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Abstract: The intermittency of gravity wave potential energy (GWPE) in the upper troposphere and
stratosphere was investigated using the Constellation Observing System for Meteorology, Ionosphere,
and Climate-2 (COSMIC-2) temperature data over three typical mountains (Tibetan Plateau, Rocky
Mountains, and Andes). These typical mountains have high sea level elevations but different land–sea
contrast. The probability density function (PDF) of GWPE has the independent variable of GWPE and
dependent variable of occurrence probability of GWPE over a region. Our analysis showed that the
PDFs of GWPE over these three mountains roughly followed lognormal distributions in all heights
and months. But, the key parameters (mean value and standard deviation) of lognormal distribution
varied with heights and months. Above each mountain, the two key parameters exhibited similar
temporal and spatial distributions. They had the largest values around the tropopause region, smaller
values in the lower stratosphere (~20–30 km), and larger values in the upper stratosphere (~35–45 km).
The intermittency of GWs is represented as the ratio of the GWPE at 50th percentile to the GWPE at
90th percentile. The weakest intermittency was at ~20–30 km (above the zonal mean winds of zero)
over the Tibetan Plateau and Rocky Mountains in all months and over the Andes from November to
March, respectively. Generally, the weakest intermittency (~0.4) occurred in the region where the
key parameters were the smallest around summer. The key parameters of lognormal distribution
were dominated by annual variation over the Andes throughout the height range, 8–50 km. However,
the semiannual variations are also significant in the lower stratosphere over the Tibetan Plateau
and Rocky Mountains. The seasonal variations in the intermittency were not as obvious as those of
the key parameters. The lognormal distributions and the intermittencies derived here provide an
observational constraint on the tunable parameters in GW parameterization schemes.

Keywords: mountains; gravity wave; potential energy; lognormal distribution; intermittency

1. Introduction

Atmospheric gravity waves (GWs) are widespread in the atmosphere and are impor-
tant in coupling the atmosphere of different layers and regions. Many GW sources are
located in the troposphere and lower stratosphere. Sources of the GWs may be the flow
over mountains, convection, strong wind jets and shear, and wave–wave interactions [1].
Moreover, GWs may also be generated by the body force caused by localized wave dissipa-
tion, wave–wave interactions after they propagate far from their initial source region [2–6].
Among the various GW sources, GWs triggered by flow over the mountain, also known
as mountain waves (MWs), are directly related to both the flow and the spectral of the
mountain. The variations in the strength and directions of the flow over a certain mountain
induce the intermittence of GWs over the mountain [7,8]. On the other hand, secondary
GWs triggered by unstable and/or breaking MWs during the upward propagation of the
primary MWs may also be intermittent. This is because the GWs may not always have their
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averaged strength (such as potential energy and momentum flux, etc.) but may vary within
a given time interval and region. This introduces the term of intermittence, which is used
to characterize the non-uniform distributions of GW’s strength on the aspects of both time
and space. Thus, the intermittence of GWs is an important parameter in characterizing the
strength of GWs within a given time interval and region.

The intermittency of GWs is represented by many indices, such as the percentile ratio of
the GW’s strength [9–11], Gini coefficient [11–16], and Bernoulli coefficient [9,17]. Specifically,
the percentile ratio is the ratio of the GW’s strength at the 50th percentile to the GW’s strength
at the 90th percentile of probability density functions (PDFs) of the GW’s strength [9–11]. In a
statistical sense, PDFs can reflect comprehensive information about GW parameters in a given
time interval and region; the intermittency of GWs over specific regions is usually quantified
using the percentile ratio of the PDF of GW parameters in that region.

