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Abstract: Migrating insects and birds are the primary biological targets in the aerial ecosys-
tem. Radar is a powerful tool for monitoring and studying aerial animals. However,
accurately identifying insects and birds based on radar observations has remained an
unsolved problem. To address this research gap, this paper proposed an intelligent classifi-
cation method based on a novel multi-scale time—frequency deep feature fusion network
(MSTFF-Net). A comprehensive radar dataset of aerial biological targets was established.
The analysis revealed that radar cross section (RCS) features are insufficient to support
insect and bird classification tasks, as aerial biological targets may be detected in radar
sidelobes, leading to uncertainty in RCS values. Additionally, the motion characteristics
of insects and birds are complex, with diverse motion patterns observed during limited
observation periods. Simple feature extraction and classification algorithms struggle to
achieve accurate classification of insects and birds, making aerial biological target classifi-
cation a challenging task. Based on the analysis of insect and bird features, the designed
MSTFF-Net consists of the following three modules. The first module is the amplitude
sequence extraction module, which abandons traditional RCS features and instead extracts
the dynamic variation features of the echo amplitude. The second module is the time—
frequency feature extraction module, which extracts multi-scale time—frequency features to
address the complex motion characteristics of biological targets. The third module is the
adaptive feature fusion attention module, which captures the correlation between features
to adjust feature weights and achieve the fusion of different feature types with varying
representations. The reliability of the classification algorithm was finally verified using a
manually selected dataset, which includes typical bird, insect, and other unknown targets.
The algorithm proposed in this paper achieved a classification accuracy of 94.0% for insect
and bird targets.

Keywords: insect and bird classification; convolution neural network (CNN); time—frequency
spectrogram; aerial biological dataset

1. Introduction

Migration is an adaptive strategy evolved by organisms to respond to changes in
climate and food availability [1,2]. As a key component of biodiversity, billions of aerial
organisms, such as insects and birds, migrate hundreds to thousands of kilometers annually,
exerting a significant influence on ecosystem balance and functionality. However, human ac-
tivities—such as agricultural pollution and habitat destruction—along with climate change,
have led to a decline in the biomass of migratory species over the years [3]. Monitoring
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migratory organisms plays a vital role in maintaining biodiversity and ecosystem stability.
Improving monitoring techniques is therefore essential for supporting conservation and
ecological research. Radar, with its advantages of all-weather, continuous operation and
wide detection range, serves as a powerful tool for observing migration patterns without
interfering with the flight of these organisms [4-6].

Over the past half century, various radar systems, including insect radar, bird radar,
and weather radar, have been widely used to monitor and study the migration dynamics
and behavior of these airborne organisms [7]. Among them, insect radar is specifically
designed for monitoring and studying insect migration [8]. Since the 1960s, various models
of insect radar systems have observed phenomena such as nocturnal migration [9-11],
group orientation [12,13], and insect layers development [14,15]. Thanks to the exceptional
individual insect measurement capabilities of insect radar, it has revealed mechanisms
of insect migration orientation, the astonishingly large migratory biomass, and various
important ecosystem functions, greatly enhancing our understanding of migratory insects.
This has also facilitated the work of ecologists and pest control specialists in managing
pests and protecting beneficial insect species. Similarly, bird radar serves as a specialized
remote sensing system designed to monitor and investigate the migratory behavior and
spatiotemporal distribution of birds [16]. Using bird radar, researchers can obtain infor-
mation on migration routes, flight speeds, migration timing, and altitudes of bird flocks.
Since the 1950s, based on bird radar monitoring data, researchers have uncovered the
complex patterns of bird migration influenced by seasonal changes, circadian rhythms, and
climate change [17-19]. By combining monitoring results from insect radar and bird radar,
researchers have also identified differences in migration strategies and orientation mecha-
nisms between insects and birds [13,20]. Although weather radar is primarily designed for
meteorological monitoring, its wide detection range and powerful capabilities allow it to
detect biological echoes, such as those from migrating insect swarms and bird flocks, in
addition to meteorological echoes. By exploiting the differences between meteorological
and biological echoes, it is possible to separate biological echoes from weather radar sig-
nals, allowing weather radar to be used for monitoring airborne organisms [21-23]. It can
provide quantitative data on biological activity over distances ranging from tens to hun-
dreds of kilometers, offering significant advantages for monitoring large-scale biological
migration. However, it only provides rough observations and cannot measure individuals
with precision. Despite the substantial research achievements based on radar monitoring
of migrating insects and birds, different radar models often face interference from various
biological target echoes. For example, insect radar faces interference from bird targets
during long-term monitoring, and weather radar often experiences the mixing of insect and
bird echoes, which hinders precise research on the migration behavior, mechanisms, and
population dynamics of different species. Therefore, precise identification of the echoes
from migratory insects and birds is essential.

Various insect and bird identification algorithms have been developed for different
types of radar. These algorithms can be mainly divided into two categories: species
identification based on individual biological echoes from small-scale insect or bird radar and
species identification based on group echoes from large-scale weather radar. The difference
in scale primarily reflects the radar’s resolution and detection range. In recent years,
research on the identification of insect and bird group echoes based on weather radar has
developed rapidly. By analyzing the spatiotemporal features of radar echoes and combining
advanced signal processing and machine learning techniques, various mature algorithms
have been developed that can effectively distinguish insect and bird echoes in weather radar
biological signals [24—28]. Research on individual echo identification algorithms for insect
radar and bird radar is relatively limited. The earliest method involved distinguishing insect
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and bird echoes based on the differences in echo intensity [29,30], i.e., insects have smaller
sizes and weaker echoes, while birds are larger and produce stronger echoes. However,
early radars had low-range resolution, and when multiple insect targets were present
within a single range cell, the overlapping echoes from the insects could generate radar
signals similar to those of small birds, leading to misidentification. Later, some researchers
utilized the fact that birds generally have higher airspeeds (relative to the air mass) than
insects [31,32], combining airspeed and echo intensity to distinguish between insects and
birds [30,33]. However, radar-measured ground speed depends on both airspeed and
wind speed/direction, and accurate airspeed estimation requires precise wind profiles,
making it difficult to achieve robust insect and bird identification [34]. Subsequently,
S. Zaugg proposed an insect and bird identification method that combines wingbeat
micro-Doppler features and absolute signal intensity in radar echoes [35]. However, this
method heavily relies on the wingbeat motion of migratory insects and birds, with limited
feature components extracted, making it unable to comprehensively describe the movement
characteristics of insects and birds. As a result, its application scenarios are limited, and its
classification performance is suboptimal. Therefore, it is necessary to develop an enhanced
individual insect and bird echo identification algorithm.

