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Abstract: Reliable and up-to-date training reference samples are imperative for land cover (LC)
classification. However, such training datasets are not always available in practice. The sample
migration method has shown remarkable success in addressing this challenge in recent years. This
work investigated the application of Sentinel-1 (S1) and Sentinel-2 (S2) data in training sample
migration. In addition, the impact of various spectral bands and polarizations on the accuracy
of the migrated training samples was also assessed. Subsequently, combined S1 and S2 images
were classified using the Support Vector Machines (SVM) and Random Forest (RF) classifiers to
produce annual LC maps from 2017 to 2021. The results showed a higher accuracy (98.25%) in
training sample migrations using both images in comparison to using S1 (87.68%) and S2 (96.82%)
data independently. Among the LC classes, the highest accuracy in migrated training samples was
found for water, built-up, bare land, grassland, cropland, and wetland. Inquiries on the efficiency of
different spectral bands and polarization used in training sample migration showed that bands 4 and
8 and VV polarization in the water class were more important, while for the wetland class, bands
5, 6, 7, 8, and 8A together with VV polarization showed superior performance. The results showed
that the RF classifier provided better performance than the SVM (higher overall, producer, and user
accuracy). Overall, our findings suggested that shared use of S1 and S2 data can be used as a suitable
means for producing up-to-date and high-quality training samples.

Keywords: change detection; classification; land cover; sample migration; Sentinel

1. Introduction

Land cover (LC) mapping has drawn the attention of scholars, governments, and private
organizations given its association with environmental change [1,2], food security [3,4], global
warming [5,6], hydrology [7,8], and sustainable development [9,10]. One of the foremost
assistive technologies in this regard is remote sensing (RS) data that enable the observa-
tion, classification, identification, and observation of LC at different spatial and temporal
scales [11,12]. Since satellites are capable of recording data at precise intervals over vast geo-
graphic spans, they provide suitable sources for LC mapping [13] and change monitoring [14].

LC mapping is generally comprised of three main parts including satellite images,
classification, and training (reference) samples; each of them can significantly impact the
accuracy, costs, and required computing resources of the procedure [15]. To facilitate the
process, recent developments in web-based cloud computing frameworks (e.g., Amazon
Web Services, Microsoft Azure, and Google Earth Engine (GEE)) have granted accessibility
to big RS data and further enhanced their processing [16,17]. GEE, for example, is a
cloud-computing service that stores large volumes of RS images and allows its users free
access to big data and data-processing algorithms, substantially solving the problem of
insufficient data (satellite imagery) and further facilitating the advancement of image
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processing algorithms [18]. Nevertheless, the lack of high-quality and reliable reference
samples hinders LC mapping [19]. Here, high-quality reference samples refer to data that
have a high spatial consistency with the actual LC type in the target region [20]. Insufficient
and unrepresentative data can highly influence the accuracy of any classification model
and cause errors, regardless of the algorithm used [21].

Efforts were made to handle this insufficiency and outdatedness of data with the
emergence of the First All-Season Sample Sets (FAST) and the Geo-Wiki training sets in
the last few years. The FAST dataset includes over 90,000 training samples produced from
very high-resolution Google Earth images from four different seasons of a year [22]. The
Geo-Wiki dataset comprises over 150,000 samples from over 100 thousand locations on
Earth assembled into an international data network [23]. Both datasets are considered an
invaluable source of information at a specific place and time; however, they can hardly be
generalized for classification of images captured at different places/times. For instance, the
FAST dataset, which was primarily gathered in 2015, might not be useful for LC mapping in
the years after or before 2015, given the changes in landscapes and LCs due to natural and
human-oriented interventions [15]. Furthermore, Geo-Wiki is assembled based on visual
interpretations by different experts, and therefore might be unsuitable to be scaled down to
the regional or local scale or in different time intervals [24–26]. These reference samples
were mainly prepared based on the visual interpretation of the interpreter and images with
high spatial resolution (for example, Google Earth images). In addition, different spectral
bands (i.e., red and near-infrared) were used less in the preparation of the publicly available
samples [27].

