, multiple linear regression provides interpretable
coefficients that quantify the relative importance and direction of each driver under linear
assumptions [47].

The specific objectives of this study were to (1) analyze summer PSC trends, (2) iden-
tify key environmental drivers, and (3) assess phytoplankton responses to MHWSs. By
addressing these objectives, this study clarifies the complex interplay between riverine
inputs, oceanic processes, and annual variability, providing new insights into the factors
that regulate primary production and biogeochemical cycling in the ECS. Understanding
these processes is essential for effective ecosystem management and the prediction of future
changes in the region’s marine environment.

2. Materials and Methods
2.1. Study Area and In Situ Measurement

The study area was located in the NECS, a dynamic marginal sea bounded by the
eastern coast of China, Jeju Island (off the southern coast of the Korean Peninsula), and
Kyushu Island, Japan. It spans the geographical coordinates of 30-32°N and 125.5-127.5°E
(Figure 1), encompassing the confluence of the Yangtze River discharge and the Kuroshio
Current, representing a complex and highly variable hydrographic environment. During
summer (June to September), warm, saline waters transported by a branch of the Kuroshio
Current enhance surface stratification and suppress vertical mixing, fostering oligotrophic
conditions that favor picophytoplankton dominance. In contrast, winter mixing increases
nutrient availability, supporting the growth of larger phytoplankton such as nano- and
microphytoplankton [21].

To evaluate the reliability of satellite-derived PSC estimates, we used in situ measure-
ments of dominant PSCs collected by the National Institute of Fisheries Science (NIFS)
during field surveys conducted between 2018 and 2023 at 12 stations across both coastal and
offshore regions. These observations provided ground-truth data for validating satellite-
based classification of phytoplankton size structure in this region.

2.2. Satellite Data and PSC Validation

This study utilized level 3 satellite data from the OC-CCI Version 6.0 (https://www.
oceancolour.org/, accessed on 20 November 2024), developed by the European Space
Agency (ESA). The OC-CCI dataset combines and harmonizes data from multiple ocean
color sensors, offering consistent and high-quality time series of ocean color products [43].
The dataset provides global coverage with a spatial resolution of 4 km and includes key
variables, such as Chl-a, the phytoplankton absorption coefficient at 443 nm (ap443), the
diffuse attenuation coefficient at 490 nm (Kd(490)), and the remote sensing reflectance at
665 nm (Rrs665). Daily OC-CCI data were aggregated into 5-day composites to reduce
noise and enhance data reliability. Satellite variables were averaged into 5-day composites
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using an unweighted arithmetic mean. Only cloud-free valid pixels were included, and
composites were centered on each 5-day window (e.g., 1-5 January, 6-10 January, etc.). No
spatial interpolation was applied. Temporal coverage of the dataset spans from 1998 to
2024, allowing for long-term trend analysis and interannual variability studies.

40°N

35°N

30°N

120°E 125°E 130°E 133°E

Figure 1. Map of the study area, including 12 NIFS stations (blue dots). The dashed line is the ECS
boundary of the large marine ecosystem.

To validate the satellite-derived PSC estimates, in situ measurements collected within
the study area by NIFS from May to September for 1998-2023 were used. Seawater samples
were filtered sequentially through 20 um and 2 pm membrane filters and a 0.7 um GF/F
filter to obtain micro-, nano-, and picophytoplankton fractions. Satellite-derived PSC esti-
mates were derived using the semi-analytical model proposed by [45]. This model uses
the inherent optical property ap,443 to classify dominant PSCs of microphytoplankton,
nanophytoplankton, and picophytoplankton. By analyzing the spectral shapes of a,;,443,
the model calculates the fractional contribution of each size class to the total phytoplankton
biomass. This approach is advantageous because it directly links light absorption character-
istics to phytoplankton cell size, enabling more accurate PSC differentiation than provided
by Chl-a-based empirical models. The relationship between ap,;,443 and PSC dominance
was characterized by the following general trends:

e Fora,,443 <0.023 m~!, picophytoplankton dominance;
e  For a,,443 between 0.023 and 0.069 m~!, nanophytoplankton dominance;
e  Fora,p443 > 0.069 m~!, microphytoplankton dominance.
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During summer (June to September), a,;443 values within the study region (30-32°N,
125.5-127.5°E) ranged from 0.036 to 4.828 m ™!, with a mean of 0.027 m~!. This range
reflects strong temporal variability in phytoplankton absorption, consistent with seasonal
changes in biomass and community structure.

2.3. Environmental Factors

We utilized multiple environmental datasets to analyze the key drivers of PSC vari-
ability in the NECS.

SST (°C) data were obtained from the Global Ocean Operational SST and Sea Ice Anal-
ysis (OSTIA) dataset [48], provided by the Copernicus Marine Environment Monitoring
Service (CMEMS; accessed on 26 December 2024). This dataset integrates satellite obser-
vations from the Group for High-Resolution Sea Surface Temperature Project, along with
in situ measurements. The OSTIA delivers daily global gap-free SST maps with a spatial
resolution of 0.05° x 0.05° (~5 km), covering the temporal range from 1 January 1998 to
September 2024. Reprocessed SST data were utilized for 1998-2006, whereas near-real-time
SST data were employed for 2007-2024.

PAR (E/m?/d) data were obtained from the Global Merged Ocean Colour Project
(GlobColour; accessed on 19 December 2024), which provides globally merged level 3
ocean color products with a spatial resolution of 4 km. The GlobColour dataset integrates
observations from multiple satellite sensors, including MODIS, SeaWiFS, and MERIS, and
offers consistent and validated estimates of PAR [49].

Zey (m) was calculated from the OC-CCI Kd(490) product, allowing for the estimation
of light penetration into the water column. The relationship between Z,, and Kd(490)
follows a widely used empirical equation [27].

Zeoy(m) = Kdtf%)' (1)

This equation assumes that the depth at which the PAR is reduced to 1% of its surface
value corresponds to the euphotic depth.