Inspired by the work of many previous researchers, this paper analyzes and estab-
lishes a comprehensive aerial biological target dataset based on the radar system. A
classification method for aerial biological targets is proposed, which is based on the deep
feature fusion of amplitude sequences and multi-scale time—frequency analysis maps. This
method includes three modules: the amplitude sequence feature extraction module, the
multi-scale time-frequency feature extraction module, and the feature fusion attention
module. This module fully considers that different radar signal transformation results
can describe various dimensions of biological targets. The amplitude sequence feature
extraction module is designed primarily to extract the fluctuations in target amplitude
over time during biological movement. The multi-scale time—frequency feature extraction
module is designed to capture the dynamic changes in biological Doppler characteristics at
different time—frequency resolutions. The feature fusion attention module aims to further
explore the correlation between the two types of features and perform feature fusion to
enhance the accuracy of biological classification.

The contributions of this paper can be summarized as follows:

(1) A comprehensive aerial biological radar dataset has been established. The data was
collected using a high-resolution radar system. Several days of radar data were selected
during the spring migration season of insects and birds to establish the dataset.

(2) Due to the complex and variable nature of insect and bird micro-Doppler features,
a series of multi-scale time—frequency spectrograms was constructed to better represent
biological micro-Doppler features at different resolutions.

(3) A multi-scale time—frequency feature fusion network is proposed. The amplitude
sequence extraction module is designed to better capture the variation characteristics
of the echo amplitude sequence, while the time—frequency feature extraction module is
used to comprehensively extract time—frequency spectrogram features at different scales.
Furthermore, a feature fusion attention module is proposed to capture the correlations
between features, adjust feature weights, and achieve the fusion of different feature types.

The remainder of this paper is organized as follows. Section 2 utilizes a radar system
developed by the team to collect a dataset of airborne biological targets and analyzes
the characteristics of insect and bird data. Section 3 presents an intelligent classification
algorithm based on the fusion of time—frequency deep features. Section 4 analyzes the
performance of the algorithm and conducts ablation and comparative experiments to
demonstrate its superiority. Finally, Section 5 summarizes the findings of this paper.
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2. Establishment and Analysis of Radar Dataset for Insects and Birds

In this paper, deep learning algorithms are used to implement insect and bird classi-
fication, which requires a large amount of data to support algorithm optimization. The
establishment of the radar dataset of insect and bird can be achieved through the collabora-
tion of radar and optical imaging system. However, conducting collaborative experiments
is time-consuming and labor-intensive, making it difficult to establish large-scale radar
dataset. Similarly, using radar for long-duration sampling can quickly collect large amounts
of radar data for aerial biological targets. However, the radar data obtained by this method
lacks clear data labels, which makes it difficult to support the creation of an insect and bird
dataset. To rapidly and accurately establish a large-scale radar dataset of insects and birds,
both of the aforementioned methods were combined in the experiments conducted in this
paper. To acquire precise radar echoes from avian targets and conduct a comprehensive
analysis of their radar echo characteristics, multiple joint observation experiments were
conducted utilizing both radar and optical imaging systems. These collaborative efforts
aimed to deepen the understanding of the radar echo signatures associated with bird
targets. Similarly, multiple joint insect observation experiments using radar and light trap
was conducted to obtain accurate radar echoes from insects, thoroughly analyze their radar
echo characteristics, and establish an understanding of the radar echo characteristics of
insect targets. Furthermore, a radar-based vertical sampling experiment was conducted,
and the radar echoes were manually classified and stored based on the acquired prior
knowledge. Finally, the obtained data was preprocessed to serve as input for subsequent
deep learning algorithms. The specific experimental procedures and radar data analysis
results are as follows.

2.1. Comprehension of the Radar Echo Characteristics of Insects and Birds
2.1.1. Comprehension of the Radar Echo Characteristics of Birds

Suspected bird targets within a two-kilometer radius are detected using a high-
resolution phased-array scanning radar. Once a valid track is formed, the target’s range and
azimuth information, provided by the high-resolution phased-array scanning radar, is used
to guide the collaborative observation of the target by the high-resolution tracking radar
and optical imaging system. The high-resolution tracking radar is used for long-duration
tracking and measurement of the target, with radar echoes being obtained to support sub-
sequent characteristic analysis. The optical imaging system is used for the confirmation of
biological species. The instrumentation and the schematic of the collaborative observation
process for bird targets are shown in Figures 1 and 2, respectively. Additionally, the relevant
parameters of the radar used are listed in Table 1.

(b)

Figure 1. Experimental equipment. (a) High-resolution phased-array scanning radar. (b) High-

resolution tracking radar. (c) Optical imaging system.
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Figure 2. Collaborative observation process for bird targets.

Table 1. Radar parameters.

High-Resolution Phased Array High-Resolution Tracking

Scanning Radar Radar
Carrier Frequency Ku-band (16~17 GHz) Ka-band (34.5~35.5 GHz)
Bandwidth 1 GHz 1 GHz
Range resolution 0.2 m (Hamming window) 0.2 m (Hamming window)
Power 11.5 kW 30 W
Detection range 300~2000 m 300~1600 m
Pulse Repetition 5000 Hz 5000 Hz

Frequency

The bird detection experiment was conducted in Dongying, Shandong, in March
2022. A total of 60 sets of bird data were collected in the experiment, covering more than
10 species of bird targets. The collected bird targets and their associated sizes are shown
in Table 2. To better illustrate the radar echo characteristics of bird targets, three bird
targets of different body lengths (large, medium, and small) were selected for display,
with the results shown in Figure 3. From the amplitude sequence and time-frequency
spectrogram results, it can be observed that amplitude fluctuations caused by bird targets
of different sizes vary. Additionally, due to differences in wing size, variations in micro-
Doppler features on the time—frequency spectrogram were observed, with micro-Doppler
characteristics of smaller birds being less pronounced than those of larger birds. Of course,
the radar characteristics of birds of different sizes follow the same general pattern. The
radar echo characteristics of bird targets were confirmed in the experiment, with significant
fluctuations in the amplitude sequence and amplitude energy fluctuations caused by wing
flapping reaching over 10 dB. The time—frequency analysis results consist of a main Doppler
component caused by the bird’s body and a sinusoidal-like fluctuation component caused
by wing flapping. Data with consistent radar characteristics from the samples collected by
the high-resolution tracking radar were selected and identified as bird targets, with their
radar echo results shown in Figure 4.
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Table 2. Bird parameters.
Bird Body Length Wing Span
Grey Heron 84~102 cm 155~195 cm
Oriental Stork 110~128 cm approximately 2.22 m
Northern Lapwing 28~33 cm 67~87 cm
Bean Goose 66~88 cm 70~87 cm
Little Curlew 28~31 cm 68~71 cm
Great Cormorant 72~90 cm approximately 80 cm
Little Egret 94~104 cm 131~145 cm
Siberian Crane 130~140 cm 210~260 cm
Hen Harrier 41~52 cm 97~122 cm
Eastern Marsh Harrier 48~58 cm 113~137 cm
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Figure 3. Experimental results of optical-radar joint detection for typical bird species. (a—c): Optical
image of the Northern Lapwing (a), Grey Heron (b), and Oriental Stork (c). (d-f): Radar amplitude
sequence of the Northern Lapwing (d), Grey Heron (e), and Oriental Stork (f). (g—i): Radar time—
frequency spectrogram of the Northern Lapwing (g), Grey Heron (h), and Oriental Stork (i).
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Figure 4. A typical bird target. (a) Amplitude sequence. (b) Time—frequency spectrogram.
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2.1.2. Comprehension of the Radar Echo Characteristics of Insects

Due to the small size of the insects, true target labels could not be obtained through
long-range optical imagery. A mapping relationship was previously established by our team
through the extraction of insect radar echo features, indirectly estimating the body length
and weight of insects [36-39]. The radar observation data was compared with manually
collected data from light trap to confirm the consistency between the radar-measured targets
and aerial biological targets. Data from various insect species were analyzed, covering
a wide range of body lengths and weights, including cotton bollworm, armyworm, corn
borer, black cutworm, and other. The radar echoes of different insects exhibited high
similarity, and a typical case of the cotton bollworm was used for detailed explanation.