Previous studies on the PDF and intermittency of GW parameters in the upper tro-
posphere and lower stratosphere (UTLS) focused on the southern hemisphere (Antarctica
and the Southern Ocean) [7,11,13,14,18,19] and tropical regions [11,20]. The three typical
mountains of the Tibetan Plateau, Rocky Mountains, and Andes have different background
winds and land–sea contrast from Antarctica, the Southern Ocean, and the tropical regions.
The Tibetan Plateau is one of the most complex topographies in the world, with frequent
atmospheric convection activities [21,22] and the highest mountain in the word (the Hi-
malayas). The Rocky Mountains, along the north–south direction, have a similar land–sea
contrast to the Andes, but their altitude is lower elevation than the Andes. Moreover, both
the Rocky Mountains and the Andes have a different land–sea contrast from the Tibetan
Plateau. The longitudinal and latitudinal ranges of these three topographic regions are
shown in Figure 1. However, there is insufficient research on the PDFs and intermittency
over the three typical mountains (Tibetan Plateau, Rocky Mountains, and Andes) due to the
limited sampling profiles per day available and height resolution. Fortunately, the dense
sampling and better height resolution profiles of the Constellation Observing System for
Meteorology, Ionosphere, and Climate-2 (COSMIC-2) provide a good opportunity to study
the detailed height variations in intermittency of GWs over the three typical mountains.
Thus, we focus on the seasonal dependence and height variations in the intermittency of
GWs over the three typical mountains.
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Figure 1. The latitudinal and longitudinal ranges of the Tibetan Plateau (red box), Andes (green box),
and Rocky Mountains (blue box).

The remainder of this paper is organized as follows. Data and methods are introduced
in Section 2. Section 3 presents the PDFs of gravity wave potential energy (GWPE) and
Section 4 presents the intermittency of GWPE over the Tibetan Plateau, Rocky Mountains,
and Andes. The discussions and conclusions are presented in Sections 5 and 6, respectively.



Remote Sens. 2024, 16, 1577 3 of 15

2. Data and Methods
2.1. Data

The COSMIC-2 mission was composed of six satellites and was launched into low Earth
orbit on 25 June 2019. The next-generation GNSS RO payloads onboard the COSMIC-2 mission
have provided approximately 4000 temperature profiles since September 2019 [23,24] and
approximately 6000 since May 2021 [24]. These profiles have vertical resolutions of 0.05 km
and 0.1 km below and above 10 km, respectively. The temperature error is less than 0.05 K [24].
Compared to previous missions, the COSMIC-2 mission provides more temperature profiles in
the latitude range of 40◦S–40◦N (~70% of the profiles) and 20◦S–20◦N (see also the Figure 2 of
Reference [25]). The dense samplings provide an opportunity of obtain the robust PDFs and
intermittency of GWs in these latitudes. The temperature data were obtained from the COSMIC
Data Analysis and Archive Center (CDACC) website https://cdaac-www.cosmic.ucar.edu/,
accessed on 5 February 2024. We focused on the temperature data from December 2020 to
November 2023. Before performing further analysis, each temperature profile was interpolated
within a height range of ~8–60 km at intervals of 0.1 km. The upper limit of 60 km is only used
in the procedure for extracting GW profiles. The physical analysis is limited to 8–50 km because
of the lower signal-to-noise ratio of the RO profiles above 50 km [26] and the edge effect of the
GW extraction method.
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Figure 2. Procedure for calculation of the PDF of GWPE at 15 km over the Andes in July. (a) The
profiles number of GWPE in each sub-interval. (b) The occurrence probability (green dots) and the
PDF (red dots). The black line is the least-square fitting of the lognormal distribution to PDF.

To explore the physics of GW intermittency, we used wind data (same time period
as COSMIC-2 temperature data) from Modern-Era Retrospective Analysis for Research
and Application, Version 2 (MERRA-2), a new version of the atmospheric reanalysis
dataset developed by NASA’s Global Modeling and Assimilation Office [27]. Validation
studies have shown the monthly zonal mean wind of MERRA-2 coincides well with
that measured by radiosonde in Singapore and also coincides well with the subtropical
and polar jets obtained from other reanalyzed data (e.g., MERRA, European Centre for
Medium-Range Weather Forecasts Re-Analysis Interim (ERA-Interim), Japanese 55-year
Reanalysis (JRA-55), and National Centers for Environmental Prediction Climate Forecast
System Reanalysis (NCEP CFSR) [28,29]. MERRA-2 data were downloaded from https:

https://cdaac-www.cosmic.ucar.edu/
https://goldsmr5.gesdisc.eosdis.nasa.gov/data/MERRA2/M2I3NVASM.5.12.4/
https://goldsmr5.gesdisc.eosdis.nasa.gov/data/MERRA2/M2I3NVASM.5.12.4/
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//goldsmr5.gesdisc.eosdis.nasa.gov/data/MERRA2/M2I3NVASM.5.12.4/, accessed on
1 March 2024.