Six-hour zonal and meridional wind data (u;y and viy m/s) were obtained from the
European Centre for Medium-Range Weather Forecasts Reanalysis 5th Generation [50]
dataset provided by the Copernicus Climate Data Store (accessed on 13 November 2024).
Wind stress magnitude (7, N/m?) was calculated using the bulk aerodynamic formula
proposed by Large and Pond [51]. The wind stress components (Tx and Ty, N/m?) were

Ty (N/mz) = 04Caqu104/ ”%0 + v%o, 2)
Ty (N/mz) = 04C30104/ “%0 + U%O, 3)

where p, is the air density (assumed to be 1.225 kg/m3) and Cyq is the drag coefficient,

first computed as follows:

determined based on wind speed following the parameterization described by Large and
Pond [51].
Cy = 0.00114 + 0.000076 % |U]. 4)

The wind stress magnitude (1) was then calculated as the vector magnitude.

T(N/m2) = /T + 17 (5)

These calculations were performed on 6 h data, which were then averaged to 5-day
intervals for consistency with other environmental factors.
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The salinity (psu) at each depth and MLD (m) was obtained from the GLORYS12V1
product, a global ocean eddy-resolving reanalysis with a horizontal resolution of 1/12° and
50 vertical levels, provided by the CMEMS (accessed on 13 December 2024).

The FWC (m) quantifies the freshwater input in a given region and is calculated
based on the salinity profile relative to the reference salinity. The FWC was derived from
GLORYS12V1 salinity data using the following formula [52]:

FWC (m) = /O Sref ~S(2)

. Sref dz, (6)

where S, is the reference salinity, set to 34.57 psu (Kuroshio averaged salinity) [29], and
S(z) is the salinity at depth z, where z is the depth at which S = S, ¢.

SPM (g/m?) concentrations were estimated using the algorithm of [53] applied to
the OC-CCI Rrs665 dataset, providing a measure of water clarity and sediment load. The
algorithm is given by the following:

soutg = A=) .

C

where A =17.7 and C = 0.216 for coastal waters. Rrs(A) refers to Rrs665 (1/sr).

To ensure temporal consistency and reduce noise, all daily environmental data were
aggregated into 5-day composites. Subsequently, datasets with varying native spatial
resolutions were resampled to match the 4 km resolution of the OC-CCI data using the
nearest-neighbors interpolation method. This approach preserves the original data char-
acteristics by assigning the value of the closest pixel to the target grid point, facilitating
the seamless integration of datasets for further analysis. Nutrient data (e.g., nitrate and
phosphate) were excluded because of the inability of satellite observations to directly
estimate dissolved inorganic nitrogen and phosphorus, compounded by sparse in situ
spatiotemporal coverage. This exclusion may lead to the underestimation of nearshore
PSC dynamics driven by the Yangtze River inputs, potentially introducing bias if riverine
nutrient pulses indirectly influence physical drivers, such as Z., and SPM, through altered
stratification or turbidity.

2.4. Statistical Analysis

To identify the environmental drivers of phytoplankton size structure, we modeled the
relative contributions of each size class (pico-, nano-, and microphytoplankton) as functions
of key environmental variables. Using satellite-derived data, we treated PSC contributions
as dependent variables and included seven predictors—Z,,, SST, PAR, SPM, MLD, FWC,
and wind stress—in two regression frameworks: random forest and multiple linear regres-
sion. While the random forest model excelled at identifying nonlinear interactions and
thresholds, multiple linear regression provided a clearer picture of the relative importance
and directionality of environmental drivers under linear assumptions. Although Chl-a
was initially considered as a primary dependent variable, it did not show a statistically
significant relationship with the modeled PSC contributions and was therefore excluded
from the final PDP visualizations.

2.4.1. Random Forest Model for PSC Analysis

A random forest algorithm was applied to evaluate the environmental drivers of PSC
variability. The model, known for its ability to handle nonlinear relationships and complex
interactions among variables, consists of an ensemble of decision trees, each built using a
random subset of predictors and samples from the dataset. The final prediction is derived
by aggregating the outputs from the individual trees [46]. In this study, the random forest
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Contribution (%) = Bo+ B1 X SST + B2 x FWC + B3 x MLD + B4 x Wind stress + Bs x PAR+

model was trained and tested using a 70:30 train—test split, incorporating Z,, and SPM as
the key environmental predictors. We optimized the random forest model through grid
search of key hyperparameters—parameters that control the model structure but are not
learned during training—such as the number of trees and maximum tree depth. The model
accuracy was assessed using root mean squared error and R? metrics. Due to its reliance on
the same input data (Z,, and SPM) in retrieval algorithms—risking the duplication of data
retrieval—Chl-a was not selected as a dependent variable.

We then quantified the relative importance of key environmental variables, including
SST, PAR, Z.,, MLD, SPM, and wind stress, in influencing the contributions of pico-, nano-,
and microphytoplankton. Partial dependence plots (PDPs) were generated to visualize
and interpret the influence of individual environmental variables on PSCs. PDPs illustrate
the marginal effect of a selected predictor variable on PSCs while holding other variables
constant. These plots provide insights into the relationships between specific environmental
factors. They reveal critical thresholds or inflection points, aiding in understanding the
nonlinear and interactive effects captured by the random forest model.

2.4.2. Multiple Linear Regression Analysis for PSCs

Multiple linear regression analysis was conducted to explore the relationship between
environmental variables (e.g., Z.,, SPM, SST, PAR, wind stress, and FWC) and dependent
variables, such as PSCs. This statistical method assumes a linear relationship between the
predictor and response variables, enabling the identification of significant environmental
drivers. The regression model was validated by assessing key metrics, including adjusted
R?, p-values, and the variance inflation factor, to detect multicollinearity. The prediction
equation for the model is as follows:

8
B X Zew + B7 X SPM. ®)

2.5. MHW Definition and Detection

We examined the occurrence of MHWs, defined as discrete, prolonged periods of
anomalously high SSTs relative to the local climatological mean. Specifically, we defined an
MHW as any period when the 5-day averaged SST exceeded the 90th-percentile threshold
for at least two consecutive intervals (for a total of 10 days). This method was adapted
from [39] to match the temporal resolution of our satellite-based 5-day composite SST
data. The 90th-percentile threshold was calculated for the entire dataset (1998-2024). This
approach ensured that the persistence criterion aligned with the temporal resolution of the
dataset, thereby avoiding spurious detections of isolated high-temperature events. Data for
MHW periods were compared with those for non-MHW periods to assess their impact on
environmental variables.