On the night of 16-17 April 2023, 1095 cotton bollworms were captured, accounting
for 57.62% of the total catch. The mass and length distributions of these cotton bollworms
are shown in Figure 5a,b. Additionally, from 11 PM on 16 April to 5 AM on 17 April 2023,
a total of 17,695 targets were detected by the radar, and the method was used to estimate
the mass and length of the targets [36-39]. The estimated mass and length distributions
are shown in Figure 5c,d, respectively. Approximately 67% of the insect morphological
parameters matched those of the cotton bollworm. Furthermore, the full-polarization radar
echoes from that date were manually filtered, with radar echo results showing strong
convergence selected as typical insect radar echo characteristics. The typical radar echo
results for insects from vertical observation mode are shown in Figure 6. The radar echo
characteristics of insect targets were confirmed in the experiment. The range of amplitude
sequence variations was smaller compared to birds, with amplitude changes caused by
wing beats generally not exceeding 5 dB. The time-frequency spectrum typically consisted
of a main Doppler component caused by the body, accompanied by micro-Doppler features
with sawtooth-like fluctuations caused by wing beats. Additionally, due to the small
amplitude fluctuations caused by the insect itself, when passing through the radar beam,
modulation by the radar’s radiation pattern caused different amplitude variation trends.
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Figure 5. Comparison of statistical results between the light trap and radar measurements. (a,b): Dis-
tribution of the mass (a) and length (b) of cotton bollworms captured by the light trap. (c,d): Distribu-
tion of the mass (c) and length (d) of insects measured by radar.
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Figure 6. A typical insect target. (a) Amplitude sequence. (b) Time—frequency spectrogram.

2.2. Biological Target Dataset Construction

The measured data were collected in Dongying, China, an area located along the
migration routes of insects and birds, with a diverse range of species. Data were collected
over several days, covering the migration seasons of various migratory pests and birds.
Samples were taken during the migration season, and nighttime monitoring data from
several days were selected to construct the database. The raw, unselected data exceeded
100,000 sets. A short-time Fourier transform (STFT) was performed on the targets, and
amplitude sequences and time—frequency spectrogram results were generated for all targets.
Based on the understanding of insect and bird radar echoes described in the previous
section, the data categories were manually selected and classified, as shown in Table 3.
During the selection and database construction process, three additional types of echo
targets with distinct characteristics, apart from the typical insect and bird targets, were
identified. These targets were separately extracted to ensure the completeness of the dataset.
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After these targets were fully extracted, the insect and bird data were balanced to a similar
magnitude to ensure the equilibrium of the dataset for subsequent identification algorithms.

Table 3. Dataset number for different types of airborne targets.

Label Target Types Number
0 Insect 2932
1 Bird 2088
2 Cluttered Doppler components (CD components) 559
3 Multiple Doppler components (MulD components) 893
4 Amplitude periodic fluctuations (APF) 854

Next, the radar echo characteristics of the targets in the database will be elaborated in
detail. A pattern database was built for the measured data based on target echo amplitude
characteristics, micro-Doppler features, and wingbeat frequency biological parameters. The
amplitude sequences and time—frequency spectrograms of various targets in the dataset
are shown in Figure 7. A detailed description of the features of each category of targets is
provided below.

(a) Insect: This type of target has a primary Doppler frequency that is relatively low,
typically below 50 Hz, with minimal Doppler fluctuation. The echo amplitude variation
generally does not exceed 10 dB.

(b) Bird: The Doppler and amplitude exhibit a wide range, with significant micro-
Doppler fluctuations caused by bird wing flapping.

(c) Cluttered Doppler components (CD components): This type of target typi-
cally has a single primary Doppler component, but also exhibits relatively cluttered
Doppler components.

(d) Multiple Doppler components (MulD components): The echoes of this type of
target exhibit highly regular sinusoidal-like fluctuations, with multiple primary Doppler
components in the time—frequency spectrogram.

(e) Amplitude periodic fluctuations (APF): The echoes of this type of target exhibit
highly regular sinusoidal-like fluctuations with an amplitude of around 10 dB. The time-
frequency spectrogram shows alternating bright and dark spots.

nm Wvﬁ W W ”"W‘!”m T \]l.\,r,’ W,’

rrrrrrrrrrrrrrrrr

(a) (b) (0) (d) (e)

u

Amplitude/ds
P

(h)

Figure 7. Amplitude sequences and time—frequency spectrograms of various targets. (a—e): Am-
plitude sequence of (a) insect, (b) bird, (c) cluttered Doppler components, (d) multiple Doppler
components, and (e) amplitude periodic fluctuations. (f—j): Time-frequency spectrograms of (a) in-
sect, (b) bird, (c) cluttered Doppler components, (d) multiple Doppler components, and (e) amplitude
periodic fluctuations.
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The typical insect and bird targets are supported by correctness experiments. However,
to ensure the completeness of the aerial biological target dataset, the remaining three target
categories were also selected. In the subsequent experimental section, these targets were
analyzed either as three distinct categories or merged with other categories for algorithm
performance evaluation. These echoes may represent insect targets with unique radar
characteristics or targets mixed with certain clutter. During the dataset creation process, it
was found that the overall proportion of these three categories was very low. Therefore,
these targets have a minimal impact on the subsequent application of the insect and bird
classification algorithm proposed in this paper.

2.3. Insect and Bird Separability Analysis

After the analysis and definition of aerial biological target characteristics were com-
pleted, further statistical analysis of the insect-bird data was conducted. This was per-
formed to highlight the challenges in classifying aerial biological targets and, in turn,
propose our targeted biological classification algorithm. The discussion focuses primarily
on the echo amplitude, time-varying characteristics, and time—frequency characteristics of
aerial biological targets.

