
Academic Editor: Yukiharu Hisaki

Received: 15 March 2025

Revised: 25 May 2025

Accepted: 26 May 2025

Published: 28 May 2025

Citation: Sun, J.; Wei, D.; Zhang, D.;

Sun, Z. An Improved Method for

Estimating Sea Surface Temperature

Based on GF-5A Satellite Data in Bohai

Bay. Remote Sens. 2025, 17, 1879.

https://doi.org/10.3390/rs17111879

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

An Improved Method for Estimating Sea Surface Temperature
Based on GF-5A Satellite Data in Bohai Bay
Jiren Sun 1, Daoming Wei 2, Dianjun Zhang 1,* and Zhiwei Sun 3

1 School of Marine Science and Technology, Tianjin University, Tianjin 300072, China; 3018001187@tju.edu.cn
2 Key Laboratory of Smart Earth, Beijing 100029, China; 13716430611@163.com
3 Beijing Geoway Info-Tech Co., Ltd., Beijing 100043, China; 176117@tju.edu.cn
* Correspondence: zhangdianjun@tju.edu.cn; Tel.: +86-022-85350655

Abstract: Sea surface temperature (SST) is an important physical parameter that plays
an important role in the study of various dynamic and thermodynamic processes in the
ocean. Common SST retrieval methods are divided into single-channel methods (such
as the single window algorithm) and multi-channel methods (such as the split window
algorithm). To solve the problem of the low resolution of SST data used in coastal research,
this study proposed a split window algorithm by adjusting the two important parameters,
atmospheric transmittance and regression coefficients, to estimate SST using remotely
sensed GF-5A images with a resolution of 100 m. The results were indirectly validated
using MODIS temperature product and directly validated using measured data. The GF-
5A image data obtained on 18 July 2024 were compared with MODIS data, giving R2 of
0.985 and RMSE of 0.139 K. For the GF-5A image data obtained on 31 December 2024, the
indirectly verified R2 was 0.996 and the RMSE was 0.116 K. The R2 and RMSE values of the
direct verification of the accuracy of data from the two GF-5A images and the measured
data were 0.999 and 0.613 K, respectively, which are better than the SST retrieval results
of Landsat 8 data obtained at the same resolution. This work provides data support for
subsequent research on the ecological environment and plant resources in the Bohai Bay.

Keywords: GF-5A; sea surface temperature (SST); split window algorithm; Bohai Bay

1. Introduction
As an important physical parameter, SST plays an important role in marine research

fields such as marine pollution prevention, fishery resources protection and development,
and dynamic monitoring of marine ecological environments. Due to the recent increase in
the frequency of abnormal climate phenomena such as El Niño, it is crucial to study SST,
which is closely associated with these abnormal climate phenomena [1].

The traditional method of obtaining SST has high accuracy and uses various discrete
observation points, such as buoys and shipborne sensors, however, it is difficult to represent
the large-scale ocean state. Satellite remote sensing technology, which is superior to the
traditional methods, can enable synchronous acquisition of large-scale spatio-temporal SST
data. The commonly used SST retrieval algorithms are divided into single-channel retrieval
algorithms, which use one thermal infrared data channel [2], and multi-channel retrieval
algorithms, which use multiple thermal infrared data channels [3].

The single channel method is mainly divided into the radiative transfer equation
method [4], the mono-window algorithm [5–7], and the generalized single-channel
method [8–10]. Although the single-channel SST retrieval method has been used for many
years, it still has many problems. The radiative transfer equation method needs accurate
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real-time atmospheric profile parameter data to have high accuracy in temperature retrieval,
and it is difficult to obtain accurate real-time atmospheric profile parameter data for use in
practical applications [11]. In the mono-window algorithm, the atmospheric profile data
simulation still requires some parameter estimation, which makes the applicability of the
single-window algorithm low [12]. The empirical formula in the universal single-channel
method is not universal. When the atmospheric water vapor content is high, the empirical
formula fails and generates large errors [13]. The multi-channel temperature inversion
algorithm eliminates the atmospheric effect through differences in the atmospheric effect
in different thermal infrared bands. Therefore, the temperature retrieval algorithm for
atmospheric correction can be realized by using satellite data, which reduces the demand
for atmospheric parameters [14,15]. The Qin split window algorithm has the advantages of
fewer input parameters, a simple calculation process, strong applicability, and high tem-
perature inversion accuracy [16]. In conclusion, compared with single-channel algorithms,
the Qin split window algorithm can achieve higher in SST retrieval accuracy with fewer
atmospheric parameters, making it a reliable SST retrieval method [17–19].

