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Abstract: Land surface deformation, including subsidence and uplift, has significant impacts on
human life and the natural environment. In recent years, the city of Wuxi, China has experienced
large-scale surface deformation following the implementation of a groundwater abstraction ban policy
in 2005. To accurately measure the regional impacts and understand the underlying mechanisms,
we investigated the spatiotemporal characteristics of surface deformation in Wuxi from 2015 to
2023 using 100 Sentinel-1A SAR images and the Persistent Scatterer InSAR (PS-InSAR) technique.
The results revealed that surface deformation in Wuxi exhibited significant spatial and temporal
variations, with some areas experiencing alternating trends of subsidence and uplift rather than
consistent unidirectional change. To uncover the factors influencing this volatility, we conducted a
comprehensive analysis focusing on groundwater, precipitation, and soil geology. This study found
strong correlations between the groundwater level changes and surface deformation, with the soft
soil geology of the area, characterized by alternating layers of sand and clay, further increasing the
surface volatility. Moreover, we innovatively applied the Generalized Autoregressive Conditional
Heteroskedasticity (GARCH) model, typically used in financial analyses, to analyze the subsidence
displacement time series in Wuxi. Based on this model, we propose a new “Amplitude Factor” index
to evaluate overall surface deformation volatility in the city. Our qualitative assessment of surface
stability based on the Amplitude Factor was consistent with research findings, demonstrating the
accuracy and effectiveness of the proposed model. These results provide valuable insights for urban
planning, construction, and safety control, highlighting the importance of continuous monitoring
and analysis of surface deformation volatility for the city’s future development and safety.

Keywords: surface deformation volatility; PS-InSAR; GARCH model; Sentinel-1A; Wuxi city

1. Introduction

Land surface deformation refers to changing trends in surface morphology within a
certain spatiotemporal range, including subsidence, uplift, and horizontal motion. Both
subsidence and uplift significantly impact human life and the natural environment [1–3].
Land subsidence is a geological phenomenon where the Earth’s surface continuously de-
creases over time due to anthropogenic or natural factors [4]. Conversely, land uplift refers
to the Earth’s surface curving upward in a region due to factors such as crustal movement
or groundwater level changes [5]. Regardless of whether it is subsidence or uplift that
occurs, both reduce the surface stability and trigger geological hazards [6–8]. Moreover, if
an area experiences both subsidence and uplift simultaneously, buildings and underground
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pipeline networks will suffer severe damage, causing immeasurable losses to human so-
ciety. For example, Shi et al. monitored Xi’an, China from 2007 to 2019 and found that
land surface deformation from rapid urbanization severely impacted subway construction
and buildings [9]; Svigkas Nikos et al. studied land surface deformation in Kalochori and
Sindos, northern Greece and found that significant subsidence then partial uplift had oc-
curred over the past 55 years, largely related to human activities and deserving managerial
attention [10]. Per the United Nations Hydrological Organization predictions, by 2040, land
surface deformation will affect over 1.6 billion people worldwide [11]. Therefore, dynamic
high-precision monitoring of surface elevation is indispensable.

Traditional monitoring methods for land surface deformation include geodetic survey-
ing and GNSS measurement techniques [12,13]. However, due to the low spatial density of
GNSS method observations, this has impacted the investigation and detection of subsidence
funnels. Although traditional geodetic surveying techniques have high accuracy [14], they
have high labor costs and limited measurement ranges, with obvious disadvantages [15,16].
In the late 1990s, based on Synthetic Aperture Radar (SAR) technology, a new type of space-
to-ground observation technology was developed—Interferometric Synthetic Aperture
Radar (InSAR) [17]. However, InSAR technology has specific requirements for interference
conditions and is affected by error sources such as instrumental noise, orbital errors, and
atmospheric delays, which limit its observation accuracy. At the beginning of the 21st
century, based on InSAR technology, time-series InSAR (TS-InSAR) technology was further
developed [18]. This mainly has two types: one is represented by Persistent Scatterer
InSAR (PS-InSAR), which identifies Persistent Scatterers with high reflection intensity and
good coherence in SAR images, and uses related techniques to calculate the deformation
of scatterers to obtain land surface deformation information in a studied area; the other
is the multi-master image time-series InSAR technology (SBAS-InSAR), represented by
the Small Baseline Subset InSAR. In addition, there are some techniques derived from the
above two methods, such as the Coherent Target (CT) method and the Interferometric
Point Target Analysis (IPTA) method [19]. In recent years, TS-InSAR technology has been
widely applied. For example, Zhou et al. used SBAS-InSAR technology to analyze the
spatiotemporal changes in land subsidence in Wuhan from 2017 to 2021, and they found
that the land subsidence in Wuhan was uneven and mainly concentrated in some specific
areas [20]. Meer Muhammad Sajjad et al. used PS-InSAR technology to assess the impact
of groundwater depletion and aquifer degradation on land subsidence in Lahore, Pakistan,
and on this basis proposed a theory of sustainable urban development [21].

Wuxi City, located in the Su-Xi-Chang subsidence zone and the Yangtze River Delta
alluvial plain [22], has experienced large-scale land surface deformation in recent years
following the implementation of a groundwater abstraction ban policy in 2005 [23]. To
accurately measure the regional impacts, this study innovatively applies the Generalized
Autoregressive Conditional Heteroskedasticity (GARCH) model for the first time to analyze
the volatility of the land surface deformation in Wuxi. Proposed by Bollerslev, GARCH
assesses the volatility of random variables [24]. Compared to previous conditional mean
models [25], its advantage lies in not only considering the real-time impacts of random
disturbances but also greatly improving the prediction accuracy and efficiency. The GARCH
model, also known as the Conditional Heteroskedasticity model, describes the variance
of error terms in a statistical model changing under certain conditions, rather than being
constant. This implies that data volatility is non-constant but clusters at certain moments,
effectively solving volatility clustering in statistics [26]. Moreover, the model adds a
GARCH term to the original ARCH model, solving the loss of degrees of freedom that
results from having too many parameters and realizing the prediction of time-series data
volatility [27]. Affected by groundwater recharge, fluctuations in the surface time-series
deformation trend resemble stock prices [28]. Therefore, using GARCH to assess regional
volatility is very reasonable and effective.

The literature shows that current research mainly focuses on the Su-Xi-Chang area and
Yangtze River Delta, with fewer long-time-series, large-scale investigations of Wuxi [29,30].
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To study the recent land surface deformation trends and mechanisms in Wuxi, we processed
100 Sentinel-1A SAR images from November 2015 to June 2023 using PS-InSAR technology.
Our analysis stems from multiple perspectives, including groundwater, precipitation,
and soil geology. Furthermore, we innovatively applied GARCH to analyze subsidence
displacement in Wuxi City and propose a new “Amplitude Factor” index evaluating overall
land surface deformation.