2.2. Calculating Gravity Wave Potential Energy

The main idea of calculating gravity wave potential energy (GWPE) per unit mass (Ep)
is similar as that used in references [30–32]. Based on the dense samplings of COSMIC-2,
the procedure was summarized as the following four steps.

Firstly, we divided the COSMIC-2 temperature profiles within a day into several
latitudinal bands by fixing the number of profiles (~60) so that the robustness of the
harmonic used in the next step does not vary with latitude.

Secondly, at each latitudinal band and each height, the observed temperature data (T)
are fitted using the following equation:

T = T + ∑6
n=1

(
ancos

2πnλi
360

+ bnsin
2πnλi

360

)
+ Tres. (1)

Here, the first term (T) on the right side of Equation (1) is the background temperature.
The second term on the right side of Equation (1) represents the large-scale waves with
zonal wavenumbers 1–6 (i.e., tides and planetary waves). λi is longitude (unit: ◦) and√

a2
n + b2

n are the amplitudes. The third term (Tres) on the right side of Equation (1) is the
temperature residual.

Thirdly, the discrete wavelet transform [33] was applied to each temperature residual
profile (Tres). Then, a new profile (T′) was reconstructed via inverse discrete wavelet
transform and by restricting the vertical wavelength in the range of 2–10 km [30–32]. The
reconstruction procedure ensures the new profile has coherent structure and eliminates
observational noise to some extent. Thus, the reconstructed profile (T′) is regarded as GW
perturbation.

Finally, the GWPE of each profile (T′) is calculated as [30,34–36] (Tsuda et al., 2000;
Wang L and Geller, 2003; Liu X et al., 2014, 2017):

Ep =
1
2

( g
N

)2
(

T̂
T

)2

. (2)

In Equation (2), the GW amplitude (T̂) can be obtained through applying the Hilbert
transform to the GW profile (T′) [37]. g = 9.80665 m/s2 is the gravitational acceleration.
The Brunt–Väisälä frequency N in Equation (2) is calculated as

N =

[
g
T

(
∂T
∂z

+
g
cp

)]1/2

. (3)

In Equation (3), cp = 1004.5 J/kg/K is the specific heat of dry air at constant pressure.
z is the altitude.

2.3. Calculating the PDF of GWPE

The PDF of GWPE can be simply understood as a function, which is the independent
variable of the magnitude of the GWPE. Comparatively, the dependent variable is the
occurrence probability of the GW profiles and has the same magnitude of GWPE within
a fixed temporal and spatial region. The occurrence provability is calculated as the ratio
between the number of GW profiles with a certain magnitude of GWPE and the total GW
profiles within the fixed temporal and spatial region. The detailed procedure of calculating
the PDF of GWPE is as follows

Firstly, at a given region, height, and temporal interval, the GWPE varies from its
minimum (EPmin) to maximum (EPmax). As an example, the GWPE varies in the range
of 0.1–100 J/kg at 15 km over the Andes in July. This means that EPmin = 0.1 J/kg and
EPmax = 100 J/kg.

https://goldsmr5.gesdisc.eosdis.nasa.gov/data/MERRA2/M2I3NVASM.5.12.4/
https://goldsmr5.gesdisc.eosdis.nasa.gov/data/MERRA2/M2I3NVASM.5.12.4/
https://goldsmr5.gesdisc.eosdis.nasa.gov/data/MERRA2/M2I3NVASM.5.12.4/
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Secondly, we divided the interval of [EPmin, EPmax] into sub-intervals. Since the
magnitudes of GWPE vary from a very small value to about one hundred, the length of
sub-intervals (di) varies with the magnitude range of EP [10,12].

EPi = EPmin + idi, i = 0, 1, . . . (4)

Here, we set di to 0.05 J/kg in the GWPE range of <1 J/kg, 0.2 J/kg in the GWPE range
of 1–10 J/kg, and 1 J/kg in the GWPE range of >10 J/kg. The magnitude of di chosen here is a
compromise between the profile numbers in each sub-interval and the resolution of PDFs.