The insufficiency of training reference samples is more pronounced when the target
of analysis falls on regions with high spatial heterogeneity or extremely vast areas [16,28].
This lack of high-quality and reliable training data poses certain problems regarding the
outdatedness of LC maps in different geographical regions [29]. In this manner, migrating
training samples from a base time interval to another time(s) has been suggested by Huang
et al. [15]. More specifically, high-quality training samples are migrated from a specific
year (base time) to another year (target time) [30], which allows us to use the available
high-quality training samples (e.g., land survey data, FAST, Geo-wiki) for LC classification
at different times. To date, several studies have migrated training samples using optical
data for LC mapping on global [15,31], regional [13,32], and local [30,33] scales. Given the
limitations of optical images (i.e., limited availability of high-quality optical images for
particular places such as cloud-prone areas), the process of reference sample migration may
be impacted. RADAR images could possibly address this obstacle due to their availability
in cloud-prone regions. It is widely reported that optical and RADAR images fusion can
improve classification accuracy [34–36]. However, the feasibility of RADAR images in
sample reference migration has not yet been fully investigated. Therefore, assessing the
role of RADAR images in sample migration would be beneficial to RS communities. To
this end, Sentinel-1 GRD data were selected for our investigation because they incorporate
multi-looking and terrain correction. Additionally, prior studies reported the sufficiency of
GRD data for accurate LC classification [37,38].

Qualified and updated training samples are prerequisites for the majority of change
analyses using multi-temporal satellite images [33]. Additionally, training sample selection
is a subjective task dependent on the interpreter [39]. Therefore, training sample migration
can assist in addressing the shortage of top-quality training samples required for super-
vised classification models [15,32]. This technique can be employed to produce sufficient
training samples for different LCs [15,39,40] and facilitate the updating of LC maps [30,31].
This study aims to investigate ground truth sample migration based on Sentinel-1 (S1)
and Sentinel-2 (S2) data. Two specific objectives include: (1) assessing the performance of
RADAR and optical images in reference sample migration; and (2) comprehensively as-
sessing the impact of various spectral bands and RADAR polarizations on training sample
migration accuracy.
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2. Materials and Methods
2.1. Study Area

The case study area is part of Urmia Lake and its surroundings, an endangered
ecosystem in northwestern Iran. It covers approximately 9539 km2, lies between 45◦1′43′′

and 46◦5′3′′E and 37◦52′33′′ and 38◦48′49′′N (Figure 1). The elevation varies from 798 to
3346 m. Although a variety of building types exist in the study area, low-rise buildings
are predominant. Urmia Lake is the biggest inland lake in Iran, and is a habitat for various
plant and animal species despite its salinity [41]. Since 2000, the lake’s water level and
surface water areas have decreased dramatically [42]. Among the different consequences
of Lake Urmia’s shrinkage, the occurrence of salt dust storms that endanger the lives of
humans and animals [43] is a serious concern that may directly damage agriculture and
livestock, resulting in significant property and life losses. The region was selected as the
experiment site for two main reasons: (1) the study area is composed of various LC types
(water, agricultural, etc.) at different elevations that make it an ideal choice for testing the
designed methodology, and (2) it is vital to evaluate the LC changes in this area because
the Lake is experiencing an environmental tragedy.
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Figure 1. Study area: (a) northwestern Iran; (b) target area of study.

2.2. Methodology

The research methodology includes five general steps (Figure 2): (1) Input features
preparation (i.e., S1 and S2 images acquisition and preprocessing); (2) Reference sample
collection; (3) Reference sample migration framework adoption based on Spectral Angle
Distance (SAD) and Euclidean Distance (ED) measures; (4) Satellite image classification
using the migrated training samples; and (5) Accuracy assessment of classified images.

2.2.1. Generating Input Features

In this study, ESA’s S1 and S2 images (with less than 5% cloud coverage) dated from
2017 to 2021 were obtained to be used in the image classification task. S1 data were acquired
in Ground Range Detected (GRD) format with 10 m spatial resolution. The Level-2A S2
images were also acquired, including 4, 6, and 3 spectral bands with spatial resolutions
of 10, 20, and 60 m, respectively. Since different LCs (e.g., different vegetation classes) are
more distinguishable during the growth season [15,44], all S1 and S2 images were acquired
during growth seasons. It should be stressed that we tried to use images with a similar day
of year (DOY) (Table 1); this will ensure relatively similar illumination and environmental
conditions. The coincidence is of great importance in the spectral similarity comparison of
training samples.
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Table 1. Satellite images used in this research.