2. Study Area and Datasets
2.1. Study Area

Wuxi City is situated in southeastern Jiangsu Province, with geographical coordinates
of 31◦22′N–32◦02′N and 119◦59′E–120◦38′E. It is a central city in China’s Yangtze River
Delta economic belt, with a population exceeding 7.46 million. The study area includes
the main urban districts of Wuxi City (Xinwu District, Xishan District, Huishan District,
Binhu District, and Liangxi District) and Jiangyin City (Figure 1). The study area borders
Suzhou to the east, adjoins Taihu Lake to the south, and is adjacent to Zhejiang Province; it
borders Changzhou to the west, relies on the Yangtze River to the north, and is separated
from Jingjiang City of Taizhou City by the river [31]. The total area of the study area
is 2574.71 square kilometers, with plains as the main landform, supplemented by low
mountains and remnant hills. The overall topography exhibits a distribution pattern of
being high in the southwest and north and low in the central part, with an average elevation
of approximately 8 m. Wuxi City belongs to the northern subtropical monsoon climate,
located between the Yangtze River and Taihu Lake, with a humid climate and rain in hot
seasons. According to the records of the Jiangsu Provincial Bureau of Statistics, the average
annual precipitation in Wuxi City is 1142 mm, concentrated in the plum rain season from
June to August. There are approximately 5635 rivers within the territory of Wuxi City, with
a total area of 939.61 square kilometers, accounting for 20.3% of the city’s total area. These
rivers, together with the Yangtze River, the Beijing–Hangzhou Grand Canal, and Taihu
Lake, form a vast water network [32]. Within the study area, almost all regions are covered
by Quaternary loose sediments, mainly composed of silty clay and sub-sand. These two
soil layers are interbedded, forming the soft soil geology of the Wuxi area, which has a
significant impact on the surface deformation in the region [29,33].

2.2. Datasets

This study utilized 100 Sentinel-1A images provided by the European Space Agency
(ESA), spanning from November 2015 to June 2023. These images cover the main urban
areas of Wuxi City and Jiangyin City, with absolute differences in acquisition time intervals
not exceeding 2 months. The images were acquired using the Interferometric Wide-Swath
(IW) mode and VV polarization. Detailed SAR data information is presented in Table 1. Ad-
ditionally, this study employed the 30 m Shuttle Radar Topography Mission (SRTM) digital
elevation model (DEM) from the National Aeronautics and Space Administration (NASA)
to remove the topographic phase and the precise orbit data (POD) released by ESA to refine
the orbital information, improving the georeference and baseline estimation accuracy.

Table 1. Specific parameters of the Sentinel-1A SAR images.

Parameter Value Parameter Value

Product type Sentinel-1A Incidence angle 42.8◦

Wavelength C-band Path 69
Flight direction Ascending Resolution 2.3 m × 13.9 m

Polarization VV Number of images 100
Beam mode IW Time range November 2015–June 2023

This study collected various data related to surface changes in the Wuxi area. Ground-
water data were obtained from the Jiangsu Bureau of Geological Survey. We selected
six evenly distributed monitoring wells and obtained corresponding water level data to
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study the relationships between surface deformation and pore-confined water. The China
Meteorological Administration provided precipitation data, and the Chinese Academy of
Geological Sciences provided geological data. This study utilized geological borehole data
to determine the depth of Quaternary sediments in the Wuxi area.
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Figure 1. (a) The shapefile and digital elevation model map (DEM) of China. This map was provided
by the China National Mapping and Resources Administration, representing the provincial maps of
China. The red star represents Wuxi. (b) Geographical location of Wuxi. The blue rectangle illustrates
the coverage of Sentinel-1A, and the red vectorgraph shows the study area. (c) Optical satellite image
of Wuxi, wherein the red curve shows the administrative region of Wuxi, including Binhu (BH),
Xinwu (XW), Xishan (XS), Liangxi (LX), Huishan (HS), and Jiangyin (JY).

3. Methodology
3.1. PS-InSAR Technique

In 2000, Ferretti et al. first proposed the concept of a “Permanent Scatterer (PS)” and
the PS interferometry technique [34]. This technique utilizes multiple image data, extracts
PS points based on the amplitude or coherence coefficient method, and then establishes a
parametric equation that includes the average deformation rate, atmospheric delay phase,
orbital residual error, and elevation error [35]. Through iterative calculations, the time-
series information of surface deformation in the study area can be obtained, and the solution
accuracy of this method can reach the millimeter level.
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The processing flow of PS-InSAR is as follows: From N complex SAR images of the
same scene, one image is selected as the master image, and the rest are slave images; the
slave images are georeferenced with the master image, obtaining N-1 georeferenced SAR
images; PS points are selected based on a set amplitude dispersion index threshold, and
M interferometric pairs are generated [36]. The interferometric phase of each pixel in the
interferometric pairs consists of multiple components, including the following:

φ = φ0 + φtopo + φde f o + φatm + φnoise (1)

where φ is the total interferometric phase, φde f o is the deformation phase, φ0 is the phase on
the reference ellipsoid, φtopo is the topographic phase, φatm is the phase caused by changes
in atmospheric conditions during the two radar acquisitions, and φnoise is the random noise
phase [37].

Using the known digital elevation model (DEM) data, differential interferometric
processing is performed on the M interferometric pairs to obtain M differential interfero-
grams. By establishing a phase difference model between adjacent PS points, the surface
subsidence information is calculated. The phase difference between adjacent PS points in
the i-th differential interferogram can be expressed as follows [38]:

∆φi =
4π

λ
Ti∆v +

4πB⊥
i ∆ε

λRsin θ
+ ∆φres

i (2)

where ∆v is the deformation velocity difference between two adjacent PS points; ∆ε is
the phase difference caused by the elevation error; B⊥

i and Ti are the spatial baseline and
temporal baseline of the i-th interferogram, respectively; λ is the radar wavelength; R
is the distance from the sensor to the target; θ is the radar incidence angle; ∆φres

i is the
residual phase, including the atmospheric delay phase, nonlinear deformation phase, and
noise phase.

Ferretti et al.’s research showed that under the condition of the absolute value of the
residual phase being less than π, the deformation velocity difference ∆v and the elevation
error ∆ε can be estimated by maximizing the phase coherence coefficient model of M
interferograms, with the objective function as follows [39]:

γ = | 1
M∑M

i=1(cos ∆wi + j·sin ∆wi)| = maximum (3)

where γ is the model coherence coefficient; j is the imaginary unit, i.e., j =
√
−1; and

∆wi represents the difference between the observed phase and the fitted phase of the i-th
interferogram, namely

∆wi = ∆φi −
4π

λ·R·sin ϑ
·B⊥

i ·∆ε − 4π

λ
·Ti·∆v (4)

Although the objective function is highly nonlinear and the observed phase exhibits
wrapping phenomena, by solving for the maximum value of the model coherence coeffi-
cient, the unknowns ∆w and ∆v for each baseline can be determined within a predefined
solution space, avoiding the unwrapping process. Using γ as the weight and applying the
weighted least-squares method, the time-series deformation velocity v and elevation error
ε of PS points on a sparse grid are solved from known reference points [40]. By removing
the linear deformation component of the PS points, the nonlinear deformation component,
atmospheric delay, and decorrelation noise are obtained. Based on the spatial and temporal
frequency characteristics of each component, filtering techniques are employed to decom-
pose the signals. Among them, the atmospheric delay appears as a low-frequency signal in
the spatial domain and a high-frequency signal in the temporal domain, exhibiting strong
instability. By applying a high-pass filter to the residual phase in the temporal domain and
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a low-pass filter in the spatial domain, the atmospheric delay phase of each image relative
to the master image is obtained [38].