2.3.1. Echo Amplitude

Generally, the RCS of bird targets is much larger than that of insect targets. However,
due to the large size variation among aerial biological targets, many large bird targets
can also be detected in the radar beam sidelobes. In such cases, the estimated RCS of
bird targets may be underestimated, sometimes even comparable to that of insect targets.
Therefore, after the manual selection of insect and bird data, their amplitude distributions
were statistically analyzed. As shown in Figure 8, the overall amplitude distribution of bird
targets is slightly larger than that of insect targets. However, there is still approximately
a 70% overlap in the amplitude distribution between the two target types, making it
impossible to use amplitude alone for the insect-bird classification task.
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> >
£ £ 400
£ 600 c
a 3 300
400
200
200 100
0 0
4120 -100 -80 -60 -40 -20 4120 100 -80  -60  -40  -20 0
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Figure 8. Amplitude statistical distribution. (a) Insect. (b) Bird.

2.3.2. Time-Varying Characteristics

Insects and birds achieve flight by flapping their wings. Due to differences in their
biological structures, the fluctuations in the radar echoes of most insect targets are caused
by body vibrations. Bird targets, on the other hand, typically involve the interaction
between the wings and body, which produces rapid fluctuations in radar echoes at different
frequencies during wing flapping. Therefore, we statistically evaluated the rate of change
in the radar echo signals for both target types. The evaluation method is as follows: first,
the amplitude sequence of the insect and bird echoes is differentiated, and then the mean
and variance of the differences for each target are calculated. As shown in Figure 9, the
signal change rate for bird targets is slightly higher than that for insect targets, but the
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variance in the signal change is lower for birds, which is consistent with the conclusions
drawn during the database construction.
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Figure 9. Statistical distribution of signal change rate. (a,b) Statistical results of the mean (a) and
variance (b) for insects. (c,d) Statistical results of the mean (c) and variance (d) for birds.

2.3.3. Time—Frequency Characteristics

The time—frequency analysis method used in this paper, the short-time Fourier trans-
form (STFT), is effective in extracting the main Doppler and micro-Doppler components of
different biological targets. The window length used in the short-time Fourier transform is
consistent with the one used in the time-frequency spectrograms in the dataset creation,
which is 24 ms. After obtaining the target time—frequency analysis results, the t-distributed
stochastic neighbor embedding (t-SNE) [40] algorithm was applied to map the normalized
time—frequency results with different window lengths into a two-dimensional space for di-
mensionality reduction. The resulting visualizations of the reduced dimensions are shown
in Figure 10. The t-SNE is a dimensionality reduction method that represents the similarity
of high-dimensional data as conditional probabilities and generates similar distributions in
the low-dimensional space. When the two distributions are nearly identical, the projection
of the high-dimensional data can be observed in the low-dimensional space. The x and y
axes in Figure 10 represent the relative values after feature dimensionality reduction, used
to characterize the relative distribution of various target types. They do not have specific
physical meaning, so no coordinates are provided. Here, yellow represents bird targets, red
represents insect targets, and the other three colors represent different target categories. It
can be observed that insect and bird targets show some overlap in their distribution in the
two-dimensional space, but also exhibit different clustering characteristics. This indicates
that time—frequency spectrogram features can serve as effective features for insect and
bird classification.
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Figure 10. t-SNE dimensionality reduction visualization result.

This subsection analyzes the echo amplitude, time-varying features, and time-
frequency features of insects and birds. Due to the frequent occurrence of targets being
detected in the radar sidelobes, the overlap of insect and bird echo amplitude features is
large, making them difficult to use for insect and bird classification tasks. However, the
echo variations of insects and birds exhibit different time-varying characteristics, which
can be exploited by neural networks to extract high-dimensional features for classification.
Additionally, the time—frequency spectrogram features of insects and birds show good
separability in the reduced-dimensional 2D plane.

2.4. Analysis of the Transformation Results with Different Window Lengths

As analyzed earlier, this paper uses STFT to obtain the time—frequency spectrogram
of biological targets. However, the window length of the STFT determines the time and
frequency resolution of the time—frequency analysis results. For biological targets with
different wing-beat frequencies, different window lengths are selected, resulting in different
time—frequency analysis outcomes. Considering the wing-beat frequency range of aerial
organisms is mainly from 5 to 80 Hz, a total of 14 window lengths, ranging from 4.8 ms
to 46.4 ms with a 3.2 ms interval, were selected for short-time Fourier transform on the
signal. The transformation results are shown in Figure 11. Due to limited image size, only
the transformation results for eight window lengths are displayed. It can be observed
that the micro-Doppler features in the time—frequency spectrograms of different window
lengths show significant differences. To better quantify the differences in time—frequency
spectrograms at different scales, the same method as before was used. The t-SNE algorithm
was applied to map the normalized time—frequency analysis results with different window
lengths to a two-dimensional space for dimensionality reduction, resulting in different
dimensionality-reduced visualizations, as shown in Figure 12. Here, red represents insect
targets, yellow represents bird targets, and the remaining three colors represent other
targets. It can be seen that under different time—frequency analysis window lengths, the
categories of targets exhibit different inter-class distance relationships. The mean Euclidean
distance of the dimensionality-reduced features for insect and bird targets was calculated,
and the Euclidean distances between each pair of insect and bird targets were averaged.
The results are shown in Figure 13a, where it can be observed that the Euclidean distance
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differences of insect and bird features vary under different transformation window lengths.
Additionally, the Pearson correlation coefficient of the features of a single target category
under different window length transformations was also calculated. The correlation co-
efficient between the first window length transformation results and the other window
length transformation results for each target was calculated, and the average value was
taken. The results are shown in Figure 13b, where it can be seen that when the window
length differences are large, the correlation coefficient is very low. This indicates that under
different STFT window lengths, the time—frequency spectrograms represent different time—
frequency resolution characteristics, which contribute inconsistently to the classification
task. Therefore, it is necessary to introduce different STFT window lengths to improve the
accuracy of target classification.

g
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Figure 11. Illustration of multi-scale time-frequency spectrogram concatenation. (a) The window
length for the STFT is 4.8 ms. (b) The window length for the STFT is 8 ms. (c) The window length for
the STFT is 11.2 ms. (d) The window length for the STFT is 14.4 ms. (e) The window length for the
STFT is 36.8 ms. (f) The window length for the STFT is 40 ms. (g) The window length for the STFT is
43.2 ms. (h) The window length for the STFT is 46.4 ms.

Figure 12. t-SNE dimensionality reduction visualization results for 14 window lengths ranging from
4.8 ms to 46.4 ms with an interval of 3.2 ms.



Remote Sens. 2025, 17, 1942

14 of 29

-

£ 0.9
e £ 0.8
2 2
a 3 0
c e 0.7
5 g
k] ©
° © 0.6
3 =
] o
©os
70— . . . . . 0.4 . . . . .
2 4 6 8 10 12 14 2 4 6 8 10 12 14
The index of the STFT window length The index of the STFT window length

(a) (b)

Figure 13. Analysis of window length features in short-time Fourier transform. (a) Euclidean distance
between insect and bird features. (b) Pearson correlation coefficient for the same type of target.