However, in recent years, people have used the split window algorithm for the retrieval
of satellite-based temperature data at different resolutions, for example, the Visible-Infrared
Spin Scan Radiometer (VISSR) data from the FY-2C satellite with a 5-km resolution [20], the
INSAT imager data from the INSAT-3D satellite with a 4-km resolution [21], the Spinning
Enhanced Visible and Infrared Imager (SEVIRI) data from the MSG satellite at a 3-km
resolution [22,23], the Advanced Himawari Imager (AHI) data from the Himawari 8
satellite with a 2-km resolution [24], the Visible and Infrared Radiometer (VIRR) data
from the FY-3A satellite with a 1.1-km resolution [25], the Advance Very High Resolution
Radiometer (AVHRR) data from the NOAA satellite with a 1.1-km resolution [26], the
Moderate-Resolution Imaging Spectroradiometer (MODIS) data from the Earth Observation
System (EOS) TERRA/AQUA satellite with a 1-km resolution [27], the Sea and Land
Surface Temperature Radiometer (SLSTR) data from the Sentinel-3 satellite with a 1-km
resolution [28], the wide-band imager data from the Tiangong-2 satellite with a 400-m
resolution [29], and the Medium Resolution Spectral Imager -2 (MERSI-2) data from the
FY-3D satellite with a 250-m resolution [30]. However, the resolutions of these satellite
data are still too low for coastal research. Given the low resolution of the satellite used
in split window algorithm temperature data retrieval, this paper uses the Wide-swath
Thermal Infrared Imager (WTI) data from the GF-5A satellite with a 100-m resolution
and modifies the parameters used in the Qin split window algorithm according to GF-5A
satellite parameters to achieve high-precision SST data retrieval for the Bohai Bay area.

2. Study Area and Data
2.1. Study Area

The area analyzed in this study is Bohai Bay, one of the three major bays in China’s Bohai
Sea. As Figure 1, its latitude and longitude range is 38◦1′N–39◦13′N, 117◦34′E–119◦5′E. Bohai
Bay is surrounded by land on three sides, with the northern part being a famous tourist
and resort area, and Tanggu in the west being an important port. It is also the maritime
gateway to Beijing–Tianjin–Hebei, and the hub of North China shipping [31].

Retrieval of SST data for the Bohai Bay facilitates the study of the growth of zoo-
plankton and phytoplankton communities [32,33], the temporal and spatial distribution
characteristics of fish eggs [34], the temporal and spatial changes in regional thermal
structure [35], and the protection and sustainable development of the ecological environ-
ment [36].
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Figure 1. Schematic diagram of Bohai Bay.

2.2. Data
2.2.1. Measured Data

The data were obtained from the global marine data of National Centers for Environ-
mental Information (https://www.ncei.noaa.gov/maps/marine/, accessed on 20 April
2024). The measured data are scattered data obtained through observations from ships,
buoys, and other platforms. This study obtained measured data covering a period similar
to two GF-5A images for direct verification of SST retrieval accuracy. The specific measured
data are shown in Table 1.

Table 1. Specific measured data.

Station Time Longitude Latitude

ZCPC7MW 27 December 2024 07:00 118.6◦E 38.8◦N
KUL7SEK 29 December 2024 03:00 118.7◦E 38.8◦N

CQNL 28 December 2024 12:00 118.8◦E 38.8◦N
SJGS5AE 5 January 2025 18:00 119.1◦E 38.7◦N

KKEKFPK 23 July 2024 17:00 118.3◦E 38.9◦N
KKEKFPK 23 July 2024 18:00 118.2◦E 38.9◦N
KKEKFPK 23 July 2024 19:00 118.1◦E 38.9◦N
KKEKFPK 25 July 2024 05:00 118.0◦E 38.9◦N
KKEKFPK 25 July 2024 06:00 118.2◦E 38.9◦N
KKEKFPK 25 July 2024 09:00 118.9◦E 38.8◦N
KKEKFPK 25 July 2024 10:00 119.1◦E 38.7◦N