Thirdly, we calculated the number of GW profiles and their occurrence probabilities in
each sub-interval. The number of GW profiles in each sub-interval is denoted mi (Figure 2a).
Correspondingly, its occurrence probability is calculated as pi = mi/N (green dots in
Figure 2b). Here N is the total number of GW profiles within the target region.

Fourthly, the occurrence probability (pi) in each sub-interval is normalized (i.e., di-
vided by di/max(di)) to obtain the probability density function (PDF) and is shown as
red dots in Figure 2b. Normalization converts the occurrence probability of GWPE at a
non-uniform scale to PDFs at a linear scale.

Finally, we fit the PDFs of GWPE with lognormal distribution (black line in Figure 2b).
The lognormal distribution is expressed as

f (x; µ′; σ′) =
1√

2πxσ′
e−

1
2 (

ln(x)−µ′
σ′ )

2

. (5)

Here, x means EPi, ranging from EPmin to EPmax; f means the PDF at the center height
of the target region. µ′ and σ′ are, respectively, the mean and standard deviation of EP
at the logarithmic scale. The actual mean and standard deviation of EP are µ = eµ′

and
σ = eσ′

(denoted at the lower left corner of Figure 2b), respectively.

2.4. Calculating the GWPE Intermittency

The intermittency of the GWPE is a metric of the non-uniformness of the distributions
of GWPE within a certain region and temporal interval. Based on the occurrence probability
calculated in Section 2.3, the GWPE at 15 km over the Andes in July was taken as an example
to illustrate the procedure of calculating the GWPE intermittency. The detailed procedure
involves the following three steps.

Firstly, we calculated the cumulative probability of GWPE. The cumulative probability
of EPi (noted as cpi) was calculated by summing the occurrence probabilities of EPj with
j ranging from 1 to i. This can be formulated as cpi = ∑i

j=0 pj. Figure 3a shows the
occurrence probability of GWPE at 15 km over the Andes in July. The corresponding
cumulative probability is shown as a black line in Figure 3c. This means that the cumulative
probability (cp) is a function of EP.

Secondly, we calculated the magnitude of GWPE corresponding to certain cumulative
probability. For example, the GWPE corresponding to the cumulative probability of 0.5
(noted as EP(cp = 0.5)) is calculated as follows. We chose two EPi if their cumulative
probability cpi was around 0.5 (horizontal red dashed line in Figure 3c). In this case, the
two EPi were denoted as the two blue dots in Figure 3c. Then, a linear fitting of the
cumulative probabilities was performed on the two EPi to obtains the actual value of
EP(cp = 0.5), which is just the intersection of the vertical red dashed line and x-axis in
Figure 3c. Similarly, EP(cp = 0.9) can also be calculated (the green dashed line in Figure 3c).
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Figure 3. The procedure of calculating the intermittency of GWPE. (a) The occurrence probability of
GWPE at 15 km over Andes in July. (b) The occurrence probability of GWPE generated artificially
to form a uniform distribution of occurrence probability in 0.1–12 J/kg. (c,d) The cumulative
probabilities (black line) corresponding to those shown in (a) and (b), respectively. The blue dots in
(c,d) are cumulative probabilities of around 0.5; red and green dashed lines in (c) and (d) indicate the
magnitude of GWPE corresponding to the cumulative probabilities of 0.5 and 0.9, respectively.

Finally, we calculated the intermittency of GWPE. Here, the intermittency of GWPE
(ε) was quantified as the ratio of GWPE at two different percentiles (i.e., at two different
cumulative probabilities) [9]. Specifically, the intermittency of GWPE (ε) is defined as
ε = EP(cp=0.5)

EP(cp=0.9) . Reference [9] explained that when ε closes to 1 it indicates the most
uniform occurrence (or weakest intermittency) and when ε closes to 0 it indicates the most
non-uniform occurrence (or strongest intermittency). For example, Figure 3b shows that
the occurrence probabilities of GWPE generated artificially to meet that the occurrence
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probabilities are uniformly distributed from EP = 0.1 J/kg to EP = 12 J/kg. This induces
that EP(cp = 0.5) closes to EP(cp = 0.9), that is to say, ε = EP(cp=0.5)

EP(cp=0.9) closes to 1. This is an
example to illustrate the case of the most uniform occurrence (or weakest intermittency).