3. Results
3.1. Validation of the PSC Models

Size-fractionated in situ dominant PSC data (2018-2023) confirmed an accuracy of
69.8% for the satellite-derived dominant PSCs (Table 1). The discrepancies are likely
due to optical ambiguity in mixed communities and intermediate SPM conditions. Most
mismatches occurred in the northwestern region of the study area, suggesting that coastal
or turbid waters near the Yangtze River plume may contribute to classification uncertainty
in PSC estimation. Only data in which the dominant PSC represented more than 10% of the
valid data of the total pixels (1585 of 1860 valid data) within the study area were included
in the analysis.
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Table 1. Validation results of satellite-derived dominant PSCs (model of [45]) against in situ PSCs
(2018-2023). Mismatched dominant PSCs are in italics.

Date Latitude Longitude In Situ Satellite
(yyyy-mm-dd) Dominant PSC Dominant PSC
2018-05-04 32.000 126.505 Pico Pico
2018-05-04 31.989 126.516 Pico Pico
2018-05-04 32.003 125.889 Nano Pico
2019-05-10 31.499 125.906 Pico Pico
2019-05-10 31.493 125.879 Nano Pico
2019-05-09 31.998 127.068 Pico Pico
2019-05-08 32.000 126.486 Micro Pico
2019-05-08 31.998 126.484 Pico Pico
2019-05-08 31.498 126.492 Pico Pico
2022-05-18 31.498 125.893 Pico Nano
2022-05-18 32.000 127.072 Pico Pico
2022-05-16 32.009 126.456 Micro Pico
2022-05-16 31.997 125.885 Micro Pico
2022-05-17 31.498 126.492 Pico Pico
2023-05-02 32.012 125.887 Pico Nano
2023-05-10 31.500 126.485 Pico Pico
2023-05-02 31.500 126.495 Pico Pico
2023-05-02 31.998 126.484 Pico Pico
2018-08-06 32.007 125.895 Pico Nano
2018-08-06 31.994 125.884 Nano Nano
2018-08-05 31.502 127.072 Pico Pico
2018-08-04 31.500 126.494 Pico Pico
2018-08-04 31.501 126.492 Pico Pico
2020-08-14 31.508 126.510 Pico Nano
2020-08-14 31.485 126.489 Pico Pico
2020-08-14 31.501 125.888 Pico Pico
2020-08-15 32.000 127.071 Pico Pico
2020-08-15 32.000 127.070 Pico Pico
2020-08-15 31.504 127.070 Pico Pico
2021-08-28 32.000 125.888 Micro Nano
2021-08-28 31.970 125.909 Pico Nano
2021-08-28 31.502 127.014 Pico Pico
2021-08-31 31.998 126.484 Nano Nano
2022-08-22 32.003 127.076 Pico Pico
2022-08-22 32.000 127.082 Pico Pico
2022-08-23 31.498 126.492 Micro Pico
2022-08-23 31.500 125.892 Pico Pico
2023-08-28 31.505 127.077 Pico Pico
2023-08-27 31.499 126.494 Pico Pico
2023-08-27 31.501 125.885 Nano Pico
2023-08-26 31.500 125.892 Pico Pico
2023-08-26 31.997 125.885 Pico Pico
2023-08-26 31.504 127.070 Pico Pico

30/43 (69.8%) of matched pixels

The contribution of each PSC was calculated as a regional average, representing the
proportion of pixels within the study area where each size class was dominant.

3.2. Phytoplankton Dynamics During the Summer Season

From June to September (1998-2024), each biological and environmental factor showed
distinct temporal variability (Figure 2) based on the mid-day average of each 5-day period.
However, for variables such as Chl-a, SPM, Z,,, and wind stress, the differences between
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climatological means—such as between Chl-a values on 7 June and 5 September—remained
within the range of standard deviations, indicating a lack of statistically significant vari-
ation during the summer season. Figure 2a illustrates the consistently high contribution
of picophytoplankton, ranging from 59.4% to 86.5% with an average of 70.2% (£7.6%),
indicating their dominant role. Climatologically, the picophytoplankton contribution
peaked on 17 June (86.5%) and declined to 59.4% by 1-6 August, after which it increased
slightly. The nanophytoplankton contribution exhibited a complementary pattern to the
picophytoplankton contribution, playing a secondary role in the community structure and
reaching a minimum of 13.5% on 17 June. Subsequently, the nanophytoplankton propor-
tion steadily increased, peaking at 38.2% on 27 July with an overall average contribution
of 28.8% (£6.6%). The nanophytoplankton contribution fluctuated in tandem with the
declining picophytoplankton dominance. Microphytoplankton had the lowest contribution,
averaging 2.0% (£1.9%) and ranging from 0.02% to 6.6%. These larger phytoplankton,
which are often reliant on nutrient-rich and turbulent conditions, are less competitive in
the observed stratified and nutrient-limited environment [54].
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Figure 2. Climatology of Chl-a, PSCs, and all environmental factors. (a) PSC contributions (%) for
pico-, nano-, and microphytoplankton. (b) Chl-a concentration (log-transformed, mg/m?) (c) SST
(°C) (d) Zey (m) (e) SPM, (g/m?) (f) MLD (m) (g) PAR, E/m?/d) (h) FWC (m) (i) Wind stress (N/ m?).
Every factor showed temporal variation from June to September (1998-2024). The x-axis shows the
mid-day of 5-day composites, with shaded areas indicating the standard deviation.