2.5. Data Preprocessing

After the dataset was constructed, the raw data were preprocessed and specifically
normalized. The preprocessing mainly consisted of two parts: the processing of the
amplitude sequence and the time—frequency spectrogram. The specific operations will be
elaborated on in the following sections.

2.5.1. Processing of the Amplitude Sequence

Amplitude sequence normalization mainly consists of two steps: intensity normal-
ization and length uniformity. Traditional intensity normalization generally involves
subtracting the minimum value from each point in the sequence, then dividing by the
difference between the maximum and minimum values, ensuring the normalized data
range is between 0 and 1. However, due to the large differences in the fluctuation character-
istics of insects and birds, using the above method would artificially distort the relative
fluctuation characteristics of the amplitude sequence. Therefore, the amplitude sequence is
directly divided by its maximum value as the normalization result. Additionally, since the
lengths of the data vary, length uniformity is achieved by downsampling or upsampling
the data to normalize it to a sequence of length 512.

2.5.2. Processing of the Time-Frequency Spectrogram

Due to the large pulse repetition frequency of the radar, a wide Doppler range is
covered. Considering that the proportion of valid target information in the time—frequency
spectrogram is relatively low, directly inputting the spectrogram into subsequent algo-
rithms would introduce significant redundant information. Therefore, frequency dimension
scale normalization was applied to the time-frequency spectrogram. The procedure is as
follows: the instantaneous frequency sequence was extracted, and the average value of the
instantaneous frequency sequence was used as the frequency center for the normalized
image, with a certain frequency range above and below it to define the valid image range.
At low signal-to-noise ratios, this can lead to outliers in the extracted instantaneous Doppler
frequencies. However, considering the large Doppler span of bird targets, removing out-
liers might incorrectly discard the micro-Doppler features of bird targets. A slightly larger
frequency range was chosen to ensure full coverage of the Doppler features of biological
targets. Based on empirical statistics, a frequency range of 400 Hz above and below the
frequency center was selected to define the valid image range. The normalization results
are shown in Figure 14. Furthermore, the time—frequency spectrograms were downsampled
to a size of 112 x 112, completing the normalization of each spectrogram.
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Figure 14. Normalization results of the time—frequency spectrogram. (a) Original time—frequency
spectrogram. (b) Time—frequency spectrogram after normalization.

In the previous analysis, the differences in time—frequency spectrograms at different
scales were pointed out. To better mine the target micro-Doppler features in the time—
frequency spectrogram, frequency and time features were considered separately. This also
required further processing of the 14 normalized time-frequency spectrograms obtained. A
time window of 8 points was sequentially extracted from each time—frequency spectrogram
and reassembled into 14 new frequency feature maps. This resulted in feature maps repre-
senting the micro-Doppler characteristics of the target at different frequency resolutions
within the same time window. By following this process, 14 reassembled frequency feature
maps were ultimately obtained. It is believed that the new feature maps better reflect the
changes in micro-Doppler characteristics caused by different frequency resolutions of the
target at the same time. The stitching method is shown in Figure 11.

3. Biological Target Classification Algorithm Based on Multi-Scale
Time-Frequency Deep Feature Fusion Network

To maximize the utilization of different target features and achieve more accurate
classification results, the multi-scale time—frequency deep feature fusion network (MSTFF-
Net) is proposed for aerial weak biological target classification. The structure of MSTFF-Net
is shown in Figure 15. The MSTFF-Net structure mainly includes the time—frequency
feature extraction module, amplitude sequence feature extraction module, adaptive feature
fusion attention module, and classification part. The time—frequency feature extraction
module performs hierarchical feature extraction on the proposed new time—frequency
feature maps in both the frequency and time domains. The amplitude sequence feature
extraction module is used to extract the characteristic fluctuation features from the target
amplitude sequence. The adaptive feature fusion attention module adjusts the feature
dimensions and introduces an attention mechanism to further focus on the effective features,
thereby improving classification accuracy. The classification module performs probability
mapping on the fused high-dimensional features to obtain the target class. The structure of
these four components will be described in detail in the following sections.
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Figure 15. Overall framework of the multi-scale time-frequency deep feature fusion

classification network.

3.1. Amplitude Sequence Feature Extraction Module (ASEM)

The amplitude sequence data are input into the amplitude sequence feature extraction
module to obtain a deep representation of amplitude-related features. The amplitude
sequence contains useful information reflecting target dynamics. Specifically, it includes
vibration signals from non-rigid biological targets and periodic changes caused by body
posture variation. A Convolutional Neural Network (CNN) [41] is employed to extract the
deep features of the target’s amplitude sequence. For a series of amplitude sequences of
size 1 * H, where H denotes the length of each amplitude sequence. Subsequently, for a
typical 1D multi-channel convolution operation, the convolution kernel is of size Kjp. The
output feature maps for all channels Cjp can be represented as:

V-1

C1D(j) = Z x(i,j — U)KlD(US.) (1)
v=0

where V represents the size of the convolution kernel, x(i, j) is the amplitude value of the
i — th subsequence at position j in the amplitude sequence, and K(vs.) is the convolution
kernel weight at position j in the amplitude sequence.

A typical CNN consists of several convolutional layers, pooling layers, fully connected
layers, and an output layer. First, the convolutional layers extract local features from
the magnitude sequence by sliding convolutional kernels, with each convolutional layer
containing multiple kernels with different weights. Subsequently, the pooling layers,
located after the convolutional layers, reduce the computational load of the network by
suppressing redundant information in the extracted features. Finally, the deep features
are passed to the output layer to predict the target class. Given that complex network
structures may lead to difficulties in convergence, the magnitude sequence module uses a
1D ResNet18 [42] to extract deep magnitude features. The structure of the 1D ResNet18 is
shown in Figure 16.
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Figure 16. The structure of amplitude sequence feature extraction module.

3.2. Time-Frequency Feature Extraction Module (MTEM)

In traditional airborne target classification research, the micro-motion features of
the target are widely utilized, with the STFT commonly used to obtain the target’s time—
frequency spectrogram. A strong correlation between the target’s micro-motion features
and the window length used in the STFT was found in the previous data analysis. It is
believed that optimal results cannot be achieved by simply obtaining a time—frequency
spectrogram using a single window length and training the network on it. Therefore, STFT
is performed with different window lengths to obtain time—frequency spectrograms at
different resolution scales, which are then reorganized and stitched according to certain
rules. The specific operations related to this have been detailed in the data preprocessing
subsection of the previous text. The 14 reassembled feature maps are referred to as fre-
quency feature maps, which better reflect the micro-Doppler characteristic changes caused
by different frequency resolutions of the target at the same time. The frequency feature map
data are first processed in parallel by the multi-scale frequency feature extraction module
to obtain a joint feature representation. By performing multi-scale information learning
in the multi-scale frequency feature extraction module, the extracted joint features exhibit
greater discriminative power than traditional single-scale deep features. Therefore, superior
classification results can be achieved. The designed multi-scale feature extraction module is
based on a residual block structure. It consists of five convolutional modules, with the first
convolutional layer using a 7 x 7 kernel size. Given the large size of the original image and
the fact that the classification task primarily involves time-frequency spectrogram patterns,
a large kernel is used for downsampling the input to reduce the overall computational load
of the network. The subsequent four residual convolutional blocks have the same structure,
each consisting of four convolutional layers with a 3 x 3 kernel size. Residual connections
are used to mitigate overfitting and the vanishing gradient problem. Additionally, batch
normalization and activation functions are applied in each convolutional block.