3. PDFs of GWPE over Mountains

Figure 4 shows the occurrence probability and PDF of GWPE and its lognormal
distribution fitting result at 20 km during July over the Tibetan Plateau, Rocky Mountains,
and Andes, respectively. In Figure 5, we show the month–height distributions of two key
parameters (the mean value µ and the standard deviation σ) of the lognormal distribution
over the three typical mountains.
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From Figure 4, the PDF of GWPE over the Tibetan Plateau, Rocky Mountains, and Andes
at 20 km during July roughly follows lognormal distributions. This has been pointed out before
by reference [38]. The lognormal distribution overestimated the PDF of GWPE (0.1–0.8 J/kg
and >10 J/kg) and underestimated the PDF of GWPE (0.8–10 J/kg) over the Tibetan Plateau.
The lognormal distribution overestimated the PDF of GWPE (0.1–0.8 J/kg and >10 J/kg),
described well the PDF of GWPE (0.8–2 J/kg and 4–8 J/kg), and underestimated the PDF
of GWPE (2–4 J/kg) over the Rocky Mountains. The lognormal distribution overestimated
the PDF of GWPE (0.1–2 J/kg) and described well the PDF of GWPE (>2 J/kg) over Andes.
Overall, the PDF of GWPE over the Andes best followed lognormal distributions, then over
the Rocky Mountains, and, finally, over Tibetan Plateau.

From Figure 5(a1)–(c1), at 8–15 km, the mean value µ was the largest (7–30 J/kg) in all
months over the Tibetan Plateau, Rocky Mountains, and Andes, respectively. The mean
value µ firstly decreased, reaching its minima at ~20–30 km (called the dissipation layer
of GWPE; the eastward zonal wind reached to 0 m/s there), then increased, and finally
decreased with increasing height in all months over these three typical regions. Overall, the
mean value µ over these three typical regions has the largest values around the tropopause
region, smaller values in the lower stratosphere (~20–30 km), and larger values in the upper
stratosphere (~35–45 km).
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In addition, at 8–15 km and from November to May, the mean values µ was the largest
over the Rocky Mountains, followed by over the Tibetan Plateau, and then over the Andes.
Also, at 8–15 km and from June to October, the mean values µ was the largest over Andes,
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followed by over the Tibetan Plateau, and finally over the Rocky Mountains. At 15–50 km,
the mean values µ over Tibetan Plateau and Rocky Mountains in the northern hemisphere
were almost the same in all months. Comparing the mean values µ over two mountains in
the northern hemisphere with that over the Andes, the mean values µ over the Andes was
the largest from April to October and was the smallest from November to March.

Moreover, we found that the mean value µ is dominated by annual variation (with
a peak in boreal summer) over the Andes throughout the height range. Over the Tibetan
Plateau and Rocky Mountains, the annual variation (with a peak in boreal winter) is domi-
nant in the upper stratosphere and around the troposphere, while both annual and semian-
nual variations are dominant in the lower stratosphere (~20–30 km). From Figure 5(a2)–(c2),
the temporal and spatial distributions of the standard deviation σ were similar to the mean
value µ over the Tibetan Plateau, Rocky Mountains, and Andes, respectively.

4. Intermittency of GWPE over Mountains

Figure 6 shows the month–height distributions of the EP(cp = 0.5), EP(cp = 0.9), and
the intermittency ε over the Tibetan Plateau, Rocky Mountains, and Andes, respectively.

From Figure 6(a1)–(c1),(a2)–(c2), the temporal and spatial distributions of the
EP(cp = 0.5) and EP(cp = 0.9) over the Tibetan Plateau, Rocky Mountains, and Andes are
similar to the temporal and spatial distributions of the mean value µ in Figure 5(a1)–(c1).
In other word, the EP(cp = 0.5) and EP(cp = 0.9) over these three typical mountains have
largest values around the tropopause region, smaller values in the lower stratosphere
(~20–30 km), and larger values in the upper stratosphere (~35–45 km). Moreover, the
EP(cp = 0.5) and EP(cp = 0.9) were dominated by annual variation (with a peak in boreal
summer) over the Andes throughout the height range. Over the Tibetan Plateau and
Rocky Mountains, the annual variation (with a peak in boreal winter) was dominant in
the upper stratosphere and around the troposphere, while both annual and semiannual
variations were dominant in the lower stratosphere. But. the magnitudes of EP(cp = 0.9)
were generally larger than EP(cp = 0.5) over the Tibetan Plateau, Rocky Mountains, and
Andes, respectively.