The Chl-a concentration over the study period ranged from 0.17 to 2.15 mg/m?, with
an average value of 0.55 + 0.28 mg/m?>. Previous studies have reported Chl-a concentra-
tions in the ECS ranging from 0.02 to 6.19 mg/m3, depending on location, season, and
influencing factors [21,29,55]. Notably, [55] observed Chl-a concentrations ranging from
0.02 to 2.5 mg/m? in the shallower Kuroshio-influenced area, closely aligning with the
values recorded in this study. The picophytoplankton contribution ranged from 0% to 100%,
averaging 69.5% =+ 26.3%; nanophytoplankton from 0% to 94.0%, averaging 28.3% =+ 23.5%;
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and microphytoplankton from 0% to 62.4%, averaging 2.2% =+ 7.0%. Seasonal changes in
PSCs appear to be influenced by the intrusion of the Kuroshio Current, which brings warm,
oligotrophic waters into the NECS. These waters are characterized by high temperature
and salinity but low nutrient concentrations, potentially suppressing vertical nutrient
fluxes due to thermal stratification and supporting smaller phytoplankton groups, such as
picophytoplankton [56].

3.3. Fluctuation of Environmental Variables During the Summer Season

In this study, the analyzed environmental variables derived from climatological data
included SST, Z,,, SPM, MLD, PAR, FWC, and wind stress (Figure 2c—i). These vari-
ables were evaluated to understand temporal climate variability during the study period.
All environmental and biological variables analyzed in this study—including SST, Z,,,
SPM, MLD, PAR, FWC, wind stress, and Chl-a concentration—exhibited statistically sig-
nificant temporal variability across months (p < 0.05 for all, Kruskal-Wallis test). SST
showed a mean value of 26.24 + 2.64 °C, with a range from 20.57 to 29.03 °C. Z,, aver-
aged 80.86 + 4.32 m, with values ranging from 75.10 to 90.83 m. Average SPM concentra-
tions were 0.0021 + 0.00035 g/m?, with a range of 0.0015 to 0.0028 g/m3. MLD averaged
14.29 £ 5.34 m, with a range from 10.55 to 27.28 m. PAR values were 44.09 £ 5.70 E/m?/d
on average, ranging from 33.95 to 52.76 E/m?/d. FWC had a mean value of 2.11 + 0.51 m,
ranging from 1.49 to 2.87 m. Finally, wind stress averaged 0.0072 £ 0.0014 N/ m2, ranging
from 0.0042 to 0.0092 N/m?. These factors collectively define light and nutrient conditions,
thereby influencing phytoplankton community structure.

3.4. Major Driving Factors of PSC Variability

The analysis using random forest showed that Z,, and SPM explained a substantial
proportion of the variability in PSC contributions (Figure 3). All predictor variables used
in the random forest and multiple regression exhibited statistically significant monthly
differences (p < 0.05 for all; Kruskal-Wallis test), justifying their inclusion in the temporal
modeling of PSC variability. The picophytoplankton contribution increased sharply with
Z.u, particularly beyond a value of 70 m, as confirmed by the PDP (Figure 4a). In contrast,
SPM was associated with significantly reduced contributions beyond 0.0025 g/m?, indicat-
ing that SPM limited the dominance of smaller phytoplankton (Figure 4a). Conversely, the
contribution of picophytoplankton declined when SPM exceeded 0.0025 g/m3, indicating
that higher SPM may hinder the growth of smaller cells.

Zell

SPM

SST

FWC

Wind stress

PAR

MLD (m)

0.0 01 02 03 04 05

Importance (ratio)

Figure 3. Variable importance in explaining PSC variability in the random forest analysis.
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Figure 4. The PDP graph showing the influence of Z,, (m) and SPM (g/m?) on the contributions of
PSCs. (a) Picophytoplankton contribution; (b) nanophytoplankton contribution; (¢) microphytoplank-
ton contribution. The small vertical bars along the x-axis represent the frequency distribution of data
for each feature, indicating the density of data points at specific values.

Regarding the nanophytoplankton contribution, the analysis demonstrated a strong
negative correlation with Z.,. As shown in the PDP (Figure 4b), nanophytoplankton
contributions decreased markedly as Z,, increased beyond 60 m. However, SPM exhibited
a mildly positive relationship with the contribution of the PSC, suggesting that nano-
sized phytoplankton may have an adaptive advantage in turbid environments with more
particulate matter.

The microphytoplankton contribution showed a distinct pattern compared with those
of the smaller size classes. Their contribution remained relatively stable across varying
Zey levels, as illustrated in the PDP (Figure 4c), but increased substantially when SPM
levels exceeded 0.003 g/m?3. This indicates that higher particle loads may favor larger
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phytoplankton classes, possibly because of their ability to utilize particulate organic matter
as a resource or to adapt to lower light conditions.

The multiple regression results are presented in Figure 5 and Table 2. The model
explained the picophytoplankton contribution well (Figure 5, Table 2). The picophyto-
plankton contribution was well predicted, with R? = 0.686 (Figure 5a). The key factors
influencing model prediction, based on t-values, were Z,,, SPM, and FWC (Table 2). Simi-
larly, the nanophytoplankton contribution showed a moderate level of predictability, with
R? = 0.573 (Figure 5b). Influential variables for the nanophytoplankton contribution in-
cluded Z,, and FWC, which were highlighted as factors significantly affecting the model’s
accuracy (Table 2). In contrast, the microphytoplankton contribution had a relatively low
R? value of 0.452 (Figure 5c), indicating that the model struggled to accurately predict these
contributions (Table 2). B; represents the coefficient of each environmental factor.
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Figure 5. Multiple linear regression plots for each PSC: (a) picophytoplankton, (b) nanophytoplankton,
and (c) microphytoplankton.

Table 2. Multiple linear regression results for each PSC.