Sensor Date Sensor Date

S1 15 July 2017 S2 11 July 2017
S1 10 July 2018 S2 11 July 2018
S1 5 July 2019 S2 11 July 2019
S1 11 July 2020 S2 20 July 2020
S1 6 July 2021 S2 10 July 2021

The preprocessing of the S1 and S2 images was conducted in SNAP 8 software. The
preprocessing of S1 images included six steps: (1) Applying orbit file. (2) Removal of
thermal noise that may distort image intensity values, particularly in cross-polarized
images. This also leads to reflectance value normalization [45]. (3) Border noise removal. It
eliminates invalid data and low-intensity noise from the scene’s edges. (4) Converting pixel
values (intensity) to backscatter values (sigma0). The comparison of pixel ratios/values
to backscatter ratios allows for the comparison of pixel values at different times in the
same location [46]. (5) Reducing the speckle effect in S1 images using the Refined Lee filter
through a 9 × 9 window size that preserves edges, texture information, point targets, and
linear features in images [32,47]. (6) Last, using 30 m Shuttle Radar Topography Mission
(SRTM) data, geometric errors and distortions in images were corrected. Following the
classification system proposed by Ebrahimy et al. [48], since S2 images include both 10 and
20 m spectral bands, all 20 m resolution bands (5, 6, 7, 8A, 11, and 12) were resampled to
10 m using the nearest neighbor method. A co-registration method was finally conducted to
adjust pixel values of S1 and S2 images. 500 ground control points (GCPs) were used for co-
registration of S1 and S2 images. To this end, S2 images were used as the reference images
and the S1 images were used as the sensed images. We employed a 2nd-order polynomial
as a geometric transformation model and then reprojected the S1 and S2 images into the
same coordinate system (WGS84/URM zone 38N). The accuracy of the co-registered images
ranged between 0.39 and 0.78 pixels (see Appendix A).
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2.2.2. Reference Sample Collection

According to the proposed classification system by the Food and Agriculture Or-
ganization (FAO), training samples were acquired in six different LC classes, namely,
artificial parts and associated lands (hereafter simply built-up), semi-natural and nat-
ural aquatic or frequently flooded vegetation (hereafter simply wetland), barren areas
(hereafter simply bare land), cultivated (rain-fed and irrigation) and managed terres-
trial areas (hereafter simply cropland), semi-natural and natural terrestrial vegetation
(hereafter simply grassland), and water, using very high spatial resolution satellite im-
ages available in Google Earth. The built-up class includes regions comprised of arti-
ficial covers (surfaces) as a result of anthropogenic interventions such as construction
(e.g., cities and roads), excavations (e.g., mines and extractions), or waste disposal. Bare
land refers to regions with no artificial surfaces and vegetative cover of less than 4% (e.g.,
rocky areas, sand dunes, and deserts). Cropland includes regions where natural vegetation
cover has been replaced or removed by human-made vegetation, and therefore requires hu-
man intervention for long-term maintenance. Mostly, all vegetation cultivated for harvest
falls under this class (e.g., wheat farms and gardens). The wetland class represents places
between totally dry and aquatic systems in which the water table is near the earth’s surface
or surfaces are submerged by shallow water such as swamplands or marshes. Vegetation
in such regions changes periodically and is primarily composed of hydrophytes. The
grassland class consists of natural and semi-natural vegetation, where semi-natural refers
to vegetation not planted by humans but influenced by human activities, such as livestock
grazing and deforestation. Finally, the water class represents regions completely covered
by water bodies (e.g., rivers and lakes). High-quality reference samples for the six LC types
were selected by two different methods, including fieldwork and visual interpretation of
fine-resolution images. A total of 3200 high-quality reference samples for the year 2021
were acquired (Table 2).

Table 2. Number of samples and percentage for each land cover type for the year 2021.

Class Number of Samples (%)

Bare land 1280 40
Built-up 224 7

Cropland 384 12
Grassland 480 15

Water 704 22
Wetland 128 4

Total = 3200

2.2.3. Reference Sample Migration

To migrate the obtained high-quality samples from 2021 to other years (2020, 2019,
2018, and 2017), a sample migration workflow was adopted based on ED and SAD. Previous
studies have indicated the suitability of these parameters for pixel similarity comparison
between satellite images at different times [15,40,49]. Spectral vectors are composed of
distance and direction for land surface bodies [39]. The ED measures the spectral distance
(length) between two spectral vectors [45]. The ED between two pixels at different times
can be used to measure the similarity between the two pixels; i.e., a smaller ED represents
higher pixel similarity and vice versa, while an ED of zero indicates complete similarity of
these two pixels [15]. ED (Formula (1)) represents the Euclidean distance between the target
and reference spectra, measured as the square root of the sum of the squared differences
of each spectral band. Xi(t1)

shows the reference spectrum of a training sample pixel at
time t1, Yi(t2)

represents the target spectrum for a training sample pixel at time t2, and i
shows the spectral band index, ranging from 1 to N (number of bands). The SAD measure
represents the direction of spectral changes between two spectral vectors. SAD measures
the angle between two spectral vectors to represent the similarity between the mentioned
vectors [50] and is not sensitive to illumination or shade and can therefore emphasize target



Remote Sens. 2024, 16, 1566 6 of 22

spectra-shape characteristics [15]. SAD equals 1 in the case of complete similarity between
two training sample pixels [39]. In Formula (2), θ is the spectral angle, Xi(t1)

is the reference
training sample pixel at time t1, Yi(t2)

is the target training sample pixel at time t2, and i
shows the spectral band index from 1 to N (number of bands).