2.2.2. MODIS

These data were obtained from LADDS DAAC (https://ladsweb.modaps.eosdis.nasa.
gov). MODIS is an important instrument carried on the EOS TERRA/AQUA satellites.
The Terra and Aqua satellites are part of the EOS program and can simultaneously collect
information about Earth’s atmosphere, land, oceans, and solar energy balance. EOS takes
the Earth as a whole and studies the Earth’s system comprehensively through Earth system
science and space technology, thus contributing to the study of the Earth’s system and
global environmental changes. MODIS has a resolution of 1 km and is used to observe
global biological and physical processes. MODIS has 36 discrete spectral stages, with a

https://www.ncei.noaa.gov/maps/marine/
https://ladsweb.modaps.eosdis.nasa.gov
https://ladsweb.modaps.eosdis.nasa.gov
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wide spectral range from 0.4 µm to 14.4 µm, and provides information on various important
physical quantities. The MODIS data used in this study are shown in Table 2 [37,38].

Table 2. MODIS data used in this study.

Name Information Purpose

MOD03

MODIS geolocation data file,
which contains the longitude

and latitude of each 1 km
Earth view center

Geometric correction for
remote sensing image

MOD021KM

MODIS1B data product with a
resolution of 1km; include
reflectance and emissivity

datasets

The reflectivity of band 2
and band 19 are used to

calculate the atmospheric
water vapor content

MODIS temperature
product

MODIS temperature product
with a resolution of 1 km

Used for indirect
verification of SST retrieval

results

2.2.3. GF-5A

The GF-5A satellite is also known as the hyperspectral comprehensive observation
satellite. It has three loads: Environmental trace gases Monitoring Instrument (EMI), the
Advanced Hyperspectral Imager (AHSI), and WTI. EMI is used to measure the Earth’s
backscattered radiation in the ultraviolet and visible spectral range to facilitate the detection
of atmospheric trace gases. AHSI is used for ground object detection and recognition
through hyperspectral resolution imaging with wide coverage and spectral bands. WTI
provides a wide range of day and night thermal infrared images for SST retrieval. It has
the comprehensive detection ability of all day, multi-element. It provides key data support
for many studies, such as ecological environment protection, natural resource monitoring,
and climate change research. GF-5A’s WTI parameters are presented in Table 3.

Table 3. The GF-5A satellite’s WTI parameters.

Parameter Parameter Value

Spectral segment

B1: 8.01–8.39 µm
B2: 8.42–8.83 µm
B3: 10.3–11.3 µm
B4: 11.5–12.5 µm

Sub-satellite ground pixel resolution ≤100 m

Width ≥1500 km

2.2.4. Landsat 8-9 C2L2

The data were obtained from USGS (https://www.usgs.gov/). Landsat series satellites
are the main systems for medium-resolution remote sensing in the Earth observation system
of the United States. They play an important role in the investigation and management of
land and marine resources. The Landsat 8-9 satellite is the fourth generation product, and
its C2L2 data are the atmospheric corrected surface reflectance data, which are suitable for
a variety of remote sensing applications. In this study, QA_PIXEL band data were used
for cloud removal and sea–land separation. The QA_PIXEL band is used for pixel quality
assessment, and the specific meanings of its values are presented in Table 4.

https://www.usgs.gov/
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Table 4. The meanings of different binary values of the QA_PIXEL band data.

Bit Flag Description Value

0 Fill 0 image data
1 fill data

1 Dilated Cloud 0 cloud is not dilated or no cloud
1 cloud dilation

2 Cirrus
0 cirrus confidence: no confidence level set for
low confidence
1 high confidence

3 Cloud 0 cloud confidence is not high
1 high confidence

4 Cloud Shadow 0 cloud shadow confidence is not high
1 high confidence

5 Snow 0 snow/ice confidence is not high
1 high confidence

6 Clear 0 cloud or dilated cloud bits are set
1 cloud and dilated cloud bits are not set

7 Water 0 land or cloud
1 water

8–9 Cloud Confidence

00 no confidence level set
01 low confidence
10 medium confidence
11 high confidence

10–11 Cloud Shadow
Confidence

00 no confidence level set
01 low confidence
10 reserved
11 high confidence

12–13 Snow/Ice Confidence

00 no confidence level set
01 low confidence
10 reserved
11 high confidence

14–15 Cirrus Confidence

00 no confidence level set
01 low confidence
10 reserved
11 high confidence

3. Methods
3.1. GF-5A Data Preprocessing

Because MODIS, Landsat, and GF-5A data have different resolutions, it is necessary to
resample MODIS and Landsat data so that their resolutions are consistent with those of
GF-5A data.