From Figure 6(a3), in the region of the Tibetan Plateau, the percentile ratio ε was
the smallest (0.14–0.2) at 8–10 km from January to October and at 10–13 km from June
to October. This indicates that the intermittency of GWPE was the strongest at 8–10 km
from January to October and at 10–13 km from June to October. The percentile ratio ε was
smaller (0.2–0.3) at 10–20 km from November to May. This indicates that the intermittency
of GWPE was stronger at 10–20 km from November to May. The percentile ratio ε was the
largest (0.3–0.4) at 20–30 km from May to October. This indicates that the intermittency of
GWPE was the weakest at 20–30 km from May to October. The percentile ratio ε was larger
(0.25–0.35) at 30–50 km in all months. This indicates that the intermittency of GWPE was
weaker at 30–50 km in all months. Overall, the intermittency of GWPE over the Tibetan
Plateau was stronger at 8–10 km from January to October and at 10–13 km from June to
October, the weakest at 20–30 km from May to October, and weaker at 30–50 km in all
months. Moreover, while the mean value µ of GWPE had a larger value (Figure 5(a1)) at
8–10 km from October to December, the intermittency of GWs was weaker. This indicates
the distribution of GWPE is more uniform.

From Figure 6(b3), in the region of the Rocky Mountains, the percentile ratio ε was the
smallest (0.14–0.2) at 8–10 km from September to June. This indicates that the intermittency
of GWs was the strongest at 8–10 km from September to June. The percentile ratio ε was
smaller (0.2–0.3) at 10–20 km from September to June. This indicates that the intermittency
of GWPE was stronger at 10–20 km from September to June. The percentile ratio ε was the
largest (0.3–0.4) at 20–30 km from July to September. This indicates that the intermittency
of GWPE was the weakest at 20–30 km from July to September. The percentile ratio ε was
larger (0.25–0.35) at 30–50 km in all months. This indicates that the intermittency of GWPE
was weaker at 30–50 km in all months. Overall, the intermittency of GWPE over the Rocky
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Mountains was stronger at 8–20 km from September to June, weaker at 30–50 km in all
months, and weakest at 20–30 km from July to September.
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From Figure 6(c3), in the region of the Andes, the percentile ratio ε was the smallest
(0.14–0.2) at 8–10 km in all months, at 15–20 km from April to October, and at 20–25 km
from June to September. This indicates that the intermittency of GWs was the strongest
at 8–10 km in all months, at 15–20 km from April to October, and at 20–25 km from June
to September. The percentile ratio ε was the largest (0.3–0.4) at 20–30 km from November
to March. This indicates that the intermittency of GWPE was the weakest at 20–30 km
from November to March. The percentile ratio ε was larger (0.25–0.35) at 30–50 km in all
months. This indicates that the intermittency of GWPE was weaker at 30–50 km in all
months. Overall, the intermittency of GWPE over the Andes was the strongest at 8–10 km
in all months, at 15–20 km from April to October, and at 20–25 km from June to September;
weaker at 30–50 km in all months; and the weakest at 20–30 km from November to March.
Moreover, the intermittency of GWPE over the Andes was the strongest at 8–10 km in all
months; it was then weaker at 10–15 km in all months (zonal mean wind was 30 m/s),
before becoming relatively stronger at 15–30 km from April to October when the mean
value µ of GWPE had the smallest value (Figure 5(c1)) at 20–30 km.

In Figure 6(a3)–(c3), the intermittency of GWPE was the strongest over the Rocky
Mountains, weaker over the Andes, and weakest over the Tibetan Plateau at 8–10 km from
September to June. The intermittency of GWPE was the strongest over the Tibetan Plateau,
weaker over the Andes, and weakest over the Rocky Mountains at 8–10 km from July to
August. The intermittency of GWPE was the strongest over Andes, weaker over the Rocky
Mountains, and the weakest over the Tibetan Plateau at 15–20 km from April to October.
The intermittency of GWPE was the strongest over the Andes, weaker over the Rocky
Mountains, the weakest over the Tibetan Plateau at 20–30 km from May to September.
The intermittency of GWPE was the weakest over the Andes, stronger over the Rocky
Mountains, and strongest over the Tibetan Plateau at 20–30 km from November to March.