ED =

√
∑N

i=1

(
Xi(t1)

− Yi(t2)

)2
(1)

θ = cos−1 ∑N
i=1 Xi(t1)

Yi(t2)√
∑N

i=1

(
Xi(t1)

)2
∑N

i=1

(
Yi(t2)

)2

SAD = cos(θ)

(2)

The reference spectra for each reference sample pixel were extracted from the target
images (S1 and S2). Then, the ED and SAD values were calculated between reference
spectra (2021) and target spectra (2020, 2019, 2018, and 2017) for each reference sample
pixel. The optimal threshold for identifying changed samples from non-changed ones was
selected by trial and error. Averaging was also conducted in this study since average values
are considered a major indicator of convergence of all training samples and have been
successfully applied previously for thresholding [15,30].

The migrated training sample accuracy was assessed using the visual interpretation of
fine-resolution images. Formula (3) was used to calculate the accuracy of migrated training
samples. To this end, the migrated reference samples that were consistent with the actual
LC type were considered truly labeled reference samples (Nr), while the remaining samples
that were inconsistent with the actual LC type were considered false labeled samples (Nw).

Accuracy =
Nr

Nr + Nw (3)

2.2.4. Image Classification

We used shallow machine learning algorithms instead of deep learning algorithms
for image classification since our objective was to evaluate the migrated training samples.
Support Vector Machines (SVM) and Random Forest (RF) are two well-known algorithms
in image classification [51]. In this study, RF and SVM algorithms within GEE were used
for LC classification.

The RF algorithm is an efficient non-parametric machine learning approach that has
been broadly adopted in LC classification [52–54]. RF overcomes some limitations of
parametric classifiers; it can handle high-dimensional and complex data as well as missing
values in data [55]. It runs hundreds of iterations forming a forest of hundreds of classifiers,
wherein each tree selects the target class based on a unique decision, and the final result of
classification is chosen by consensus (majority) voting among determinant trees [56]. The
number of trees (ntree) and variables (mtry) affect the performance of the RF algorithm [57].
Here, 100 decision trees were used for classification (based on trial and error and stability of
the error rate). The square root of the number of features was also incorporated to represent
the number of variables for the RF algorithm. SVM is a machine learning algorithm that is
employed in the field of classification and regression [58]. SVM seeks to find a hyperplane
that optimally splits two classes. Train datasets are used to select the best hyperplane,
while test datasets are used to validate its generalization capabilities [59]. SVM has been
successfully used in many LC classification studies [60–62]. Kernel function (Type) is the
crucial parameter in the SVM algorithm. SVM kernel functions are generally classified into
four clusters as follows: linear, polynomial, Radial Basis Functions (RBF), and sigmoid
kernels [59]. However, RBF is mainly applied in the literature for LC classification and it
has provided good performance [60,63]. Based on this, the RBF function was used in the
SVM algorithm.
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2.2.5. Assessment of Classified Images

Maps obtained from remote sensing data are often erroneous to a certain degree, and
so classification accuracy assessment can identify such errors and determine the overall
classification accuracy using validation samples [64]. The accuracy of generated LC maps in
this study was assessed by three parameters: overall accuracy, producer accuracy, and user
accuracy, all of which were calculated by the technique proposed by Olofsson et al. [65]. It
is worth mentioning that seventy percent of the collected reference samples were dedicated
to training the model, while the remaining thirty percent were dedicated to accuracy
assessment. The proposed method by Olofsson et al. [65] enables us not only to determine
the overall accuracy of the generated maps but also the accuracy of each individual class.