Pico Coef. (By) Std. Err. t p> |t
Const. 0.0000 0.0233 0.0000 1.0000
SST 0.0837 0.0319 2.6264 0.0089
FWC 0.1924 0.0348 5.5252 0.0000
MLD 0.0941 0.0319 2.9442 0.0034
Wind stress —0.0955 0.0245 —3.9065 0.0001
PAR —0.0763 0.0290 —2.6292 0.0088
Zeu 0.6494 0.0326 19.8920 0.0000
SPM —0.1985 0.0336 —5.9006 0.0000
Nano Coef. (By) Std. Err. t p> It
Const. 0.0000 0.0272 0.0000 1.0000
SST —0.1010 0.0372 —2.7181 0.0068
FWC —0.1743 0.0406 —4.2915 0.0000
MLD —0.0236 0.0373 —0.6336 0.5266
Wind stress 0.0849 0.0285 2.9782 0.0030
PAR 0.0985 0.0338 29115 0.0037
Zey —0.6891 0.0381 —18.1003 0.0000
SPM 0.0613 0.0392 1.5625 0.1187
Micro Coef. (By) Std. Err. t p> |t
Const. 0.0000 0.0308 0.0000 1.0000
SST 0.0242 0.0421 0.5739 0.5663
FWC —0.1388 0.0460 —3.0151 0.0027
MLD —0.2744 0.0422 —6.5001 0.0000
Wind stress 0.0742 0.0323 2.2978 0.0219
PAR —0.0437 0.0384 —1.1386 0.2554
Zey —0.1299 0.0431 —3.0116 0.0027
SPM 0.5407 0.0445 12.1608 0.0000
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Comparison of Random Forest and Multiple Linear Regression Results

The analysis results of random forest captured a nonlinear threshold where the pico-
phytoplankton contribution surged beyond a Z,, of 70 m (Figure 4a), whereas multiple
linear regression emphasized a linear Z,, effect (R? = 0.686), missing such thresholds. This
suggests that nonlinear interactions are critical for PSC variability. Overall, the random
forest model outperformed multiple linear regression in predictive performance, with
higher R? values for pico- and nanophytoplankton (0.69 and 0.57, respectively) compared
to 0.53 and 0.41 in the regression model. In addition to capturing nonlinear threshold
responses, such as the sharp decline in pico dominance at elevated SPM levels, the ran-
dom forest approach provided robust variable importance measures. In contrast, the
regression model offered interpretability through standardized coefficients and p-values,
enabling mechanistic insights under linear assumptions. These complementary strengths
suggest that combining both approaches enhances our understanding of PSC-environment
relationships.

3.5. Decadal Changes in PSCs and Key Environmental Factors in the Summer

In Figure 6, each data point represents the spatial and temporal mean for the summer
period (June to September) of a given year. Specifically, values were averaged across all
grid cells in the study area and all time points within that seasonal window. Summer data
(June-September) revealed statistically significant trends in PSC contributions and key
environmental variables from 1998 to 2023. The picophytoplankton contribution exhibited
an annual increase of 2.4% (p < 0.01), indicating a shift toward smaller phytoplankton
during the study period (Table 3, Figure 6). In contrast, the nano- and microphytoplankton
contributions showed annual decreases of 2.2% (p < 0.01) and 0.4% (p < 0.01), respectively,
during the study period. The decadal variation in PSCs in the summer had no statistically
significant association with Chl-a concentrations, suggesting stable total phytoplankton
biomass despite shifts in PSC composition. The PAR decreased at a rate of 0.3% per
year (p < 0.05), reflecting a potential reduction in light availability during summer. The
slopes and p-values indicated that these trends were statistically robust (Table 3). These
results indicate that the variability in PSCs is closely related to light availability and water
turbidity, as represented by Z,, and SPM. SPM, which showed a negative correlation with
the picophytoplankton contribution in the previous section, also exhibited a decreasing
trend (Table 3, Figure 6), which likely played a critical role in the observed increase in
picophytoplankton contribution.

Table 3. Annual changes in environmental factors and PSC contributions.

Variable Slope Sl(%f“lgfzg)c € C}’;?lgga(!% ) Trend
Pico (%) 0.0032 <0.01 +2.4 Increasing
Nano (%) —0.0029 <0.01 —22 Decreasing
Micro (%) —0.0004 <0.01 —-04 Decreasing
Chl-a (mg/m?) 0.0000 >0.05
PAR (E/m2/d) —0.0003 <0.05 -0.3 Decreasing
SST (°C) 0.0001 <0.05 +0.1 Increasing
Zey (m) 0.0004 >0.05
FWC (m) 0.0000 >0.05
MLD (m) 0.0001 >0.05
W(IH\‘{} i 0.0000 >0.05

SPM (g/ m3) 0.0000 <0.01 —-0.3 Decreasing




Remote Sens. 2025, 17, 1954

15 of 24

(@)

(d)

100

80

60

40

Pico Contribution (%)

20

50

48

(b) ()

---- Trend: R2=0.41, p <0.01

100 100
---- Trend: R2=0.42, p <0.01 ---- Trend: R?=0.18, p < 0.05
80 80
=] =1
2 £ 60
2 2
£ £
U 40 Y 40
=] <]
g g
5 g
4 2>
20 20
0 0
(e) )
28.5 0.00325
---- Trend: R?=0.12, p < 0.05 ---- Trend: R?=0.25, p < 0.01
28.0 0.00300
275 0.00275
- 270 ? 0.00250 ny
S IR N A AN N | P - S s £0,00225
§ 2651 | [ [\ =TT E Tl
——————————— & 0.00200
26.0 el
0.00175
25.5
0.00150
25.0
0.00125

Figure 6. Annual trends in (a) pico-, (b) nano-, (c) microphytoplankton contributions; (d) PAR; (e) SST;
and (f) SPM.

3.6. Biological Responses to MHWs and Environmental Differences

MHWs induced significant changes in biological and environmental variables within
the study region. We identified four MHW periods: (1) 29 August-8 September 2017,
(2) 24 August-2 September 2022, (3) 3 September—2 October 2023, and (4) 28 August-1
October 2024. When reporting changes in variables, we primarily used relative increases.
During MHW events, the picophytoplankton contribution increased by 41.2% relative
to the baseline value (from 65.0% to 91.7%), equivalent to a 1.41-fold increase (Table 4).
Statistically significant differences between MHW and non-MHW conditions were observed
for most biological and environmental variables, including Z,,, SST, SPM, and all PSC
components (p < 0.01; Mann-Whitney U test), while PAR, wind stress, and FWC showed
no significant difference. The nanophytoplankton and microphytoplankton contributions
experienced significant reductions of 75.2% and 87.5%, respectively. The mean Chl-a
concentration decreased by approximately 46.5%, dropping from 0.60 mg/m? under non-
MHW conditions to 0.32 mg/m3. The mean SST during MHW periods was 29.2 °C,
compared to 27.89 °C under non-MHW conditions. Z., and SPM exhibited the most
significant changes among all environmental variables, increasing by 26.4% and decreasing
by 35.4%, respectively. The MLD increased by 7.6%, whereas the PAR and wind stress
remained relatively stable, with minor changes of 1.4% and —4.8%, respectively (Table 4).