3.2. PS-InSAR Data Processing

Given the large amount of SAR data, long time span, and wide geographical coverage
used in this study, we divided the 100 images covering the Wuxi area into two groups for
processing. One group was used for detailed year-by-year analyses, while the other was
used for long-term trend analyses, aiming to better understand the surface deformation
patterns in Wuxi. We divided the period from November 2015 to June 2023 into three
time intervals. Figure 2 shows the temporal baseline distribution and time span of these
intervals. The specific processing flow, shown in Figure 3, mainly included five parts: data
collection and preprocessing, differential interferometry calculations, first-step inversion,
second-step inversion, and geocoding.

1. The data collection and processing part mainly included downloading 100 Single-
Look Complex (SLC) images from the Alaska Satellite Facility (ASF) website and
100 precise orbit data items from the European Space Agency (ESA) georeferenced
with the images. We chose the VV polarization mode with stronger penetration over
the VH polarization mode. Subsequently, ENVI/IDL technology was used for batch
preprocessing on the downloaded images, including master image selection, master–
slave image georeferencing, and digital elevation model (DEM) phase simulation,
obtaining interferometric pairs with spatial baseline, temporal baseline, and Doppler
centroid frequency baseline coherence coefficients [41].

2. The differential interferometry calculations mainly included interferometric phase
calculation, Permanent Scatterer candidate (PSC) point selection, flat earth and to-
pographic phase removal, and differential interferogram calculation [42]. Using the
interferograms obtained in the first step, target points with good coherence were
selected. By performing a spatiotemporal characteristic analysis on each phase com-
ponent in the differential phase, two-dimensional regression and objective function
optimization methods were used to solve for the linear components. The linear defor-
mation components of the Permanent Scatterer (PS) points were removed from the
original differential interferometric phase to obtain the residual phase components.

3. For the first-step inversion, we used the first inversion model to calculate the residual
height and displacement velocity, processing complex interferograms. This method
determines a certain number of “Persistent Scatterers (PSs)” and processes the pixels
around each PS point. PS points must satisfy two conditions: first, they must be stable;
and second, they can be detected with the Synthetic Aperture Radar (SAR) antenna
through proper orientation [43].

4. Second-step inversion was the final step of our inversion process, using the linear
model results from the previous step to estimate the atmospheric phase components,
thereby removing the atmospheric delay phase φatm and noise phase φnoise. Finally,
the model of the final displacement velocity was fitted, and the displacement for each
date was extrapolated.

5. The PS-InSAR results were then geocoded and output in both vector (shapefile) and
raster formats. In this study, the Product Temporal Coherence Threshold was set
to 0.85, retaining the most effective feature points while eliminating low-coherence
points to ensure data accuracy.
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3.3. Amplitude Factor Design

In finance, stock prices, futures, and exchange rates fluctuate over varying time
periods, indicating that data volatility is not constant, but changes over time. Compared to
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earlier models like ARMA, ARIMA, or ARCH [44], the error term variance in the GARCH
model follows an autoregressive moving-average process, fully considering systematic
error changes and more effectively capturing market volatility. Moreover, the GARCH
model can effectively characterize volatility clustering, asymmetry, and long memory [45],
and is regarded as one of the most mature models in current volatility research. Its basic
equation is written as follows [46]:{

µt = σtεt
σ2

t = α0 + ∑
q
i=1 αiu2

t−i + ∑
p
j=1 γjσ

2
t−j

(5)

where σ2
t is the current volatility, representing the magnitude of conditional variance at

time t; εt is an independent identically distributed unit of white noise with mean and unit
variance values of zero; and µt is the current period residual.

In the established GARCH evaluation system, this study introduces the Amplitude
Factor (AF) to measure the surface volatility of long-term time-series displacements in
Wuxi. Here, σ2

t represents the current land surface deformation volatility and the mean of
conditional variance reflects the historical volatility of surface deformation in the region. A
higher mean of conditional variance implies a greater degree of fluctuation. Furthermore,
the standard deviation, kurtosis, and median of conditional variance reflect the data stability,
peak level, and central tendency, respectively [47]. To improve the accuracy of our research,
we divided the study area into 0.005◦ × 0.005◦ grid cells in ArcGIS and created 14,637
evaluation units. We input each grid cell’s time-series displacement data into the GARCH
model, calculated key statistical factors (mean, standard deviation, kurtosis, median), and
assigned equal weights (as shown in Table 2). Then, we used the quantile method in
ArcGIS to preliminarily classify values, ensuring equal evaluation units per category. We
used the geometric interval method to set scores for each evaluation unit and assigned
corresponding codes, with the highest value being 7 and the lowest being 1. According to
the above criteria, we defined the score matrix Si of the target evaluation unit as follows:

Si =


X11 X12 X13 X14
X21 X22 X23 X24
X31 X32 X33 X34
X41 X42 X43 X44

, i ∈ [1, n] (6)

where i is the target evaluation unit, n is the total number of evaluation units, and Xab is
the corresponding element in Table 2 (a ∈ [1, 4], corresponding to the indicators in the first
column of Table 2; b ∈ [1, 4], corresponding to the 4 score levels in the third column of
Table 2).

The weight matrix Z of the statistical factors can be expressed as

Z =
[
Z1 Z2 Z3 Z4

]T (7)

4

∑
j=1

Zj = 100%, j ∈ [1, 4] (8)

The constant parameter matrix C of the target unit is expressed as

C =
[
1 1 1 1

]
(9)

Then, the calculation formula for the Amplitude Factor (AF) value of the target unit is

AFi = C · (Si · Z), i ∈ [1, n] (10)
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Table 2. Comprehensive evaluation indicators for Amplitude Factors in the study area.