3. Results
3.1. Spectral Reflectance Features and Patterns throughout the Study Years

Twenty percent of training samples were randomly selected from each LC class and
their reflectance and backscatter values were extracted for different years (Figures 3 and 4).
The spectral signature for the built-up class shows the lowest amount of reflectance in the
blue spectrum (band 2) and the highest reflectance in the red spectrum (bands 11 and 12)
for S2 images. Backscatter analysis of the built-up class under different polarizations of S1
images indicated higher backscatter from VV polarization compared to VH. Maximum and
minimum backscatter for bare land showed similar patterns to the built-up class. Bare land
showed the lowest reflectance in the blue spectrum (band 2) and highest reflectance in the
red spectrum (band 11), with higher backscatter values in VV polarization in comparison
to VH polarization. The cropland class has the highest values in bands 7, 8, and 8A
(near infrared spectrum) and the lowest values in band 2 (blue spectrum). In this class,
backscatter values of VV polarization are higher compared to the values of VH polarization.
In the wetland class, band 2 had the highest amount of reflectance while band 8A showed
the lowest corresponding values, with VV polarization holding higher backscatter values.
In the grassland class, bands 2 and 11 had the highest and lowest reflectance values,
respectively, and VH polarization values were lower compared to VV. The spectral behavior
curve for the water class showed spectral bands rising in the green and red spectrum (bands
3 and 4) as having the highest reflectance values, while near and short-infrared spectrum
(bands 6, 7, 8, 8A, 11, and 12) held the lowest reflectance values among S2 images for this
class. Notably, both VV and VH polarization corresponded to low backscatter values for
the water class.

In general, the highest reflectance and backscatter values belong to the built-up class
and the lowest reflectance and backscatter come from the water class. Accordingly, the
highest reflectance among training samples from the built-up class was observed in band
11 of the S2 images for 2019, valued at 0.9003. The lowest reflectance value was 0.0086 in
band 12 of S2 images in the water class for 2021. The lowest backscatter among S1 images
was observed in the water class for the year 2018, at 0.0005 db. The highest backscatter
among training samples from S1 images was observed in 2018 in the built-up class for VV
polarization (i.e., 0.7708 db).

3.2. ED and SAD Thresholding

The statistical mean values (Table 3) were calculated to determine the threshold value
for distinguishing changed and non-changed (stable) reference samples for different LCs.
The mean ED and SAD values for different S2 images in the built-up class were obtained
at less than 0.15 and over 0.95, respectively. Average ED and SAD values for the built-up
class under different polarizations (S1 images) were also obtained at less than 0.15 and
over 0.95. Accordingly, pixel values of samples from the built-up class with ED of less than
0.15 and SAD of more than 0.95 were considered non-changed (migrated) training pixels.
Thresholds were thus identified for all satellite images and LC classes, with one specific
threshold set for ED and SAD parameters; 0.15 for ED and 0.95 for SAD.
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Table 3. Statistical mean of ED and SAD for different LC classes. (A) built-up; (B) bare land;
(C) cropland; (D) wetland; (E) grassland; (F) water class.

Polarization Band

VV VH 2 3 4 5 6 7 8 8A 11 12

A
ED_Mean 0.1484 0.0087 0.1237 0.1294 0.1366 0.1067 0.1035 0.0984 0.1322 0.099 0.1119 0.1172

SAD_Mean 0.9954 0.9999 0.9896 0.9899 0.9903 0.9946 0.9949 0.9956 0.9918 0.9956 0.9961 0.9957

B
ED_Mean 0.0385 0.0049 0.0206 0.0226 0.0253 0.0262 0.0254 0.0245 0.0251 0.0249 0.0248 0.0247

SAD_Mean 0.9985 0.9999 0.9984 0.9985 0.9986 0.9985 0.9986 0.9987 0.9986 0.9987 0.9988 0.9989

C
ED_Mean 0.0323 0.0064 0.0242 0.0282 0.0485 0.0405 0.0615 0.0832 0.0832 0.0803 0.0419 0.0438

SAD_Mean 0.9989 0.9999 0.9993 0.999 0.997 0.9982 0.9972 0.9951 0.9952 0.9956 0.9982 0.9979

D
ED_Mean 0.021 0.0044 0.0253 0.0296 0.0473 0.0436 0.0519 0.0621 0.0713 0.0776 0.1059 0.073

SAD_Mean 0.9996 0.9999 0.9993 0.9992 0.998 0.9983 0.998 0.9973 0.9964 0.9959 0.9906 0.9951

E
ED_Mean 0.0252 0.0046 0.0462 0.0445 0.0541 0.0512 0.0448 0.047 0.049 0.0468 0.0502 0.0453

SAD_Mean 0.9989 0.9999 0.9931 0.9941 0.9945 0.9948 0.9961 0.9965 0.9965 0.9968 0.9967 0.9968

F
ED_Mean 0.0141 0.0008 0.1109 0.1256 0.1447 0.1554 0.1229 0.1211 0.1138 0.1109 0.0332 0.0275

SAD_Mean 0.9993 0.9999 0.9835 0.9839 0.9837 0.9819 0.9804 0.9805 0.9817 0.9813 0.9984 0.999
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3.3. Migrated Reference Samples for Different Years

As the results show (Figure 5), when S1 images were only used for reference sample
migration purposes, the percentage of migrated reference samples from the reference year
(2021) to 2020, 2019, 2018, and 2017 were 90%, 89%, 85%, and 82%, respectively. With the
independent use of S2 data, the percentage of migrated reference samples from the reference
year (2021) to 2020, 2019, 2018, and 2017 were 86%, 84%, 81%, and 78%, respectively.