The original GF-5A satellite thermal infrared band data need to be preprocessed.
Figure 2 shows the preprocessing process of GF-5A satellite data. GF-5A has four thermal
infrared bands. Based on the application of the split window algorithm, band 3 and band
4 are the most suitable for SST retrieval using the split window algorithm [39]. First,
the clouds are removed and sea and land are separated in the GF-5A satellite data using
Landsat 8–9 C2L2 QA_PIXEL band data. Then, the radiances of band 3 and band 4 are
obtained via radiometric correction based on the coefficients in the metadata file. Finally,
the brightness temperatures of band 3 and band 4 are obtained by substituting the effective
wavelength and radiance into the formula.
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Figure 2. GF-5A satellite data preprocessing process.

Radiometric calibration is the process of converting the digital quantization value
(DN) of GF-5A satellite images into physical quantities such as radiance, reflectivity, or
surface temperature values. Radiometric calibration parameters can be obtained from the
metadata file of the GF-5A satellite.

B = A0 + A1 × DN + A2 × DN2 (1)

Equation (1) represents the radiometric calibration formula, where B is the radiance;
DN is the digital quantization value; and A0, A1, and A2 are the radiation calibration
parameters in the metadata files.

If the spectral radiation intensity of an actual object is equal to that of a blackbody at
the same wavelength, the temperature of the blackbody at that time is called the brightness
temperature of the actual object at that wavelength. Brightness temperature is an important
parameter in the retrieval of SST data. Calculation of brightness temperature requires
the effective wavelength of the thermal infrared band, and the calculation of effective
wavelength requires the spectral response function of the thermal infrared band.

Spectral response function refers to the ratio of received radiance to incident radiance
at each wavelength of the sensor and describes the response intensity of a sensor at different
wavelengths. The spectral response function of the GF-5A satellite’s wide-range thermal
infrared imager was queried through the China Centre for Resources Satellite Data and
Application. Figure 3 shows the spectral response function of the GF-5A satellite’s wide-
range thermal infrared imager.

λe =

∫ λmax
λmin

f (λ)λdλ∫ λmax
λmin

f (λ)dλ
(2)

Equation (2) represents the effective wavelength calculation formula, where f(λ) is the
spectral response function, λe is the effective wavelength, and λ is the wavelength.

T = hc

λekln
(

1+ 2hc2

λ5
e B

)
(3)
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Equation (3) represents the inverse of the Planck function, where T is the brightness
temperature, c is the speed of light, h is the Planck constant, k is the Boltzmann constant,
and B is the radiance.

Figure 3. Spectral response function of the GF-5A satellite’s wide-range thermal infrared imager.

3.2. Qin Split Window Algorithm for GF-5A Satellite Data

The SST retrieval in this study first corrected the two important parameters, atmo-
spheric transmittance and regression coefficient, based on the band 3 and band 4 parameters
of the GF-5A satellite, and then combined the brightness temperatures of band 3 and band
4 to obtain SST using the Qin split window algorithm. Finally, the retrieved SST results
were verified indirectly using MODIS temperature product and directly using measured
data. Figure 4 shows the process of retrieving SST.

Figure 4. SST data retrieval process.
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3.2.1. Adjustment of Atmospheric Transmittance

Atmospheric water vapor content is an important parameter affecting atmospheric
transmittance, which is calculated from the reflectivity of band 2 and band 19 in MOD021km.

ω =


(

α − ln R19
R2

)
β

2

(4)

Equation (4) represents the formula for calculating atmospheric water vapor content,
where ω is the atmospheric water vapor content, R19 is the reflectivity of MOD021km band
19, R2 is the reflectivity of MOD021km band 2, α = 0.02, and β = 0.651.

Atmospheric transmittance is the ratio of the electromagnetic radiation flux after atmo-
spheric attenuation to the electromagnetic radiation flux at the point when electromagnetic
waves propagate in the atmosphere. It is an important parameter that affects the retrieval
results of SST, and its calculation needs to be adjusted according to the parameters of
different satellites.

In this study, Ψ1 was calculated using the effective wavelength. The atmospheric
transmittance formula suitable for GF-5A satellite data was obtained as follows.