We have summarized the temporal and spatial distributions of ratio ε (intermittency)
over the Tibetan Plateau, Rocky Mountains, and Andes in Table 1. The boreal spring, boreal
summer, boreal autumn, and boreal winter in Table 1 represent March–May, June–August,
September–November, and December–February, respectively.

Table 1. The temporal and spatial distributions of ratio ε (intermittency) over the Tibetan Plateau,
Rocky, and Andes.

Boreal Spring Boreal Summer Boreal Autumn Boreal Winter

8–10 km

Tibetan Plateau ~0.2 (weaker) 0.18–0.2 (stronger) 0.2–0.3
(weaker) 0.18–0.2 (stronger)

Rocky 0.14–0.18
(strongest)

0.2–0.3
(weaker)

0.14–0.18
(strongest)

0.14–0.18
(strongest)

Andes 0.18–0.2
(stronger)

0.18–0.2
(stronger)

0.18–0.2
(stronger)

0.18–0.2
(stronger)

10–13 km

Tibetan Plateau 0.2–0.3
(stronger)

0.14–0.2
(strongest)

0.2–0.3
(stronger)

0.2–0.3
(stronger)

Rocky 0.2–0.3
(stronger)

0.25–0.35
(weaker)

0.2–0.3
(stronger)

0.2–0.3
(stronger)

Andes 0.25–0.35
(weaker)

0.25–0.35
(weaker)

0.25–0.35
(weaker)

0.25–0.35
(weaker)

13–20 km

Tibetan Plateau 0.2–0.3
(stronger)

0.25–0.35
(weaker)

0.25–0.35
(weaker)

0.2–0.3
(stronger)

Rocky 0.2–0.3
(stronger)

0.25–0.35
(weaker)

0.2–0.3
(stronger)

0.2–0.3
(stronger)

Andes 0.14–0.2
(strongest)

0.14–0.2
(strongest)

0.14–0.2
(strongest)

0.2–0.3
(stronger)
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Table 1. Cont.

Boreal Spring Boreal Summer Boreal Autumn Boreal Winter

20–25 km

Tibetan Plateau 0.2–0.3
(stronger)

0.3–0.4
(weakest)

0.3–0.4
(weakest)

0.2–0.3
(stronger)

Rocky 0.25–0.35
(weaker)

0.3–0.4
(weakest)

0.25–0.35
(weaker)

0.25–0.35
(weaker)

Andes 0.2–0.3
(stronger)

0.14–0.2
(strongest)

0.2–0.3
(stronger)

0.3–0.4
(weakest)

25–30 km

Tibetan Plateau 0.2–0.3
(stronger)

0.3–0.4
(weakest)

0.3–0.4
(weakest)

0.2–0.3
(stronger)

Rocky 0.25–0.35
(weaker)

0.3–0.4
(weakest)

0.25–0.35
(weaker)

0.25–0.35
(weaker)

Andes 0.25–0.35
(weaker)

0.25–0.35
(weaker)

0.25–0.35
(weaker)

0.3–0.4
(weakest)

30–50 km

Tibetan Plateau 0.25–0.35
(weaker)

0.25–0.35
(weaker)

0.25–0.35
(weaker)

0.25–0.35
(weaker)

Rocky 0.25–0.35
(weaker)

0.25–0.35
(weaker)

0.25–0.35
(weaker)

0.25–0.35
(weaker)

Andes 0.25–0.35
(weaker)

0.25–0.35
(weaker)

0.25–0.35
(weaker)

0.25–0.35
(weaker)

Moreover, we found that the intermittency of GWPE over the Tibetan Plateau was
dominated by annual variation in the lower and upper stratosphere, while neither an-
nual nor semiannual variations were dominant around the troposphere. Over the Rocky
Mountains and Andes, the intermittency of GWPE was dominated by annual variation in
the upper stratosphere and around the troposphere, while both annual and semiannual
variations were dominant in the lower stratosphere. The seasonal variations in the intermit-
tency were not as obvious as those of the key parameters, EP(cp = 0.5) and EP(cp = 0.9).
Further examination showed that the intermittency of GWPE was stronger over the Rocky
Mountains at 8–10 km from September to June and was stronger over the Tibetan Plateau
at 8–14 km from July to August when the zonal mean wind was eastward.