As can be seen in Figure 5, the number of migrated reference samples using SAD was
higher in comparison to the ED parameter. Since SAD is insensitive to illumination and
shade, which can alter the spectral size (distance) of two pixels (which is calculated in
ED), it migrates a higher number of training samples compared to ED. Thresholding was
also conducted for both parameters (ED and SAD) and images (S1 and S2) to ensure the
accuracy of migrated training samples, the result of which was a lower number of migrated
training samples. The percentage of migrated training samples for different classes and
satellite images (S1, S2 and their intersection) indicated the highest percentage of migrated
training samples throughout the years belonged to water, bare land, built-up, grassland,
cropland, and finally wetland (Figure 6).
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3.4. Reference Sample Migration for Various LC Classes

Migrated training samples (labeled as unchanged) were compared with high spatial
resolution satellite images for different years. Accordingly, the accuracies of migrated
training samples obtained from S1 images for 2020, 2019, 2018, and 2017 were 87.68, 87.04,
86.41, and 85.81%, respectively. The corresponding values for S2 images for 2020, 2019,
2018, and 2017 were obtained as 96.82, 96.2, 95.54, and 94.87%, respectively. The overall
accuracies of migrated samples by the integrated use of S1 and S2 data for 2020, 2019, 2018,
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and 2017 were measured at 98.25, 97.63, 96.92, and 96.2%, respectively. These outcomes
indicate that integration of optical and RADAR data can lead to superior accuracy in the
sample migration task. Moreover, using S2 images alone resulted in higher accuracy of
migrated training samples compared to the independent use of S1 images.

Further assessment of satellite images, spectral bands, and RADAR polarization in
training sample migration revealed the highest performance of S2 images in training sample
migration for the water class, specifically spectral bands 4 and 8. As for S1 images, VV
polarization showed higher performance compared to VH. S2 images also held superior
performance in the matter of other LC classes as well (Table 4). With the exception of
grassland and cropland, VV polarization showed higher accuracy than VH for training
sample migration.

Table 4. Most relevant spectral bands and RADAR polarization for training sample migration for
different LC classes.

Class S2 (Band) S1 (Polarization)

Built-up 8, 8A, 11 VV
Bare land 11 VV
Cropland 4, 8, 11 VH
Wetland 5, 6, 7, 8, 8A VV

Grassland 4, 8, 11 VH
Water 4, 8 VV

3.5. Image Classification and Accuracy Assessment

Satellite image classification (Figure 7) was conducted on a combination of data from
S1 and S2 images. To this end, all spectral bands from the S2 image set (with the exception
of bands 1, 9 and 10) and all polarizations from the S1 image set were incorporated into the
classification. Classification accuracies for different training samples (migrated training
samples from S1, S2 and S1 combined with S2 image sets) showed that migrated training
samples based on S1 images had lower accuracy compared to those migrated from S2
images, while migrated samples obtained from the shared use of images (S1 and S2) held
the highest classification accuracy.

The corresponding values for overall accuracy among migrated training samples from
S1 and S2 images were obtained (Table 5), in respective order, as 84.16% and 93.37%, for
the year 2020 using the RF algorithm. The highest overall accuracy (i.e., 95.55%) was
achieved for the combination of S1 and S2 images (Table 5) for the year 2020. The overall
classification accuracy for 2021 using training samples obtained in 2021 (Table 6) was
97.01%. As a result of using the SVM algorithm, the overall accuracy of classified images
using migrated training samples from S1 and S2 images was obtained, in respective order,
as 82.86% and 92.07% for the year 2020 (Table 7). The combination of S1 and S2 images for
the year 2020 had the highest overall accuracy (94.25%). Using training samples obtained
in 2021 (Table 8), the overall classification accuracy for 2021 was 95.71%.

Among different LC classes, the water class had the best producer (90.8% using the RF
algorithm and 89.5% using the SVM algorithm) and user accuracies (90.05% using the RF
algorithm and 88.74% using the SVM algorithm) for migrated training samples acquired
from S1 images in 2020. In order after the water class, built-up, bare land, grassland, and
cropland showed the highest classification accuracies among different LC classes, while
wetland held the lowest classification accuracy (i.e., 60.71% producer accuracy using the
RF algorithm in 2018, 59.41% producer accuracy using the SVM algorithm in 2018, 69.5%
user accuracy in 2017, and 68.2% user accuracy using the SVM algorithm in 2017).