After feature extraction by the four residual convolutional blocks is completed, the
outputs of the first three residual blocks are passed through 1 x 1 channel convolutional
blocks for channel adjustment. On the one hand, activation functions are added during
the channel adjustment process to further enhance the non-linearity of the features. On
the other hand, the number of channels in the four residual blocks is kept consistent to
facilitate subsequent feature fusion. After the channel adjustment is completed, the outputs
of the adjusted four residual blocks are uniformly passed into the adaptive sliding window
pooling module to adjust the size of the feature maps. Finally, the four feature maps
are concatenated to complete the multi-scale frequency feature extraction. The specific
structure of the multi-scale frequency feature extraction module is shown in Figure 17.
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Figure 17. Multi-scale frequency feature extraction module.

Inspired by the ability of Recurrent Neural Network (RNN) [43] to model contextual
dependencies in time series, after deep frequency feature extraction is completed, the
extraction of deep temporal features is considered. The extracted deep frequency features
are sequentially flattened into one-dimensional feature vectors, and an RNN is employed
to extract deep temporal features. In traditional RNN, the output from the previous
time step is fed back and used as additional input for the current state. It is capable
of learning contextual information and maintaining a “memory” of the entire sequence.
However, traditional RNN cannot handle long-period time series due to the vanishing
gradient problem.

Long-term memory is the key distinction between LSTM [44] networks and traditional
RNN networks. Traditional RNN networks use only short-term memory h; to connect
adjacent RNN units. Therefore, when an RNN network needs to handle sequences with
long-term dependencies, the network depth must be increased, which may lead to the
vanishing gradient problem. LSTM networks introduce the concept of long-term memory,
which is propagated along the time axis, with only linear operations (such as multiplication
and addition) performed during the propagation. As a result, significant changes are not
introduced, and it serves as a "conveyor belt" for long-term information. At the same time,
Ct is able to provide each LSTM unit with information from the previous time steps, thereby
eliminating the need to significantly increase network depth during long sequence training,
thus avoiding the vanishing gradient problem.

The one-dimensional frequency features at different time steps are input into the
stacked Bi-LSTM module shown in Figure 18. Specifically, the Bi-LSTM module used in the
MTEM consists of two stacked Bi-LSTM layers, each with 128 hidden units in both forward
and backward directions. Following the Bi-LSTM layers, we apply a dropout layer with a
dropout rate of 0.3 to reduce overfitting. The output of the module is the deep temporal
features of the time—frequency spectrogram, as the recurrent network has already captured
the temporal dependencies. LSTMs can be optimized using the back propagation through
time (BPTT) algorithm [45]. Based on BPTT, the recurrent network can be unfolded into a
multi-layer feedforward deep network, and traditional back propagation (BP) algorithms
can be used to optimize the LSTM parameters.
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Figure 18. Temporal feature extraction module.

3.3. Adaptive Feature Fusion Attention Module (FFAM)

After the deep feature extraction of amplitude sequences and time—frequency features
is completed, the two types of features are fused for the final target classification task. The
introduction of the adaptive feature fusion attention module aims to capture the correlations
and differences between different types of features. It effectively eliminates information
discrepancies, performs feature fusion, and suppresses channels with low relevance to the
classification task to enhance network performance. Two feature fusion modules, namely
the enhanced pooling module and the channel spatial attention module, are introduced in
this paper, and each module will be discussed in detail in the following sections.

3.3.1. Enhanced Pooling Module

Average pooling and global max pooling are employed to obtain deep features that
are more sensitive to the target texture and background, respectively. These two types of
deep features are then combined to obtain a more comprehensive feature representation.
The specific operation is shown in Figure 19a.
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attention
module
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Figure 19. Architecture of the feature fusion attention module. (a) Enhanced pooling module.
(b) Channel spatial attention module
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3.3.2. Channel Spatial Attention Module

The channel spatial attention module extracts information from each feature channel
separately, without considering the potential of feature correlations to improve target
classification accuracy. To overcome this limitation, channel attention [46] and spatial
attention [47] mechanisms are introduced separately and concatenated to further enhance
the feature fusion capability. The channel spatial attention module is shown in Figure 19b.

Given an input feature map F € R“*", the channel spatial attention module computes
a 1D channel attention matrix V, € R“*! and a 1D spatial attention matrix Vs € R>W,

F=V.(F)®F (2)
F// _ ‘/S (Fl) ® F/ (3)

where ® represents element-wise multiplication and F* denotes the final output of the
channel spatial attention module. The output of the channel attention module V; can be
expressed as follows.

V. = o(FC(ReLU(FC(Flatten(AP(F)))))) (4)

where o(-) represents the Sigmoid function, FC(-) denotes the fully connected layer,
Flatten(-) signifies the compression operation, and AP(-) indicates the adaptive aver-
age pooling operation. The output of the spatial attention module V; can be expressed
as follows,

Vi = a(Convld(Pl>) (5)

where Conv1d(-) represents the convolution module.

The introduction of the channel spatial attention module is motivated by the fact that
the amplitude sequences and multi-scale time—frequency spectra of aerial biological targets
often exhibit complex motion characteristics and differentiated amplitude variations caused
by different target sizes, which contain rich target information. The channel attention
feature map V; in the channel spatial attention module mainly focuses on the relationships
between different channels. By learning to adjust the weights of each channel, the useful
feature channels are enhanced, and the channels with low relevance are suppressed, thereby
improving the channel characteristics of the aerial target features. On the other hand, the
spatial attention feature map V; learns the importance of different positions within the
features, thereby enhancing the learning of spatial contextual characteristics. Therefore,
the introduction of the channel spatial attention module allows for better attention to
the correlated features of the amplitude sequences and time—frequency spectra of aerial
biological targets, thus improving the accuracy of aerial target classification.

3.3.3. Feature Fusion Strategy

The proposed feature fusion strategy primarily involves fusing the single feature
output from the enhanced pooling module with the interactive features output by the
channel spatial attention module, as shown in Figure 20. The entire feature fusion strategy
can be expressed as follows,

Frused = E1(S1) + E1(S2) + Linear(GP(E(51©52))) (6)

where Ej(-) represents the feature map of the enhanced pooling module, S; denotes the
deep features of the amplitude sequence, S; refers to the multi-scale time—frequency deep
features, E,(-) represents the feature map of the channel spatial attention module, and ©
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indicates the concatenation operation. The final fused feature output Fy,, is obtained by
summing the output attention features.
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Figure 20. Architecture of feature fusion attention module.