Because Z,;, and SPM exhibited the largest relative changes during MHW events, they
were likely the key environmental factors driving the observed shifts in chl-a and PSC distri-
butions under these conditions. These results highlight the distinct shifts in phytoplankton
community composition and Chl-a concentration in response to MHWs, indicating po-
tential ecosystem-level effects. Such effects may include reduced primary productivity,
disruption of energy transfer to higher trophic levels, and altered biogeochemical cycling.
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Table 4. Differences in biological and environmental factors between MHW and non-HMW periods.
The p-values were calculated by Mann-Whitney U. “n.s.” indicates not significant (p > 0.05).

Variables Non-MHW Periods MHW Periods Relative Increase (%) Significance
Pico 65.0 = 27.2% 91.7 £ 15.2% 41.2% p<0.01
Nano 31.7 £ 23.3% 7.8 £14.1% —75.2% p<0.01
Micro 3.4 £+ 8.6% 0.4 +14% —87.5% p <0.01
Chl-a 0.60 + 0.33 mg/m? 0.32 + 0.13 mg/m? —46.5% p <0.01
PAR 42.78 + 895E/m?/d 43.39 + 6.0 E/m?/d 1.4% p <0.01
SST 27.89 £1.34°C 29.20£0.71 °C 4.7% p<0.01
Zey 77.74 £ 15.67 m 98.26 + 11.88 m 26.4% p<0.01
FWC 1.65 £ 04 m 1.59 £ 0.23 m —3.9% n.s.
MLD 18.04 £ 6.94 m 194 +3.87m 7.6% ns.
Wind stress 0.0076 = 0.0036 N/m?  0.0072 =+ 0.0034 N/m? —4.8% n.s.
SPM 0.0024 + 0.0012 g/m? 0.0016 + 0.0001 g/m? —35.4% n.s.

4. Discussion
4.1. PSC Variability and Key Environmental Drivers

Although month-to-month changes in Z,, and SPM during summer were sometimes
within the range of standard deviations (Section 3.2), both variables exhibited statistically
significant long-term trends over the 27-year period (Table 3). These long-term shifts justify
their role as key drivers in the observed restructuring of PSCs, particularly when analyzed
using threshold-sensitive models, such as random forest. This study highlights Z,, and
SPM as critical environmental drivers shaping PSC variability in the NECS during summer
using two statistical methods (Section 3.4). Although both the random forest and multiple
linear regression analyses identified Z., and SPM as the primary drivers of PSC variability,
the two methods revealed complementary insights, with random forest capturing abrupt
shifts in PSC dominance under specific conditions. Random forest modeling highlighted
nonlinear threshold effects, such as the sharp decline in picophytoplankton contribution
when SPM exceeded 0.0025 g/m? (Figure 4a). In contrast, multiple linear regression as-
sumed linear relationships and thus underestimated the impact of such thresholds (Table 2).
The higher R? values for the random forest results suggest that nonlinear interactions
play an important role in PSC dynamics. This discrepancy underscores the importance
of using complementary methods to capture both linear trends and complex ecological
interactions [47,57]. Regression modeling effectively quantified the linear contributions of
key variables, such as Z., and SPM, but may have overlooked the complex interactions
between them. These results suggest that the choice of statistical approach can influence
the interpretation of environmental drivers, underscoring the complementary strengths of
both methods.

Our analysis of 27 years of data revealed detailed mechanistic links between Z,, and
SPM. Variations in SPM concentrations, driven by monsoonal shifts and riverine discharge,
modulate Z,, by affecting light penetration, which is essential for phytoplankton photo-
synthesis and productivity [58,59]. This dynamic interaction creates heterogeneous light
environments that shape phytoplankton growth and PSC composition across seasons [23].
Increased SPM reduces Z,, by scattering and absorbing light, creating turbid conditions that
favor nano- and microphytoplankton in nearshore areas [60]. Conversely, lower offshore
SPM concentrations enhance light availability, allowing picophytoplankton to dominate
when light penetration exceeds 70 m [15,27]. SPM-induced turbidity reduces light avail-
ability in the water column, favoring phytoplankton that can tolerate low-light conditions.
Microphytoplankton, owing to their higher pigment content and adaptive strategies, face
more competition than smaller picophytoplankton under such conditions [24,60]. While
our SPM data do not distinguish between organic (particulate organic matter; POM) and
inorganic (particulate inorganic matter; PIM) particles, studies have shown that PIM dom-
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inates SPM composition in the NECS, particularly near the Yangtze River plume during
high discharge or resuspension events [23,27]. As PIM is more effective at scattering light,
this supports the use of SPM as a proxy for turbidity and optical limitation. This may
explain why SPM, rather than Chl-a, showed a stronger association with PSC variability
in our model [61,62]. These findings align with those of previous studies, demonstrating
the critical role of light conditions in regulating phytoplankton community composition.
Previous studies have suggested that nutrients adsorbed onto SPM may be released into
the water column, potentially providing an additional source of bioavailable nutrients
for phytoplankton growth, which warrants further investigation in the ECS [63,64]. Such
nutrient dynamics are particularly beneficial for larger cells such as microphytoplankton,
which possess higher uptake capacities under nutrient-rich conditions [65]. While nutri-
ent availability supports microphytoplankton, such as diatoms in nutrient-rich nearshore
waters [19,30], in offshore areas, where nutrient inputs are lower, physical factors, such as
Zq, and SPM, may exert a greater influence on PSC variability. Future research integrating
nutrient profiles, including N /P ratios and dissolved organic matter, will help clarify the
complex interactions between the physical and biogeochemical drivers of phytoplankton
dynamics. For example, [22] demonstrated that N/P ratios exceeding 16:1 reduced pico-
phytoplankton competitiveness, offering a pathway to address the nutrient data gap in this
study. In addition to nutrient and light dynamics, SPM may directly affect smaller phyto-
plankton through physical interactions, such as sinking or aggregation, which reduces their
ability to remain in the photic zone [66,67]. These combined effects suggest that elevated
SPM concentrations can shift the community dominance from pico- to microphytoplankton,
particularly in environments with high nutrient availability and low-light conditions.