As the findings showed, the water class in 2020 had the highest producer (97.37%
using the RF algorithm and 96.38% using the SVM algorithm) and user accuracy (97.37%
using the RF algorithm and 96.07% using the SVM algorithm) among migrated training
samples based on S2 images. The lowest producer and user accuracies were observed in
the wetland class in 2017, with respective values of 75.18% and 79.64% for the RF algorithm
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and 73.88% and 78.34% for the SVM algorithm. A combination of S1 and S2 images led to
the highest producer and user accuracy for the water class in 2020, measured at 97.86% and
98.02% for the RF algorithm, respectively. Producer and user accuracy based on the SVM
algorithm for the water class in 2020 (using a combination of S1 and S2 images) were 96.56%
and 96.72%, respectively. The lowest corresponding accuracies based on the RF algorithm
were observed in the wetland class, with 85.91% producer accuracy in 2018 and 88.87% user
accuracy in 2017. Similarly, according to the SVM algorithm, the lowest producer accuracy
was observed in the wetland class in 2018, with 84.61% and 87.57% user accuracy in 2017.
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Table 5. Classification accuracy of the RF algorithm and migrated training samples based on S1
images, S2 images and the intersection of S1 and S2 images.

Class

S1

2017 2018 2019 2020

OA: 80.53 OA: 81.55 OA: 82.13 OA: 84.16
PA UA PA UA PA UA PA UA

Built-up 86.8 89.1 89.28 88.25 89.11 89.17 90.37 86.21
Bare land 84.93 81.79 85.33 85.67 88.57 83.98 86.75 86.09
Cropland 71.29 74.33 72.02 74.45 70.06 70.68 72.02 76.38
Wetland 69.13 69.5 60.71 71.33 65.45 70.54 68.14 75.48

Grassland 72.14 79.19 80.3 75.72 71 77.73 82.16 82.83
Water 87.85 89.12 89.78 89.78 89.47 90.04 90.8 90.05

Class

S2

2017 2018 2019 2020

OA: 90.34 OA: 91.79 OA: 91.92 OA: 93.37
PA UA PA UA PA UA PA UA

Built-up 95.92 95.88 95.74 95.45 96.93 96.95 97.46 97.25
Bare land 93.85 92.03 95.25 94.43 95.92 93.11 95.4 94.75
Cropland 82.39 87.57 85.86 87.94 83.54 86.67 85.28 91.78
Wetland 75.18 79.64 80.51 82.09 80.52 84.54 81 85.85

Grassland 82.82 89.89 90.6 90.44 86.32 89.13 93.71 91.95
Water 96.4 96.93 97.2 96.67 97.2 97.03 97.68 97.37

Class

Intersection of S1 and S2

2017 2018 2019 2020

OA: 93.37 OA: 94.15 OA: 94.51 OA: 95.55
PA UA PA UA PA UA PA UA

Built-up 96.77 96.19 97.02 96.13 97.04 95.74 97.1 97.54
Bare land 96.63 94.28 96.02 95.14 96.63 94.54 97.09 96.12
Cropland 87.45 91.39 89.46 93.07 90.35 91.91 92.78 94.61
Wetland 87.36 88.87 85.91 89.37 87.02 90.95 87.45 91.65

Grassland 88.52 91.62 94.67 93.37 90.89 93.6 96 95.69
Water 97 97.05 97.18 97.1 97.05 97.15 97.86 98.02

Table 6. Image classification accuracy based on the RF algorithm and training samples obtained
in 2021.

Class 2021

OA: 97.01

PA UA

Built-up 97.86 97.54
Bare land 97.09 97.5
Cropland 96.31 96.72
Wetland 93.73 94.73

Grassland 97 97.45
Water 98.12 98

Among images classified for 2021, the highest producer and user accuracies were
again observed for the water class (i.e., 98.12% and 98% using the RF algorithm and 96.82%
and 96.7% using the SVM algorithm). The lowest producer and user accuracies for the same
year were also observed for the wetland class (93.73% and 94.73% for the RF algorithm and
92.43% and 93.43% for the SVM algorithm).
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Table 7. Classification accuracy of the SVM algorithm and migrated training samples based on S1
images, S2 images and the intersection of S1 and S2 images.