5. Discussion

The main features found in the previous section are as follows: (1) The weakest
intermittency occurred at ~20–30 km (above the zonal mean winds of zero) over the Tibetan
Plateau in all months, over the Rocky Mountains in all months, and over the Andes from
November to March, respectively. Possible mechanisms can be ascribed to the saturation
of GWs or the loss of energy due to the nonlinear interactions with other waves, resulting
in the transfer of GWPE to the background flow or other waves [39,40]. According to
these mechanisms and height-dependent wind structures, we propose that the activities of
GWs are filtered as they propagate upward to the region of zero-speed wind at ~20–30 km.
(2) From Figure 6(c3), stronger intermittency of GWs over the Andes at 15–30 km from April
to October. The GWs over the Andes were mainly excited by flow over the topography
(MWs) [26,41–44]. The corresponding sources of GW are highly variable, as they depend
strongly on variable near-surface winds. (3) While the mean value µ of GWPE had larger
value (Figure 5(a1)) at 8–10 km from October to December, the intermittency of GWs was
weaker. Reference [45] indicated that it is impossible to distinguish MWs from other GW
sources in the COSMIC data because individual phase speeds were indeterminable and did
not show strong GWPE above the Himalayas at 17–23 km during boreal winter. Therefore,
there may be other strong GW sources (such as convection sources). The Tibetan Plateau is
one of the most complex topographies in the world, with frequent atmospheric convection
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activities, we need to study the proportion of different GW sources over the region in
future work.

6. Conclusions

The intermittency of gravity wave potential energy (GWPE) in the upper troposphere
and stratosphere was investigated using the COSMIC-2 temperature data from December
2020 to November 2023 over three typical mountains (Tibetan Plateau, Rocky Mountains,
and Andes). These typical mountains have high sea level elevations but different land–sea
contrasts. We have described, in detail, the method of the probability density function (PDF)
and the intermittency of GWPE in Sections 2.3 and 2.4. Here, the key parameters of lognormal
distribution are the mean value µ and the standard deviation σ, and the intermittency of GWs
is represented by the percentile ratio ε. The main findings are as follows.

Firstly, the PDFs of the GWPE over the Tibetan Plateau, Rocky Mountains, and Andes
roughly followed lognormal distributions in all heights and months. Above each mountain,
the two key parameters of lognormal distribution (the mean value µ and the standard
deviation σ) exhibit similar temporal and spatial distributions. They had the largest values
around the tropopause region, smaller values in the lower stratosphere (~20–30 km), and
larger values in the upper stratosphere (~35–45 km). At 15–50 km, the two key parameters
over the Tibetan Plateau and Rocky Mountains in the northern hemisphere were almost
the same in all months. Compared to the two key parameters over the two mountains in
the northern hemisphere with that over Andes, the two key parameters over the Andes
were the largest from April to October and the smallest from November to March.

Secondly, we showed the weakest intermittency at ~20–30 km (above the region having
zero zonal mean winds) over the Tibetan Plateau and Rocky Mountains in all months and
over the Andes from November to March, respectively. The intermittency of the GWs
was the strongest over the Rocky Mountains, strong over the Andes, and weaker over the
Tibetan Plateau at 8–10 km from September to June. The intermittency of GWs was the
strongest over the Andes, weaker over the Rocky Mountains, and the weakest over the
Tibetan Plateau at 20–30 km from May to September. Over the Tibetan Plateau and Rocky
Mountains, the intermittency of GWs was stronger over the Rocky Mountains at 8–10 km
from September to June and was stronger over the Tibetan Plateau at 8–14 km from July to
August when the zonal mean wind was eastward.

Finally, the intermittency of GWPE over the Tibetan Plateau was dominated by an-
nual variation in the lower and upper stratosphere, while neither annual nor semiannual
variations were dominant around the troposphere. Over the Rocky Mountains and Andes,
the intermittency of GWPE was dominated by annual variation in the upper stratosphere
and around the troposphere, while both annual and semiannual variations were dominant
in the lower stratosphere. The seasonal variations in the intermittency were not as obvious
as those of the key parameters.
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