As a proxy for riverine freshwater input, particularly from the Yangtze River, FWC
emerged as an influential factor, particularly in the multiple regression analysis. FWC can
modify salinity and stratification, thereby influencing phytoplankton dynamics through
changes in nutrient availability and water column structure [19,21,59]. Lower FWC values,
indicative of weaker freshwater input, may reduce stratification, enhance nutrient mixing,
and support larger phytoplankton, such as microphytoplankton. Conversely, higher FWC
values, often associated with surface stratification, can limit nutrient flux to the euphotic
zone, favoring picophytoplankton dominance. These findings highlight the dual role of
FWC in modulating both physical and biogeochemical conditions in the NECS. The con-
siderable influence of FWC in the regression models suggests that it may mediate PSC
variability through stratification and nutrient dynamics, which requires further investiga-
tion using nutrient data. The Kuroshio Current, which transports warm oligotrophic waters
into the ECS, may further contribute to stratification and nutrient limitation, promoting
picophytoplankton dominance in offshore regions [18,38,56].

Notably, the model used for multiple regression exhibited a relatively low R? value for
microphytoplankton contributions, suggesting that the linear model might not fully capture
the dynamics governing this PSC. This discrepancy implies that microphytoplankton contri-
butions may be influenced by additional factors—such as episodic nutrient pulses, grazing
dynamics, and physical-biological coupling processes (e.g., eddy-like structures) that en-
hance nutrient supply—which were not accounted for by the physical variables included
in our analysis [30,65,68]. Moreover, the emergence of FWC as a key factor affecting pico-
and nanophytoplankton underscores the complexity of ecological interactions in the NECS.
Future studies should consider incorporating additional biogeochemical and ecological
variables to better model microphytoplankton dynamics. While the PSC model shows
limited pixel-level accuracy, its performance is sufficient for detecting regional-scale trends
in phytoplankton size structure. This justifies its use in examining seasonal patterns and
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MHW-induced changes, although localized misclassifications may introduce uncertainty in
finer-scale interpretations.

4.2. Long-Term Trends in PSC Dynamics in the NECS During Summer and Their Implications

Over the 27-year study period, clear long-term trends were observed in PSC com-
position. Picophytoplankton contributions increased annually by 2.4%, whereas nano-
and microphytoplankton contributions decreased by 2.2% and 0.4%, respectively (Table 3,
Figure 6). These findings are consistent with global patterns of phytoplankton community
restructuring under climate change [15,69]. Rising SSTs driven by anthropogenic climate
change [70] represent a key factor favoring smaller phytoplankton. Picophytoplankton,
with their high surface area-to-volume ratios, thrive in warm oligotrophic environments [6].
Additionally, the observed decline in SPM concentrations (Figure 6f) was associated with
increased Z,,, further promoting picophytoplankton growth in offshore areas where light
penetration exceeded 70 m. Larger phytoplankton, such as diatoms and dinoflagellates, are
less competitive under these conditions because they require higher nutrient availability
and often thrive in turbulent, nutrient-rich environments.

The observed shift toward picophytoplankton dominance has far-reaching ecological
and biogeochemical consequences. An increased dominance of smaller phytoplankton
intensifies the microbial loop, reducing energy transfer efficiency to higher trophic levels,
including fish and marine mammals [6,17]. This shift can lead to potential declines in
fishery productivity [71], with significant socioeconomic implications for the region. Such
disruptions are particularly critical in the ECS, a region where fisheries depend heavily
on trophic level stability to sustain marine resources [10,69]. The dominance of smaller
phytoplankton reduces the availability of energy-rich diatoms and large phytoplankton,
which form the foundation of fishery productivity, thereby exacerbating the vulnerability
of higher trophic levels to climate-induced stressors [6]. In addition, smaller phytoplankton
contribute less to the biological carbon pump, resulting in reduced carbon export to the
deep ocean and altered nutrient cycling in benthic ecosystems [10,44]. This reduced carbon
export efficiency is particularly concerning in regions, such as the ECS, where the decline
in diatoms, a major contributor to silica cycling, may disrupt the balance between carbon
and silicon biogeochemistry [72]. Furthermore, the replacement of diatoms by smaller
phytoplankton groups could limit silica deposition in benthic systems, thereby affecting
benthic ecosystems that are reliant on diatomaceous sediments [73].

The shift toward picophytoplankton dominance and its cascading effects emphasize
the need for adaptive management strategies to mitigate the effects of climate change on
marine ecosystems in the ECS. However, these trends vary across marginal seas owing to
differing environmental conditions. Unlike the nutrient-rich Yellow Sea, where microphy-
toplankton persist despite rising SSTs due to ample nutrient inputs [74], the oligotrophic
NECS shows picophytoplankton dominance, similar to patterns in the South China Sea
and subtropical North Pacific under climate change [15]. These regional differences are
driven by the ECS’s unique combination of Yangtze River nutrient inputs and Kuroshio
Current oligotrophy, which amplifies the effects of rising SSTs and MHWSs on PSC shifts.
Developing adaptive management strategies requires the integration of long-term satellite
observations with high-resolution in situ measurements to monitor phytoplankton com-
munity shifts [75]. Predictive ecosystem models that incorporate physical, chemical, and
biological variables can aid in anticipating the cascading effects of community shifts and
inform sustainable fishery management practices [69,70].