Indicator Value Score Element Weight (Z)

Mean
(X1)

0–2.2
2.2–2.9
2.9–3.9

>3.9

1
3
5
7

X11
X12
X13
X14

25% (Z1 )

Standard
Deviation

(X2)

0–1.5
1.5–3.1
3.1–7.7

>7.7

1
3
5
7

X21
X22
X23
X24

25% (Z2 )

Kurtosis
(X3)

0–4.1
4.1–9.0

9.0–22.0
>22.0

1
3
5
7

X31
X32
X33
X34

25% (Z3 )

Median
(X4)

0–1.8
1.8–2.5
2.5–3.2

>3.2

1
3
5
7

X41
X42
X43
X44

25% (Z4 )

4. Results
4.1. Annual Results of Rebound Deformation in the Wuxi Area

After processing 100 SAR images using the method introduced in Section 3.2, we
obtained the surface deformation velocity field of the Wuxi area from November 2015 to
June 2023. This study took one year as its research time interval, allowing an error of plus
or minus two months. Figure 4 shows the surface deformation velocity map of the Wuxi
area obtained using the PS-InSAR technique, where positive values indicate uplift and
negative values indicate subsidence. The velocity map is overlaid on a satellite image of
the Wuxi area obtained from the Mapbox platform.

As shown in Figure 4, the Wuxi area does not exhibit a consistent subsidence or
uplift trend in the year-by-year analysis, but there are significant fluctuations, mainly
concentrated in the BH, XS, and LX regions. The BH region shows a trend of large changes
initially, followed by gradual stabilization, and then large changes again, with poor stability
of surface deformation in recent years. The XS region is located between regions XW and JY,
with its eastern part mainly consisting of villages and towns, showing good stability, while
the western part is an urbanized area, with more evident surface deformation compared to
the eastern part. The LX region is located in the central part of the main urban area of Wuxi
City, and as time progresses, the volatility of its surface deformation becomes more evident.

The BH region is located in the Binhu District of Wuxi City. Since the Jiangsu Provin-
cial People’s Congress proposed the “Decision on Prohibiting Groundwater Extraction in
Suzhou, Wuxi, and Changzhou Areas within a Time Limit” [48] in 2000, Wuxi City has
comprehensively banned groundwater extraction since 2005. After a long period of devel-
opment, the groundwater in the area has been fully replenished. Therefore, compared with
previous studies [29], the surface subsidence occurring within the study area of this paper
has been significantly alleviated. However, instability still exists in the area. The Lingshan
Grand Buddha Scenic Area on its west side experienced a certain degree of subsidence in
2016, followed by significant uplift in 2017 and 2018, whereas after 2020, it experienced
subsidence of varying degrees again. The Hongsha Bay area on its southeast side also
experienced significant surface deformation in 2016–2017, followed by a smoothing trend,
but in the first half of 2023, it experienced relatively evident surface subsidence again.

The XW region is located in the Xinwu District, southeast of Wuxi City. According
to the time-series subsidence rate map, the annual average (uplift/subsidence) rate in
this area ranged from −5.19 to 1.93 mm/year, with few changes, but evident fluctuations.
According to the “Adjustment Plan for the Overall Land Use Planning of Xinwu District,
Wuxi City (2006–2020)” [49] issued by the People’s Government of Xinwu District, Wuxi
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City strictly restricted urban and industrial construction in Xinwu District. From 2014
to 2020, the urban construction area increased by only 2.23%, so there was no significant
subsidence in the area.
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The JY region, within Jiangyin City under Wuxi City’s jurisdiction, saw significant
development following the 2012 approval of the “Jiangyin City Master Plan (2011–2030)”
by the local government [50]. This plan aimed to foster rapid urbanization and enhance
central urban area construction, while strictly safeguarding ecological assets like rivers,
essential farmland, and riverside ecological wetlands, and conserving resources such
as land and groundwater. These strategies has propelled Jiangyin City’s swift progress
in recent years, moderating the surface deformation fluctuations. From 2015 to 2023,
the southern townships and villages saw no notable surface subsidence. However, the
northern riverside area, constituting Jiangyin’s primary urban zone, experienced the most
pronounced deformation fluctuations in our study. Its proximity to the Yangtze River
significantly influences surface changes through pore-confined water levels, a focal point
of the discussion in Section 5.

4.2. Long-Term Results of Surface Deformation in Wuxi Area

The velocity of surface deformation in the Wuxi area from 2015 to 2018, 2018 to 2020,
and 2020 to 2023 measured through the PS-InSAR method are shown in Figure 5. The
positive values in the figure indicate ground uplift, while the negative values indicate
land subsidence.
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The period from December 2015 to June 2018 is represented by a set of SAR images
containing 16 scenes. Figure 5a shows the surface deformation velocity map along the
LOS direction for this period. From 2015 to 2018, a total of 5,652,151 PS points were
obtained, with deformation velocities ranging from −23.97 mm/year to 29.09 mm/year
and an average of 6.52 mm/year. In total, 90.3% of the surface deformation velocities in
the study area are between −6.02 mm/year and 11.01 mm/year. During this period, the
surface deformation in the Wuxi area generally shows an uplifting trend, with some areas
remaining unchanged. The Huishan District in western Wuxi exhibits a significant large-
scale uplift, with average annual uplift rates between −2.47 mm/year and 18.78 mm/year.
Additionally, several key deformation zones with uplift rates exceeding 12 mm/year appear
along the Yangtze River in the northern Jiangyin City. Compared with the results of the
previous segmented study, the subsidence zone in the south in 2016 partially overlaps
with the uplift zone in the south in 2017, and the uplift zone in the north in 2016 partially
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overlaps with the subsidence zone in the north in 2017. Therefore, in these two overlapping
areas, the surface deformation underwent a certain neutralization effect. Furthermore, in
the first half of 2018, the overall area experienced a significant uplift, causing the overall
deformation effect to match the aforementioned image results.

The period from February 2018 to December 2020 is represented by a set of SAR
images containing 18 scenes. Figure 5b shows the surface deformation velocity map along
the LOS direction for this period. From 2018 to 2020, a total of 2,544,221 PS points were
obtained, with deformation velocities ranging from −40.03 mm/year to 22.90 mm/year
and an average of 0.29 mm/year. Compared to the period from 2015 to 2018, the overall
subsidence trend is relatively gentle, with no large-scale obvious uplift or subsidence. By
comparing the three annual average velocity maps from 2018 to 2020 in Section 4.1, it can
be seen that although the Binhu District in southwestern Wuxi and the Liangxi District
near the central area experienced large-scale subsidence in 2020, they both experienced
slow uplift in 2018 and 2019; the subsidence and uplift had a neutralization effect, resulting
in a stable changing trend in the long-term time series. Moreover, the Xinwu District in
southeastern Wuxi, the Xishan District in the central area, and the junction area within
Jiangyin City, although experiencing significant uplift in certain specific years, show a stable
trend in the remaining years; this implies that the uplift effect was weakened, resulting in a
stable trend in the overall deformation.

The period from June 2020 to June 2023 is represented by a set of SAR images con-
taining 19 scenes. Figure 5c shows the surface deformation velocity map along the LOS
direction for this period. From 2020 to 2023, a total of 3,536,105 PS points were obtained,
with 88.53% of the PS points having deformation velocities between −25.98 mm/year and
30.01 mm/year. Unlike the significant uplift trend from April 2022 to June 2023, the surface
deformation during this study period was relatively small. The main reason for this is
that during the period from June 2020 to March 2022, some areas experienced continuous
small-scale subsidence, thus weakening the subsequent uplift trend.