τ =
1

Ψ1
=

1
aω3 + bω2 + cω + d

(5)

Equation (5) represents the formula for calculating atmospheric transmittance [8],
where τ is the atmospheric transmittance, ω is the atmospheric water vapor content, and a,
b, c, and d are the effective wavelength functions.

Because the brightness temperature and satellite zenith angle also affect atmospheric
transmittance, and the effective wavelengths of band 3 and band 4 of the GF-5A satellite are
close to those of MODIS band 31 and band 32, the angle correction value and temperature
correction value for atmospheric transmittance are introduced [40].

τ3(θ) = −0.00247 +
(
2.3652 × 10−5)θ2

τ4(θ) = −0.00322 +
(
3.0967 × 10−5)θ2 (6)

Equation (6) represents the formula for calculating the atmospheric transmittance
angle correction value, and θ is the sensor zenith angle.

τ3(T) =


0.08; T3 ≥ 298.15

−0.05 + 0.00325(T3 − 5); 278.15 < T3 < 298.15
−0.05; T3 ≤ 278.15

τ4(T) =


0.095; T4 ≥ 298.15

−0.065 + 0.004(T4 − 5); 278.15 < T4 < 298.15
−0.065; T4 ≤ 278.15

(7)

Equation (7) represents the formula for calculating the atmospheric transmittance
temperature correction value. T3 and T4 are the brightness temperatures for band 3 and
band 4 of the GF-5A satellite.

3.2.2. Adjustment of Regression Coefficients

Regression coefficients a and b are also important parameters that affect the retrieval
results of SST, and their calculation also needs to be adjusted for different satellites. The
Planck formula is expanded linearly based on the Taylor series, and the temperature
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parameter L can be defined. Its value has a good linear relationship with the brightness
temperature T.

L = a + bT = B
∂B
∂T

(8)

Equation (8) is the regression coefficient calculation formula, where a and b are the
regression coefficients, B is the radiance, and T is the brightness temperature.

3.2.3. SST Data Retrieval

The brightness temperatures of band 3 and band 4 of GF-5A images, together with the
atmospheric transmittance and regression coefficient corrected above, are imported into
the formula of the Qin split window algorithm to enable SST retrieval.

SST = A0 + A1T3 − A2T4

A0 = a3D4(1−C3−D3)−a4D3(1−C4−D4)
D4C3−D3C4

A1 = 1 + D3+b3D4(1−C3−D3)
D4C3−D3C4

A2 = D3[1+b4(1−C4−D4)]
D4C3−D3C4

C3 = Eτ3; C4 = Eτ4; D3 = (1 − τ3)[1 + (1 − E)τ3]; D4 = (1 − τ4)[1 + (1 − E)τ4]

(9)

Equation (9) is the formula for calculating the Qin split window algorithm, where
ε is the surface specific emissivity, and the value of water body is usually 0.995 [41]; T3

and T4 are the brightness temperatures of the GF-5A satellite’s band 3 and band 4; τ3 and
τ4 are the atmospheric transmittance values of the GF-5A satellite’s band 3 and band 4;
C and D are intermediate parameters of GF-5A satellite’s band 3 and band 4, which are
calculated using ε, τ3, and τ4; a3, b3, a4, and b4 are the regression coefficients of GF-5A
satellite’s band 3 and band 4.

3.3. Accuracy Verification Index Value

R2 is the determination coefficient, and is used to measure the linear relationship
between SST retrieval results and validation data at the same pixel scale. The value range
is [0,1]. A value closer to 1 indicates that the overall deviation between SST retrieval results
and validation data is small, and the retrieval accuracy is high.

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (10)

Equation (10) is the formula for calculating R2, where R2 is the determination coeffi-
cient, n is the number of selected points, yi is the SST retrieval result value, y is the average
value of SST retrieval results, and ŷi is the validated data value.

RMSE is the root mean square error or standard error, and can reflect the deviation
between SST results and validation data. The lower the value, the higher the accuracy of
the SST result retrieval.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (11)

Equation (11) is the formula for calculating RMSE, where RMSE is the root mean
square error or standard error, n is the number of selected points, yi is the SST result
retrieval value, and ŷi is the validated data value.
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4. Results
4.1. Determination of Atmospheric Transmittance

Atmospheric transmittance is the ratio of the electromagnetic radiation flux after
atmospheric attenuation when electromagnetic waves propagate into the atmosphere to
when the electromagnetic radiation flux is incident on the surface. It has a great influence
on the transmission of thermal radiation and is significantly affected by the atmospheric
water vapor content.