Finally, the output of the feature fusion attention module is input into the classifier
module for aerial target classification.

3.4. The Training of MSTFF-Net

For training the MSTFF-Net network, the normalized time—frequency spectrogram and
amplitude sequence are first input into the time-frequency multi-scale feature extraction
module and the amplitude sequence temporal feature extraction module, respectively,
where multi-scale time-frequency deep features and amplitude sequence temporal deep
features are extracted. Subsequently, through the feature adjustment module, the multi-
scale time—frequency deep features and amplitude sequence temporal deep features are
normalized and then concatenated, before being passed into the adaptive feature fusion
attention module, which produces the fused features. The fused features are then processed
through a fully connected layer to obtain the output feature vector Z; . Finally, the feature
vector is input into the softmax classification function to obtain the probability distribution
for each class. The calculation of the probability distribution is shown below,

eZi ) C
P = C 7 i=1,., (7)
where C represents the total number of classes.

After obtaining the class probability distribution, the cross-entropy loss function is
used to compute the loss based on the probability distribution obtained in each training
iteration and the sample labels. To minimize the training loss, the Adam optimizer is used
to update the MSTFF-Net parameters through the backpropagation process. When the loss
no longer decreases and stabilizes, the parameter updates are complete, signifying that
MSTFF-Net has finished training.

During the network prediction process, both the target time—frequency spectrogram
and the amplitude sequence inputs follow the same path as during training to predict
the class labels, with the label determined by the maximum probability output from the
softmax function.

4. Experiments

This section presents experiments to evaluate the classification performance of the
proposed network structure. First, the experimental dataset, experimental setup, and
evaluation metrics are introduced. The effectiveness of the proposed model was verified
from three perspectives. First, the confusion matrices for the three-class and five-class
network classifications are presented. Next, the contribution of each module in the proposed
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network to the overall classification performance is analyzed. Finally, a comparison of the
classification performance with traditional methods in the field is provided.

4.1. Data and Experimental Description

The training and testing data were collected by the team, using the five categories
described in Section 2 as the experimental dataset, with a total of 7326 data slices. During
the algorithm experiments, experiments with three categories (by combining the remaining
three target classes into “other”) was conducted. For each target class, 1000 samples were
selected as the training set. The remaining data were used as the test set. The number of
targets of different types is shown in Table 3.

The proposed network architecture is implemented using the NVIDIA RTX A6000
GPU, sourced from PNY Technologies, headquartered in Parsippany-Troy Hills, New Jersey,
USA. The implementation utilizes the PyTorch framework, version 1.11.0+cul13, which
is compatible with the CUDA 12.4 toolkit. The Adam optimizer with a learning rate of
le-5 and momentum of 0.9 is used to update the parameters of the proposed network. The
training period is set to 1000 epochs, with a learning rate of 0.001. The learning rate is
halved after 10 epochs of no loss decrease, and the batch size is set to 16.

4.2. Classification Performance Evaluation Metrics

In this paper, accuracy, precision, recall, and F1 score are used as evaluation metrics
to quantify the classification performance of the proposed structure. A higher score for
each metric indicates better classification performance. To minimize experimental errors,
all training processes are repeated ten times, and the results are averaged.

Accuracy — TP+ TN ®)
Uy = TPy TN+ FP 1 FN
.. TP
PI'ECISIOH = m (9)
TP
Recall = ———— 1
eca TP+ EN (10)
Fl—2x Recall x Precision (11)

Recall + Precision

where TP represents the positive samples predicted as the positive class, TN represents
the negative samples predicted as the negative class, FN represents the positive samples
predicted as the negative class, and FP represents the negative samples predicted as the
positive class.

4.3. Network Test Results

Considering the imbalance in the sample sizes across categories, and the fact that in
practical applications we are more concerned with the number of typical insect and bird
targets, we validated the classification performance for insects, birds, and other targets
using a large dataset. The three-class confusion matrix is shown in Table 4. The results show
that the classification accuracy for the three-class classification reached 94.0%. There were
fewer misclassifications between insects and birds. Some insect targets were misclassified
as other targets. Considering that in practical situations, the number of insect targets far
exceeds the number of bird targets, this algorithm exhibits relatively few misclassifications
between insects and birds. It can effectively describe the quantity and spatiotemporal
distribution of insects and birds.
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Table 4. Three-class confusion matrix for aerial targets.
Predicted Actual Insect Bird Others F1 Score
Insect 1785 2 70 0.94
Bird 1 1054 9 0.98

Others 146 32 1227 091
Recall 0.924 0.969 0.940 Accuracy=

Precision 0.961 0.991 0.873 0.940

4.4. Ablation Experiment Analysis

In this section, ablation experiment analysis is conducted on each feature extraction
module and the overall structure.

4.4.1. Ablation Experiment of the Structure

Each module of the proposed model plays a crucial role in the aerial target classifica-
tion task. This subsection will conduct an ablation analysis of the proposed modules to
demonstrate their effectiveness. The quantitative results of the ablation experiments are
shown in Table 5. In the table, a checkmark indicates that the corresponding module and
input data were used, a dash indicates that the data used did not require the corresponding
module, and a cross indicates that the corresponding module was not used. Ablation exper-
iments were conducted from two perspectives: input ablation and module ablation. It can
be observed that using only amplitude sequence information or multi-scale time—frequency
information does not achieve satisfactory classification performance. When both features
are used, the performance improves by 24.4% and 3.6% compared to using each feature
individually. However, the two features were not effectively fused. After introducing the
fusion attention module proposed by us, the classification performance for aerial biological
targets further improved by 4%, validating the effectiveness of our proposed algorithm.

Table 5. Module ablation experiments.

Input

ASEM MTEM FFAM  Accuracy/%  F1Score/%  Precision/% Recall/%

Amplitude
Sequence

v

- - 66.0 59.0 61.3 60.1

Time-Frequency
Spectrogram

v - 86.8 84.5 87.3 85.9

Amplitude
Sequence
+Time-Frequency
Spectrogram

v b 4 90.4 88.1 88.7 88.4

Amplitude
Sequence
+Time-Frequency
Spectrogram

v v 94.0 90.7 91.3 91.0

4.4.2. Analysis of the Amplitude Sequence Feature Extraction Module

It can be seen from previous experiments that the introduction of amplitude sequence
inputs can improve the classification accuracy of airborne biological targets. Based on
Convolutional Neural Networks (ResNet-18), Recurrent Neural Networks (Bi-LSTM), and
Convolutional Long Short-Term Memory Networks (Conv-LSTM), three feature extraction
modules are designed. The impact of different feature extraction modules on the classifica-
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tion results of amplitude sequence inputs is verified, and the quantitative analysis results
are presented in Table 6. The classification performance using ResNet-18 is significantly
better than the other two methods, with an improvement of 6.9% and 2.2% in classification
accuracy compared to Bi-LSTM and Conv-LSTM, respectively.

Table 6. Classification comparison results of the amplitude sequence feature extraction modules.