For this section of our study, we conducted mathematical statistical analyses on the
deformation information obtained through the PS-InSAR technique for two time periods.
To further understand the time-series changes in the deformation velocity, we separately
counted the surface subsidence and uplift information, and the statistical results are shown
in Figure 6.

According to the subsidence statistics chart, from 2015 to 2023, the subsidence rate in
Wuxi shows a decreasing trend. From 2015 to 2018, PS points with subsidence rates between
0 and 4 mm/year account for 62.16% of all subsidence points, and this proportion reaches
92.97% in 2018–2020 and exceeds 95% in the last study period. However, for PS points
with subsidence rates above 4 mm/year, the number in the first time period far exceeds
the latter two time periods, and PS points with subsidence rates exceeding 8 mm/year
rarely appear after 2018. From the uplift statistics data, the uplift in the Wuxi area shows
a fluctuating trend of increasing first and then decreasing. In 2018–2020, PS points with
uplift rates between 0 and 4 mm/year are fewer than those in the two time periods before
and after, while PS points with uplift rates above 4 mm/year appear more than in the two
time periods before and after. This also indirectly reflects the periodic changing trend of
the surface deformation in the Wuxi area.

In this study, we obtained data on the surface deformation of the Wuxi area from 2015
to 2023. To study the characteristics of early surface deformation and compare them with
our results, we summarized other surface subsidence studies conducted in the Wuxi area
in the past, which are presented in Table 3.

From 2004 to 2011, Wuxi City formed two major subsidence areas: Jiangyin and Xishan.
Lu et al. analyzed the surface subsidence in Wuxi City from 2004 to 2017 and found that
from 2004 to 2011, large subsidence funnels appeared in the southern part of Jiangyin
City and the Huishan District bordering Jiangyin City, with a maximum subsidence rate
exceeding 20 mm/year [29]. After 2011, InSAR results indicated that the subsidence areas in
Jiangyin City and Huishan District tended to flatten, and the overall subsidence expanded
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to the southeastern part of Wuxi [52]. After 2015, the subsidence in the junction area of
Xishan District and Jiangyin City in Wuxi City showed a slowing trend, and relatively
obvious subsidence areas appeared in Xinwu District and Binhu District. Although previous
studies [51] used different data and methods to monitor surface deformation, they were
able to identify similar subsidence/uplift areas and surface deformation rates. Compared
with the results of previous studies, the spatiotemporal distribution characteristics of the
subsidence areas detected in the present study are basically consistent [33].
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Table 3. Summary of previous studies on land subsidence in Wuxi.

Reference Method Datasets Main Subsidence Areas Deformation Rates

Yang et al. [33] PS-InSAR

23 ENVISAT ASAR images
(November 2007 to April 2010)

42 Sentinel-1A images
(January 2018 to June 2021)

Huishan District,
Jiangyin City,

Xishan District

−25 to 5 mm/year
(2007–2010)

−5 to 5 mm/year
(2018–2021)

Lu et al. [29] SBAS-InSAR 68 ALOS PALSAR images
(February 2007 to February 2011)

Huishan District,
Jiangyin City,

Xishan District
−40 to 10 mm/year

Li et al. [51] PS-InSAR 52 Sentinel-1A images
(January 2019 to December2019)

Xishan District,
Jiangyin City −10 to 10 mm/year

Fan et al. [52] MCTSB-InSAR 25 RADARSAT-2 images
(February 2012 to January 2016)

Xishan District,
Jiangyin City, −25 to 5 mm/year

Ouyang et al. [53] PS-InSAR 25 Sentinel-1A
(October 2018 to October 2020)

Binhu District,
Xinwu District,
Xishan District

−14 to 10 mm/year

4.3. Accuracy Verification of Rebound Results

Using 100 Sentinel-1 SAR images covering the Wuxi area, surface deformation infor-
mation from November 2015 to June 2023 was obtained via the PS-InSAR technique. After
three data processing iterations, over 117,427 PS points were obtained. We calculated the
amplitude dispersion index (i.e., the ratio of mean to standard deviation) for all PS points
as a precision quality factor, assessing the internal precision quality of the obtained surface
deformation information.

As shown in Figure 7a, 94.38% of the total points had a precision quality better than
7.0 mm/year. Similarly, 96.89% of the total points in Figure 7b and 94.41% in Figure 7c had
precision qualities better than 7.0 mm/year.
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These results indicate that using ascending Sentinel-1 data with IW polarization
to obtain surface information in Wuxi, combined with PS-InSAR processing and analy-
sis, results in very high precision and reliability. Furthermore, cross-validation methods
were employed to verify this method’s accuracy—details on this are provided in the
Supplementary Materials.
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5. Discussion
5.1. Time-Series Analyses of Characteristic Points

For this section, to better analyze the spatial distribution characteristics of surface
rebound changes in Wuxi City, we randomly selected six different characteristic points
distributed throughout Wuxi City to conduct a detailed analysis. The method for selecting
these characteristic points was as follows: first, the location of each characteristic point
was determined; then, a circle with a radius of 500 m centered on these points was drawn,
designating the characteristic area. The temporal cumulative deformation of the character-
istic points is shown in Figure 8a, with their specific distribution locations illustrated in
Figure 8b.
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PS1 is located near Hongsha Bay in the Binhu District, close to the Taihu Lake area. This
area exhibited continuous small-scale fluctuation changes, with the maximum cumulative
uplift being 8.55 mm and the maximum cumulative subsidence being −16.62 mm. Due to
changes in the water level of Taihu Lake, which lead to variations in the confined water
level in this area, water level changes were the main factor causing these regional variations.

PS2 is located in the Shuofang Airport area of the Xinwu District. This area showed a
trend of slight subsidence followed by slow uplift. The area has many new technology and
industrial parks, the construction of which increased the compressive stress on the surface,
causing subsidence; this was followed by a slow rebound due to substantial groundwater
recharge [54].

PS3 is located near the Liangxi District People’s Government. Prior to 2021, this
point experienced wide-ranging fluctuation changes, but following the issuance of the
“Fourteenth Five-Year Plan for National Economic and Social Development of Liangxi
District, Wuxi City and the Vision for 2035” [55], Liangxi District strengthened its ecological
civilization system construction, strictly controlled urban development boundaries, and
scientifically managed the relationship between urban development and land resource
utilization; therefore, in subsequent periods, this area showed a stable trend.

PS4 is located near the Huishan District railway station. There were no significant
fluctuation changes here, showing a trend of a slow uplift.