The atmospheric transmittance correction in this study was calculated using the
effective wavelength and atmospheric water vapor content. The effective wavelength is
calculated using the band response function in Equation (2), and then substituted into the
formula for calculating the four coefficients a, b, c, and d in Equation (5). The formula and
results are shown in Table 5. The atmospheric water vapor content is calculated using
Equation (4), and the corrected atmospheric transmittance is obtained by substituting this
into Equation (5) and adding the angle and temperature correction values.

Table 5. Formulae and results of four coefficients (a, b, c, and d).

Name Calculation Formula Band 3
Results

Band 4
Results

a 0.0009λe3 − 0.01638λe2 + 0.04745λe + 0.27436 0.01 0.0384
b 0.00032λe3 − 0.06148λe2 + 1.2021λe − 6.2051 0.0097 −0.0742
c 0.00986λe3 − 0.23672λe2 + 1.7133λe − 3.2199 0.0933 0.2775
d −0.15431λe3 + 5.2757λe2 − 60.117λe + 229.3139 1.0224 0.9696

4.2. Determination of Regression Coefficients

Based on Equations (1)–(3) and (8), the values of regression coefficients a and b are only
associated with the effective wavelength and radiometric calibration coefficient. Therefore,
the thermal infrared bands of different satellites have different effective wavelengths, and
different satellite remote sensing images have different radiometric calibration coefficients,
leading to different regression coefficient values for a and b. The fitting curves of tempera-
ture parameter L and brightness temperature T of band 3 and band 4 of the two remote
sensing images in this study are shown in Figures 5 and 6. The results are completely linear,
and the regression coefficients a and b can be obtained using Equation (8); the results are
shown in Table 6.

 
(a) (b) 

Figure 5. The relationship between temperature parameter L and brightness temperature T in bands
3 and 4 of the 18 July 2024 GF-5A satellite image. (a) Band 3; (b) band 4.
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(a) (b) 

Figure 6. The relationship between temperature parameter L and brightness temperature T in bands
3 and 4 of the 31 December 2024 GF-5A satellite image. (a) Band 3; (b) band 4.

Table 6. Regression coefficients of bands 3 and 4 in two GF-5A satellite images obtained on 18 July
2024 and 31 December 2024.

Regression
Coefficient a

Regression
Coefficient b

18 July 2024 Band 3 −62.00847 0.42913
Band 4 −66.10467 0.46508

31 December 2024
Band 3 −53.5938 0.39961
Band 4 −57.53953 0.43487

4.3. SST Retrieval Results

Two GF-5A remote sensing images were used to retrieve SST data based on the
Qin split window algorithm using the corrected atmospheric transmittance, regression
coefficients, and band 3 and band 4 data. Comparisons of the SST retrieval results of two
GF-5A images and MODIS temperature product are shown in Figures 7 and 8.

The results show that SST in the Bohai Bay area decreased gradually from the shore to
the sea from 18 July 2024, and then increased gradually from the shore to the sea from 31
December 2024. The SST range in the Bohai Bay area was 26–30 ◦C from 18 July 2024 and
1–7 ◦C from 31 December 2024. Figures 7 and 8 show that the SST results retrieved in this
study have the same spatial distribution as the MODIS temperature products.

(a) (b) 

Figure 7. Comparison of SST retrieval results of GF-5A and resampled MODIS temperature product
images obtained on 18 July 2024. (a) GF-5A; (b) MODIS temperature product.
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(a) (b) 

Figure 8. Comparison of SST retrieval results of GF-5A and resampled MODIS temperature product
images obtained on 31 December 2024. (a) GF-5A; (b) MODIS temperature product.

4.4. Validation of Retrieved SST Results

The retrieved SST results were compared with the SST results obtained from MODIS
temperature product to indirectly verify the accuracy of SST results retrieval. The retrieved
SST results were compared with the measured SST data to directly verify the accuracy of
SST results retrieval. The indirect verification of the accuracy of SST results retrieval in
this study is shown in Figure 9, and the direct verification of the accuracy of the results
retrieval is shown in Figure 10. The results of the analysis of the error between the indirect
and direct verification of the accuracy of SST results retrieval are shown in Table 7.