Method Metric  Accuracy/%  F1Score/%  Precision/% Recall/%

Bi-LSTM 61.3 57.0 60.0 58.4

Conv-LSTM 66.0 59.0 61.3 60.1
ResNet-18

(Proposed method) 68.2 61.0 64.7 62.8

4.4.3. Analysis of the Multi-Scale Time-Frequency Feature Extraction Module

As mentioned earlier, a single time—frequency spectrum is not used as the input in this
paper. Instead, multi-scale window lengths are first used for short-time Fourier transforms,
and then segments from the same time window are extracted and concatenated to form
frequency features. After extracting deep frequency features, deep temporal sequence
features of airborne biological targets are further extracted. In the process of considering
how to better use multi-scale time—frequency features, different feature extraction structures
are designed, and various feature interaction strategies are applied to extract the optimal
multi-scale time—frequency features. For single time—frequency spectrogram module, a
single scale-transformed time—frequency spectrum is used, normalized, and input as a
1 x 112 x 112 matrix, which is then processed through a series of Convolutional Neural
Network modules to obtain deep time-frequency features. This is referred to as the
single time—frequency spectrogram structure in these subsections. For multiple time—
frequency spectrogram module, after obtaining 14 time—frequency spectra from different
scale transformations, 14 parallel channels are used to extract deep target features. After
feature extraction in each residual block, a 1 x 1 convolutional block is used for interactive
learning across the 14 channels, which are then added back to each respective channel,
ultimately resulting in deep time—frequency features. This is referred to as the multiple
time—frequency spectrogram structure in this subsection. The third structure is the time—
frequency deep feature extraction module proposed in this paper. To ensure fairness in
the evaluation method, the convolutional modules of all three structures use the designed
residual concatenated convolution modules. The quantitative results of different time—
frequency feature extraction modules are presented in Table 7.

Table 7. Classification comparison results of the time—frequency feature extraction modules.

Metric 0, 0, fai ( 0,
Method Accuracy/% F1 Score/% Precision/% Recall/%

Single time—frequency 84.6 81.3 84.0 82.6
spectrogram module

Multiple time—frequency 85.2 81 85.3 837
spectrogram module

Time—frequency deep feature
extraction module 86.8 84.5 87.3 85.9

(Proposed method)

4.4.4. Analysis of the Feature Fusion Module

The feature fusion module is designed to integrate deep amplitude features and
time—frequency features. Optimizations are made based on channel attention and spatial
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attention, and a new feature fusion mechanism is designed. In this section, the algorithm
performance is compared with three attention mechanisms, which include the channel
attention mechanism, spatial attention mechanism, and channel-space attention mecha-
nism. The quantitative results of different attention mechanism feature fusion modules are
shown in Table 8. It can be observed that the proposed feature fusion attention module
demonstrates a significant performance improvement in classification compared to other
fusion mechanisms. The use of the channel-space attention mechanism results in more
than a 1% improvement in classification performance compared to using either attention
mechanism individually. This may be because the model requires the introduction of
attention mechanisms for both channel and spatial features to enhance its ability to focus on
relevant information. The proposed structure shows a 1.3% improvement in classification
accuracy compared to the channel-space attention mechanism. This may be because the
channel-space attention mechanism used only focuses on single amplitude features or
multi-scale time—frequency features, without considering the interaction between the two
feature types. The proposed structure, however, is capable of effectively learning interaction
features, further enhancing the classification performance of the fusion attention module.

Table 8. Classification results of the feature fusion modules.

Method Metric  Accuracy/%  F1Score/%  Precision/%  Recall/%
Channel attention 91.8 87.3 86.7 87.0
Spatial attention 92.0 87.9 87.3 87.6
Channel-space attention 93.1 89.4 90.0 89.7
Feature fusion attention
(Proposed method) 94.0 90.7 91.3 91.0

4.5. Performance Comparison Analysis with Traditional Methods

Traditional biological target classification methods mostly use a single feature of the
target (e.g., amplitude sequence, time—frequency transformation) as the input feature. This
subsection will introduce and compare the performance of two mainstream airborne target
classification methods with the approach proposed in this paper. Considering the practical
applications, the number of insect targets is significantly higher than that of bird and other
targets. The evaluation metrics in this section are consistent with those used in previous
sections, and will calculate the overall accuracy, as well as the precision, recall, and F1 score
for insect targets to evaluate the algorithm. All results are presented in Table 9.

(1) Some scholars extract features from the amplitude sequences or time—frequency
spectra of airborne biological targets to describe the target’s amplitude fluctuations, such
as cepstral coefficients, linear predictive coding coefficients, amplitude perturbation, and
main Doppler frequency. These features are then combined with machine learning methods,
such as random forests, to classify airborne biological targets.

(2) Some scholars have introduced neural networks for airborne biological target
classification, typically using time—frequency spectra or amplitude sequences as inputs.
This subsection compares the performance of methods using time—frequency map inputs
and a series of popular networks. The networks include AlexNet, Bidirectional Long
Short-Term Memory network (Bi-LSTM), Visual Geometry Group series (VGG-11), and
Residual Network (ResNet-18).
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Table 9. Classification results of the dataset using different methods.
Method Metric Input Accuracy/% F1 Score/% Precision/% Recall/%
Random Forest Amplitude 70.1 68.5 66.7 67.8
Sequence
Bi-LSTM Amplitude 61.3 57.0 60.0 58.4
Sequence
AlexNet Time-Frequency 81.1 719 76.7 74.2
Spectrogram
VGG-11 Time-Trequency 78.9 74.5 70.0 72.2
Spectrogram
ResNet-18 Hime-trequency 84.0 813 84.0 82.6
Spectrogram
Amplitude
MSTFF-Net Sequence
(Proposed method) +Time-Frequency 94.4 90.7 91.3 91.0
Spectrogram

5. Conclusions

In this paper, an intelligent classification method based on MSTFF-Net is proposed for
airborne biological target classification. It mainly consists of three components: the first is
the amplitude sequence feature extraction module for extracting features from the dynamic
information of target echoes, the second is the target dynamic feature extraction module
for extracting features from the reconstructed multi-scale time—frequency maps, and the
third is the feature fusion attention module, which captures effective features of both types
of information through the attention mechanism. A more complete airborne target dataset
is established in this paper, with ground truth labels created for observation data across all
periods. The algorithm’s effectiveness is validated using the self-built dataset. Although
the proposed network shows satisfactory classification performance for airborne biological
targets, future research should focus on further expanding the dataset to obtain a more
robust model and confirming the natural categories of targets for subsequent scientific
analysis and research.
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Abbreviations

The following abbreviations are used in this manuscript:

MSTFF-Net multi-scale time—frequency deep feature fusion network

RCS radar cross section

CNN convolution neural network

STFT short-time Fourier transform

t-SNE t-distributed stochastic neighbor embedding
RNN Recurrent Neural Network

LSTM Long Short-Term Memory

BPTT back propagation through time

BP back propagation
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