PS5 is located near the Xibei Town People’s Government in Xishan District. This area
has many factories, such as vehicle parts, railway parts, and plastics factories, leading to a
significant proportion of the water in this area being used for industrial purposes compared
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to other areas; and, since 2018, the region has focused on creating major industrial projects
and extensive construction, leading to poor surface stability in this area.

PS6 is located near Xiangshan Village, at the junction of the southern part of Jiangyin
City and Xishan District. The figure shows that this area exhibits a weak fluctuation, with
an overall trend toward stability. After April 2022, this region experienced a significant
uplift, related to increased precipitation and groundwater changes, which will be discussed
in detail in the following section of this paper.

Overall, the fluctuation changes in the Wuxi area are uneven. This situation is mainly
related to groundwater, which will be focused on in the next section.

5.2. Changes in Surface Deformation and Groundwater Level

In the groundwater layer, groundwater extraction leads to a decreased water level and
correspondingly reduces the pore water pressure in the aquifer and surrounding relatively
impermeable layers. Per the effective stress principle, the total stress in soil caused by
overburdening is jointly borne by the pore water and soil particle skeleton. The portion
borne by water is called the pore water pressure PW , which does not cause soil compression
and is thus also called neutral pressure; the portion borne by the soil skeleton directly
causes upper-layer compression and is called effective stress PS. The sum of these two
equals the total stress [56]. Assuming that the internal soil stress remains unchanged during
water extraction, decreased pore water pressure inevitably leads to an equal increase in
effective stress, which compresses the soil layer. Under lower-stress conditions, sand
layers exhibit low compressibility and mainly demonstrate reversible elastic deformation,
while clay layers exhibit much higher compressibility and primarily undergo permanent
inelastic deformation. Therefore, under lower-effective-stress conditions, cohesive soil layer
consolidation dominates the land subsidence, while sand layer expansion and rebound are
crucial during water level recovery [57]. The effective stress schematic is shown in Figure 9,
wherein soil particles above the groundwater level are not displayed.
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them to be compressed and leading to land subsidence.

For this section, we selected groundwater level data from six local confined aquifer
groundwater-monitoring wells from January 2018 to December 2021, using monthly in-
tervals to form time series of groundwater level changes, with the well locations being
distributed as shown in Figure 10G. InSAR elevation time series were derived from all PS
pixels within a 200 m radius around each observation well, and LOS direction displacement
data (red line) and water level changes (blue line) were normalized, comprehensively
compared, and ultimately plotted, as displayed in Figure 10A–F.
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The stratigraphic structure in the Wuxi area is relatively complex, with thick sand and
gravel-bearing sand layers, while the clay layers are thin and unevenly distributed [58].
According to the above figures, it can be observed that all areas near the wells exhibit a
slow rebound trend, which is closely related to the expansion and rebound of the sand
layers. Furthermore, the changes in confined water levels have a high correlation with
the InSAR-derived surface elevations. We employed the GRA method to calculate the
relationship between the elevation and water level, obtaining GRA values of 0.52, 0.71,
0.61, 0.75, 0.57, and 0.65 for wells (A), (B), (C), (D), (E), and (F), respectively. Well (A) is
located in the Shuofang Economic and Trade Service Center, Binhu District, Wuxi City,
while well (E) is situated in Huangtang Village, Jiangyin City, one of the county-level cities
in Wuxi. From January 2018 to December 2022, the cumulative displacement components
in the LOS direction for wells (A) and (E) were 14.29 mm and 12.59 mm, respectively,
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while the groundwater level changes were −0.82 mm and 10.85 mm, respectively. The
groundwater level changes in well (E) are consistent with the LOS direction displacement
changes, while well (A) shows significant differences. Moreover, the trends of displacement
changes for wells (A) and (E) have low correlations with the water level changes. The
reasons for these differences are as follows: (1) the local soil and geological conditions of
the two wells are different, resulting in varying impacts of confined water on the surface
deformation; (2) the influence of groundwater level changes on surface deformation has a
certain lag, and for some areas, the impact is not immediately apparent but has a certain
delay; (3) the groundwater observation accuracy of well (E) is insufficient, with some
abnormal values; (4) surface subsidence is affected by multiple factors, with groundwater
being only one of them, and the combined effects of other aspects lead to suboptimal fitting
results. Well (B) is located in Yangjian Town, Xishan District, while well (D) is situated
in the Wenlin Community Service Center, Jiangyin City, both located in the border area
between Xishan District and Jiangyin City. From Figure 10, it can be seen that the changing
trends of the surface deformation and water level for these two wells are generally similar;
when the groundwater level rises, the surface undergoes uplift and rebound, and when
the groundwater level decreases, the ground subsides. Their gray relational degree indices
both exceed 0.7, indicating that changes in confined aquifer water levels are the main cause
of surface deformation in this subsidence area. Well (C) is located on Qianzhou Street,
Huishan District, while well (F) is situated on Lingang Street, Jiangyin City. From Figure 10,
it can be observed that these two areas experienced significant uplift in 2018, with well
(C) uplifting by 24.60 mm and well (F) uplifting by 23.45 mm. The groundwater level
correspondingly increased, altering the surface flotation effect. Water level rises may relate
to artificial groundwater recharge and natural precipitation, as detailed in Section 5.3.

Additionally, as seen in Figure 10B–F, from early 2018 to mid-2020, rising ground-
water levels led to rapid surface uplift with a clear lag effect (or groundwater residence
time) between the two. Determined using the time-lagged cross-correlation method [59],
during this period, the groundwater in most areas had a residence time of 2–4 months.
After the surface uplift (rebound) reached a certain level, this effect gradually weakened
or disappeared.

Overall, surface subsidence deformation closely relates to confined aquifer water. Re-
cent government attention and legal protection has enabled artificial groundwater recharge
to effectively suppress the surface subsidence in Wuxi. However, reasonable limits should
be set for artificial recharge processes to avoid excessive rebound from overly high recharge
rates. In the future, ground-based SAR imaging radar devices could be deployed around
water wells, combined with geodetic surveying for real-time subsidence monitoring, stabi-
lizing the surface.

5.3. Impact of Precipitation on the Surface Flotation Effect

According to the “Notice on Carrying Out Systematic and Comprehensive Demonstra-
tion Work for the Construction of Sponge Cities” issued by the Ministry of Finance, Ministry
of Housing and Urban-Rural Development, and Ministry of Water Resources, Wuxi City
was designated as one of the first batches for sponge city construction demonstrations in
China in 2021 [60]. As one of the key elements of a sponge body, soil is directly affected
by precipitation. Previous studies have shown that rainwater infiltration increases soil
moisture content and reduces soil porosity and bulk density [61]. This implies that when
precipitation increases, the soil behaves like a water-saturated sponge, undergoing uplift
and elastic rebound while indirectly recharging the groundwater.