Table 7. Analysis of the accuracy of SST results retrieval from two GF-5A satellite remote sensing
images.

Indirect Verification
Direct Verification18 July 2024 31 December 2024

R2 0.985 0.996 0.999

RMSE 0.139 K 0.116 K 0.613 K

(a) (b) 

Figure 9. Indirect verification of the accuracy of SST retrieval from GF-5A images. (a) 18 July 2024;
(b) 31 December 2024.
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Figure 10. Direct verification of the accuracy of SST retrieval from GF-5A images.

The high-resolution Landsat 8 satellite temperature retrieval results have an R2 of
0.923 and an RMSE of 0.385K compared to MODIS temperature product, and an R2 of 0.984
and an RMSE of 0.742K compared to measured data [42,43].

This study indirectly verified the accuracy of retrieving SST from two GF-5A images
using MODIS temperature product, with R2 greater than 0.923 and RMSE less than 0.385 K.
Compared with Landsat 8 data, the SST retrieval results of this study have better linear
correlation and smaller comprehensive error with MODIS temperature product.

Due to the fact that the GF-5A satellite will not be officially put into use until 2024 and
has a long observation period, this study used two GF-5A images representing summer
and winter to achieve SST retrieval. This resulted in a limited number of measured data
available for direct accuracy verification and their distribution being polarized. Therefore,
although the accuracy of this study directly verifies that the R2 in the results is as high
as 0.999, it cannot explain the linear correlation between the measured data and the SST
retrieval results of this study. However, the RMSE value is not affected by polarized
measured data and is less than 0.742K, indicating that compared with Landsat 8 data, the
comprehensive error between the SST retrieval results of this study and the measured data
is smaller.

In summary, the SST retrieval results of this study have high direct and indirect
validation accuracy.

5. Discussion
Although this research has facilitated the retrieval of SST data in Bohai Bay with high

precision, it still has errors that affect the accuracy of SST retrieval.

(1) The sea surface emissivity was 0.995, however, the actual specific sea surface emissivity
value is affected by sediment content, wave conditions, and observation geometric
conditions.

(2) The atmospheric transmittance correction in this study was calculated using the
effective wavelength, however, atmospheric transmittance correction using real-time
atmospheric profile data is more accurate.

(3) There is a difference between the depth of the SST of the measured data used in this
study and that of the SST retrieved by the GF-5A satellite. The SST retrieved by the
GF-5A satellite is the average temperature in a few microns-thick layer of the sea
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surface, whereas the SST of the measured data is the temperature in the 0.1 m to 1 m
deep layer of the sea surface. This difference leads to errors in the direct verification
of SST retrieval accuracy.

(4) Wind, cloud, and other weather conditions also reduce SST retrieval accuracy. Cloud
removal cannot completely eliminate the impact of clouds on SST retrieval accuracy.
Therefore, to improve the accuracy of SST measurement in the Bohai Bay region
further, it is necessary to collect and analyze data on the weather in this region.

6. Conclusions
The following conclusions can be drawn from this study:

(1) An SST retrieval method based on the GF-5A satellite’s Qin split window algorithm
and parameter adjustment is proposed. This method utilizes GF-5A satellite data with
a resolution of 100 m to obtain the effective wavelengths of various thermal infrared
bands through spectral response functions. Then, two important parameters, atmo-
spheric transmittance and regression coefficient, in the Qin split window algorithm
are corrected to facilitate SST data retrieval in the Bohai Bay area, demonstrating the
feasibility of this method.

(2) Through image comparison, it has been proven that the spatial distribution of SST
results retrieved from the Bohai Bay area using this method is similar to the MODIS
temperature product SST data. In summer, SST gradually decreases from land to sea,
while in winter, SST gradually increases from land to sea. Therefore, this method can
be used to obtain large-scale real-time SST data, providing basic SST data for related
research, such as studies of animal and plant resources.

(3) Indirect verification using MODIS temperature product and direct verification using
measured data have proven that the SST retrieval method has good accuracy in the
Bohai Bay area, with better R2 and RMSE values compared with the split window
algorithm for SST retrieval of Landsat–8 satellite data at a resolution of 100 m. There-
fore, this method can be used to obtain high-precision SST data that can be used for
intelligent forecasting of ocean temperature and conducting other research studies.
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