Analysis results regarding MHWs further amplify these long-term trends. MHWs,
characterized by anomalously long periods of elevated SSTs, have become more frequent,
lengthy, and intense in recent decades owing to climate change [39,40]. Our results indicate
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that during MHW events, defined according to [39] as periods when SSTs exceed the 90th
percentile (i.e., unusually warm relative to the local seasonal climatology) for at least two
consecutive intervals, the alteration in light penetration and nutrient mixing leads to a
marked shift in PSC distributions, notably favoring picophytoplankton. MHWs intensify
water column stratification, further reducing nutrient flux into the euphotic zone and
favoring picophytoplankton dominance while suppressing larger phytoplankton. Strati-
fication intensifies during MHW events, further limiting nutrient mixing in the euphotic
zone. Picophytoplankton contributions increased sharply (65.0 £ 27.2% to 91.7 £ 15.2%)
during MHWs, whereas nano- and microphytoplankton contributions declined by 75.2%
(31.7 + 23.3% to 7.8 + 14.1%) and 87.5% (3.4 = 8.6% to 0.4 & 1.4%), respectively (Table 4).
These results align with the finding that thermal anomalies disproportionately favor smaller
phytoplankton that are better adapted to nutrient-poor conditions [41]. The combined
effects of rising SSTs, declining SPM, and episodic MHWs create feedback loops that re-
inforce the dominance of smaller phytoplankton in the NECS. The observed increases in
picophytoplankton due to declining SPM, deepening Z.,, and intensifying MHWs are
strongly influenced by the Kuroshio Current. This western boundary current stabilizes ECS
offshore regions by transporting warm oligotrophic waters, enhancing stratification, and
limiting nutrient mixing. During MHWs, the Kuroshio warming effect is amplified, further
intensifying nutrient limitations in the euphotic zone and favoring picophytoplankton
dominance under these conditions [18,38,59]. Moreover, the Kuroshio Current-induced sup-
pression of SPM dispersion from coastal and riverine sources reduces turbidity, leading to
greater Z, and a more favorable light environment for smaller phytoplankton [27,59]. This
shift toward smaller phytoplankton size in the composition has important implications for
marine ecosystems, as it disrupts traditional food webs and reduces ecosystem resilience.

4.3. Study Limitations and Future Directions

The results of our analysis offer valuable insights into PSC variability; it has some limi-
tations that warrant further investigation. Although validated, reliance on satellite-derived
data introduces potential biases, particularly in coastal regions where atmospheric correc-
tions are more challenging. Expanding in situ validation efforts will improve the accuracy
of PSC estimates. Furthermore, this study focused on summer conditions; however, PSC
dynamics may differ in other seasons because of variations in nutrient availability, hydrog-
raphy, and light conditions. Expanding the temporal scope to include spring, autumn, and
winter would provide a more comprehensive understanding of PSC variability.

This study identified Z,, and the SPM as the primary drivers of PSC variability in
the NECS. However, analyzing seasonal variations in N/P ratios and their influence on
phytoplankton productivity could provide deeper insights. For example, fluctuations in
N/P ratios may limit picophytoplankton growth or enhance the competitiveness of larger
phytoplankton in nutrient-enriched regions [19,30]. Future research should explore the
interactions between physical drivers (e.g., stratification and wind stress) and biogeochemi-
cal factors (e.g., nutrient fluxes and grazing pressure). Long-term ecosystem monitoring
and modeling are critical for predicting and mitigating the impacts of climate change on
the NECS.

5. Conclusions

The northern East China Sea (NECS) plays a vital role in supporting regional fisheries,
maintaining biodiversity, and supporting the global carbon cycle. Recent advances in
remote sensing have allowed for the large-scale monitoring of PSC distributions in this
region, offering new opportunities to explore the links between phytoplankton diversity,
productivity, and ecosystem health. The long-term monitoring of this dynamic ecosystem
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is essential for identifying critical thresholds and predicting future changes under the com-
bined pressures of climate change and human activity. Early warning signals of ecosystem
stress can inform adaptive management strategies and ensure the sustainability of marine
resources and ecosystem services in economically and ecologically significant regions.

In this study, we demonstrated that over a 27-year period, the summer phytoplank-
ton community in the NECS has undergone considerable restructuring, with picophyto-
plankton contributions increasing by approximately 2.4% per year, whereas nano- and
microphytoplankton contributions have declined. Our analysis revealed that changes in
Z, and SPM were the primary environmental drivers of these shifts. Specifically, deeper
Zey, values favor the proliferation of picophytoplankton, whereas higher SPM levels tend to
support larger phytoplankton groups. Additionally, MHW events exacerbate these trends
by intensifying water column stratification and limiting nutrient availability, further pro-
moting picophytoplankton dominance. These alterations in the phytoplankton community
structure are likely to reduce trophic transfer efficiency and carbon export, with potential
long-term consequences for regional fisheries and ecosystem stability. Given the exclusion
of nutrient data due to current limitations, future studies should integrate high-resolution
nutrient measurements to comprehensively assess the interplay between physical and
biogeochemical drivers. Ultimately, our findings highlight the critical need for sustained
monitoring and adaptive management strategies to mitigate the impact of climate change
on dynamic NECS ecosystems.
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Abbreviations

The following abbreviations are used in this manuscript:

PSC phytoplankton size class
NECS northern East China Sea

ECS East China Sea

Zeu euphotic depth

SPM suspended particulate matter
Chl-a Chlorophyll-a

SST sea surface temperature
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FWC freshwater content

MLD mixed-layer depth

PAR photosynthetically active radiation

MODIS Moderate Resolution Imaging Spectroradiometer
MHW marine heat wave

OC-CCI Ocean Colour Climate Change Initiative

NIFS National Institute of Fisheries Science

aph443 phytoplankton absorption coefficient at 443 nm
Rrs665 remote sensing reflectance at 665 nm

Kd(490) diffuse attenuation coefficient at 490 nm

OSTIA Global Ocean Operational SST and Sea Ice Analysis
CMEMS Copernicus Marine Environment Monitoring Service
GlobColour  Global Merged Ocean Colour Project

PDP partial dependence plot
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