Wuxi is located in the humid subtropical monsoon climate zone of North Asia, border-
ing the Yangtze River to the north and Taihu Lake to the south, characterized by abundant
precipitation and concurrent rain and heat. This study collected monthly average pre-
cipitation data from January 2018 to December 2021 provided by the official website of
the China Meteorological Administration (https://weather.cma.cn/ (accessed on 7 De-
cember 2023)) and divided the Wuxi area into five latitudinal zones from north to south

https://weather.cma.cn/
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(N1:31◦51′36′′–31◦59′24′′; N2:31◦43′12′′–31◦51′36′′; N3:31◦35′24′′–31◦43′12′′; N4:31◦27′36′′–
31◦35′24′′; N5:31◦19′48′′–31◦27′36′′), with the longitude ranging from E119◦41′13′′ to
E120◦39′58′′.

As shown in Figure 11, the amounts of precipitation in these five latitudinal zones
are very similar, with more precipitation in the south and less in the north, consistent
with the meteorological conditions of the humid south and arid north in China. Therefore,
for this study, we averaged the monthly precipitation of these five latitudinal zones and
compared them with the four characteristic regions in Figure 12b to analyze the impact of
precipitation on the surface flotation effect.
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Figure 12. (a) The impact of precipitation on the surface buoyancy effect. (b) Regional distribution of
precipitation characteristics.

From Figure 12a, it is observed that from January 2018 to early 2020, precipitation was
concentrated from May to September each year, with less precipitation in other months; after
2020, precipitation was concentrated from June to August each year, with the precipitation
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during this period far exceeding the previous flood season precipitation, while in other dry
seasons, precipitation was reduced compared to the previous period. This indicates that the
precipitation distribution from 2020 to 2022 was concentrated and high in volume. Overall,
due to the increased precipitation during the flood season from 2020 to 2022, the annual
precipitation after 2020 was greater than that before 2020. P1 is located near Shuofang
Airport in Xinwu District, and P4 is located in the Hongsha Bay area of Binhu District. The
common feature of both locations is that during seasons with increased precipitation, the
surface experienced an uplift, while during seasons with less precipitation, a subsidence
trend occurred. This indicates that precipitation and surface elevation exhibit a partial
linear correlation, reflecting the surface flotation effect caused by precipitation infiltration.
However, during a few periods, when precipitation increased, the surface did not exhibit a
corresponding response, indicating that surface subsidence is related to multiple factors,
with precipitation being a secondary factor at this time. P2 is located in the Qianzhou
Street area of Huishan District, near well (C) described in Section 5.2; P3 is located on
Lingang Street, near well (F) discussed in Section 5.2. We found that although both the
groundwater and surface levels in these two regions exhibited a certain degree of increase
in 2018, the precipitation in 2018 was relatively low compared to other years. This directly
reflects that the uplifts occurring in P2 and P3 in 2018 had a smaller relationship with the
precipitation. We speculate that artificial groundwater recharge measures directly increased
the groundwater level, enhancing the neutral stress and resulting in significant surface
uplift; additionally, the soil and geological structure of the Wuxi area may also have a
certain impact on this deformation trend, which will be specifically explained in Section 5.4.

In summary, precipitation affects the surface flotation effect through rainwater infil-
tration, increasing the soil pore volume and leading to soil layer expansion and surface
rebound. However, for certain periods, the impact of precipitation on the surface is not
significant, as surface elevation is influenced by a combination of multiple factors. Fur-
thermore, this section also provides an analysis of the correlation coefficients between
precipitation and surface changes, which are 0.67 (P1), 0.72 (P2), 0.71 (P3), and 0.70 (P4),
confirming that the influence of precipitation is relatively limited.

5.4. The Impact of Soil Stratigraphy and Quaternary Sedimentary Regions

Wuxi, situated in the heart of the Yangtze River Delta, is a vital city linking the
Yangtze River and Taihu Lake. The region is characterized by plains interspersed with
low mountains and hills [22]. To study the soil layer distribution’s impact on surface
fluctuation, we obtained data for three typical boreholes in Wuxi from the China Geological
Science Institute, focusing on soil layers within 100 m depth: BHa is near Wanda Plaza in
Jiangyin City, close to P3, reaching a final depth of 99.2 m; BHb is near the intersection of
the Shudong River and Outer Ring South Road in Jiangyin City, close to P2, with a final
depth of 94.8 m; and BHc is in the eastern part of the Shuofang Airport area in the Xinwu
District of Wuxi City, with a final depth of 92 m. The specific borehole distribution and
internal rock and soil distribution are shown in Figure 13.

As shown in Figure 13, Wuxi has a complex stratigraphic structure, with sub-clay, silt,
and clay in the upper part, and sub-clay and sub-sandy soil in the lower part, together
forming the soft soil layer of Wuxi. During the Quaternary sedimentation process, affected
by sea–land alternation, changes in the Yangtze River water level, and river course changes,
the region has a complex lithology, characterized by multiple cohesive soil layers and
alternating loose sand layers—the direct reason for this sub-clay and silt interlayering is
described in [62]. Additionally, Wuxi’s stratigraphic changes are highly uneven horizontally.
Through geological drilling and controlled-source audio-frequency magnetotellurics, Wu
et al. found that the resistivity of the Quaternary loose layer in this region varies greatly
horizontally, reflecting differences in the strata’s physical properties and directly impacting
surface deformation [63].
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The groundwater level in Wuxi is generally between −1 and −30 m, with the soil
mainly consisting of silt and sub-clay in the soft soil layer [64]. The sub-clay has poor
permeability and a dense structure, making water flow difficult, while the silt has a looser
structure and good permeability. Thus, groundwater mainly affects surface deformation
through the silt layer. Early excessive groundwater extraction caused a sharp drop in the
water level, leading to severe water loss in some silt layers. Meanwhile, rapid industrial
development increased the surface load pressure, compressing the silt layer, reducing pores,
and making the structure denser, directly causing large-scale subsidence. In recent years,
Wuxi City’s groundwater extraction ban has greatly replenished moisture in the silt layer,
resulting in elastic surface changes. However, this rebound has limits. Whether in cohesive
or sandy soil, long-term compression causes irreversible inelastic deformation, and pore
closure makes re-entry difficult. Even with substantial groundwater recharge, the surface
is unlikely to return to its original height. As described in the analysis in Section 5.3, P2
and P3 showed significant uplift in 2018 due to groundwater recharge and increased water
levels. However, the uplift slowed significantly, even subsiding, after 2019 as the soil layer’s
inelastic deformation recovered and mostly became plastic. Moreover, the pores could not
continue expanding, and water could not re-enter, causing the trend shown in Figure 12.

Overall, the Wuxi area’s soil layers primarily comprise sub-sand and silty clay. As
these are relatively soft, they strongly correlate with the volatility of the surface deformation
in this area. Moreover, overly low groundwater levels can cause inelastic deformation,
leading to lasting, irreversible harm; thus, we should strengthen the real-time monitoring
of soil layer deformation and groundwater levels.
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5.5. Surface Deformation Volatility Evaluation—Amplitude Factor

Continuous land subsidence or uplift decreases the stability of the land. When sur-
face deformation exceeds a certain threshold, it can significantly damage the surrounding
buildings and infrastructure. Thus, monitoring and evaluating land surface deformation
is crucial. Traditional regional evaluation methods consider factors like crack characteris-
tics, soil/rock properties, and human activities based on study area characteristics [65,66].
However, vast study areas, high difficulty in surveying, and multiple data sources can
lead to missing data. Moreover, conventional land surface stability evaluation methods
usually assess larger areas but may lack accuracy for specific engineering constructions and
earthquake disaster reduction [48]. Therefore, our study designed a new evaluation system
based on the GARCH model and proposes a new evaluation indicator—the Amplitude
Factor. This method evaluates surface deformation via mathematical simulation, requir-
ing less computational workload and fewer independent variables, suitable for InSAR
procedural calculations. In the GARCH model, the important parameter “conditional
variance” directly reflects the magnitude of volatility, while the mean, standard deviation,
kurtosis, and median reflect the amplitude, stability, kurtosis, and central tendency of data
fluctuations, respectively. Per the algorithm in Section 3.3, we obtained the land surface
stability evaluation results for Wuxi (Figure 14a).
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Figure 14a shows that the northern riverside of Jiangyin City has poor stability, with
over 64.29% of the Amplitude Factors being over 5.4. Additionally, the southeastern
junction of Xishan and Xinwu Districts and the Taihu Lake coastal area of Binhu District
exhibit unstable change characteristics. These deformation characteristics align with the
velocity field change trend analyzed in Section 4.1, verifying the model’s accuracy. Per the
scoring system shown in Table 2 of Section 3.3, Wuxi’s minimum Amplitude Factor is 1 and
its maximum is 7.

To qualitatively assess the volatility of surface deformation, we employed equal
interval classification (Figure 14b). Most Wuxi areas are sub-stable or relatively stable,
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suggesting that the 2005 groundwater extraction ban yielded notable results. The northern
Jiangyin riverside, dominated by alternating silt and clay layers, is highly susceptible to
fluctuations in the Yangtze River level, leading to compromised stability. Overall, the Wuxi
surface stability evaluation model demonstrates significant precision, offering valuable
urban planning and construction guidance. This could ensure urban safety and preserve
the success of future major projects in the new era.

5.6. Limitations and Prospects

Our study utilized PS-InSAR monitoring technology to collect land surface deforma-
tion data in the Wuxi area from 2015 to 2023. By comparing these with previous studies (see
Table 3), we found that the monitoring results are basically consistent. For the first time, we
discovered that over a long time period, the land surface in this area did not continuously
subside or uplift but showed an alternating trend of changes. However, due to the limited
scope of this study, we only conducted a long-term time-series analysis of the trends in
the Wuxi area. We suggest that future researchers conduct similar long-term time-series
analyses on the Su-Xi-Chang area or even other regions throughout China and the world to
verify if this alternating trend exists only in Wuxi, affected by groundwater recharge, or if
other non-recharged areas also exhibit this fluctuating trend.

When analyzing and predicting this volatility, we pioneered using the GARCH model
from the financial field for fitting and derivation. We designed a land surface volatil-
ity indicator—the Amplitude Factor—and conducted a quantitative analysis of unstable
changes in the land surface. For the values in Table 2 of Section 3.3, we conducted a compre-
hensive scoring of land surface deformation characteristics in Wuxi. However, the scoring
method used may only be applicable to this area. Whether it is applicable to Su-Xi-Chang
or even all of China remains a question worth exploring. Therefore, we recommend that
future researchers use this model to analyze different regions to obtain a set of parameters
with wider applicability.

According to our research, due to increased attention from modern managers on land
surface subsidence and deformation, the deformation of the land surface in Wuxi is no
longer like it was in the past (i.e., continuous large-scale subsidence), but instead shows
a more fluctuating trend. However, this trend may still pose significant hidden dangers
to urban development and infrastructure construction. Therefore, future urban builders
should pay more attention to monitoring the volatility of surface deformation and conduct
more detailed research and planning on key areas (such as industrial parks, subway lines,
and intensively commercial areas), analyzing internal causes according to specific situations
and proposing corresponding solutions.

6. Conclusions

This study utilized 100 Sentinel-1A images from November 2015 to June 2023 to
investigate the spatiotemporal characteristics of surface deformation in the Wuxi area
using the PS-InSAR technique. To better understand the causes of volatility changes, a
comprehensive analysis of groundwater, precipitation, soil geology, and other aspects was
conducted. Additionally, an Amplitude Factor index was developed to assess the surface
stability in the Wuxi area.

The main findings are as follows:

(1) The internal accuracy of PS-InSAR was verified using the precision quality factor
evaluation method, revealing that most errors are within 7mm, with almost no errors
exceeding 10mm, indicating a high accuracy.

(2) Surface deformation in the Wuxi area is highly uneven, with significant spatial and
temporal variations. The northern Jiangyin City area experienced strong surface
deformation from 2015 to 2018, which slowed down slightly but showed significant
uplift after 2021. The southern Binhu District and Xinwu District experienced sub-
stantial subsidence in 2016, followed by minor fluctuations, with the Binhu District
experiencing some subsidence again from 2022 to 2023. Over time, the subsidence
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amplitude of all PS points has gradually decreased, with more than 90% of the charac-
teristic points having a subsidence rate of 0–4 mm/year after 2018, while the uplift
amplitude fluctuates.

(3) Multiple natural factors influence surface volatility in the Wuxi area. This study
focused on analyzing the combined effects of groundwater, precipitation, and soil
geology. Data from six groundwater-monitoring wells showed a strong correlation
between groundwater level changes and surface deformation. For wells (C) and
(F), the analysis revealed that surface changes are not only related to precipitation,
groundwater abstraction bans, and recharge but also to the area’s soft-soil geology.
Sandy soil and clay are prone to water loss, shrinkage, and deformation under load
pressure, further increasing the surface volatility.

(4) The GARCH model was used to analyze the time-series subsidence displacement
in Wuxi City in recent years. By comprehensively analyzing the Conditional Het-
eroscedasticity model’s mean, standard deviation, kurtosis, and median, an innovative
“Amplitude Factor” surface volatility evaluation index was developed. The surface
stability of the Wuxi area was qualitatively displayed using a hierarchical grading
method based on the magnitude of the Amplitude Factor. This analysis found that
sub-stable areas are primarily concentrated in northern Jiangyin City and the south-
eastern junction of Xinwu District and Xishan District, consistent with the research
results presented in the previous text.

These findings provide insights into the surface deformation characteristics of Wuxi
following groundwater abstraction bans and recharge, offering a basis for future con-
struction and safety control processes undertaken by the local government. Continuous
monitoring and analysis of surface volatility changes in the Wuxi area are essential for the
city’s future safety and development.
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