Class

S1

2017 2018 2019 2020

O.A: 79.23 O.A: 80.25 O.A: 80.83 O.A: 82.86
P.A. U.A. P.A. U.A. P.A. U.A. P.A. U.A.

Built-up 85.5 87.8 87.98 86.95 87.81 87.87 89.07 84.91
Bare land 83.63 80.49 84.03 84.37 87.27 82.68 85.45 84.79
Cropland 69.99 73.03 70.72 73.15 68.76 69.38 70.72 75.08
Wetland 67.73 68.2 59.41 70.03 64.15 69.24 66.84 74.18

Grassland 70.84 77.89 79 74.42 69.7 76.43 80.86 81.53
Water 86.55 87.82 88.48 88.48 88.17 88.75 89.5 88.74

Class

S2

2017 2018 2019 2020

O.A: 89.04 O.A: 90.49 O.A: 90.62 O.A: 92.07
P.A. U.A. P.A. U.A. P.A. U.A. P.A. U.A.

Built-up 94.62 94.58 94.44 94.15 95.63 95.65 96.16 95.95
Bare land 92.55 90.73 93.95 93.13 94.62 91.81 94.1 93.45
Cropland 81.09 86.27 84.56 86.64 82.24 85.37 83.98 90.48
Wetland 73.88 78.34 79.21 80.79 79.22 83.24 79.7 84.55

Grassland 81.52 88.59 89.3 89.14 85.02 87.83 92.41 90.65
Water 95.1 95.63 95.9 95.37 95.9 95.73 96.38 96.07

Class

Intersection of S1 and S2

2017 2018 2019 2020

O.A: 92.07 O.A: 92.85 O.A: 93.21 O.A: 94.25
P.A. U.A. P.A. U.A. P.A. U.A. P.A. U.A.

Built-up 95.47 94.89 95.72 94.83 95.74 94.44 95.8 96.24
Bare land 95.33 92.98 94.72 93.84 95.33 93.24 95.79 94.82
Cropland 86.15 90.09 88.16 91.77 89.05 90.61 91.48 93.31
Wetland 86.06 87.57 84.61 88.07 85.72 89.65 86.15 90.35

Grassland 87.22 90.32 93.37 92.07 89.59 92.3 94.7 94.39
Water 95.7 95.75 95.88 95.8 95.75 95.85 96.56 96.72

Table 8. Image classification accuracy based on the SVM algorithm and training samples obtained
in 2021.

Class 2021

OA: 95.71

PA UA

Built-up 96.56 96.24
Bare land 95.79 96.2
Cropland 95.01 95.42
Wetland 92.43 93.43

Grassland 95.7 96.15
Water 96.82 96.7

4. Discussion
4.1. Spectral Reflectance Features and Patterns for Different Years

The highest reflectance value observed for the built-up class can be interpreted given
that this class primarily encompasses impermeable urban areas [66]. Such surfaces are
generally known to produce the highest reflectance in the short-infrared spectrum (bands
11 and 12 of S2 satellite images). Moreover, the existence of hard objects and two- or
three-dimensional reflectors (such as buildings) in urban areas contributes to the high
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backscattering values observed in SAR images for the built-up class. Considering that
co-polarization commonly causes stronger backscattering in SAR images, VV polarization
for the built-up class also contributed to the highest backscattering. The spectral signature
of the water class is such that the highest reflectance occurs in the green and red spectrum
corresponding to bands 3 and 4 of the S2 images, whereas reflectance values were low for
bands 6, 7, 8, 8A, 11, and 12, given that wavelengths greater than 0.8 µm rarely cause any
significant reflections in optical images.

The general spectral signatures for the bare land and grassland classes were almost
constant over the study years. This can be interpreted with respect to the homogeneity
and low variability of the mentioned classes compared to the rest. On the other hand,
spectral signatures for built-up, wetland and water also share similar trends throughout
the different study periods, with only slight differences observed in certain years. This
is explained by the heterogeneity of the built-up class and the existence of mixed pixels.
Alterations in water levels and vegetation in the wetland class can also lead to changes in
the spectral signature of this class. Similar assumptions may be true for the water class,
given the changes in water level and quality throughout the years, which most probably
cause changes in the class’s spectral signature. Nevertheless, significant changes were
observed in the spectral signature for the cropland class, specifically in 2017 and 2018.
This is presumably caused by anomalies in pixels or changes in the type of cultivation in
the region.

4.2. ED and SAD Thresholding

The impact of threshold changes on ED and SAD accuracy for migrated training
samples in 2020 showed that any increase in ED and decrease in SAD values (apropos
of the determined threshold of 0.15 for ED and 0.95 for SAD) caused a decrease in the
accuracy of the reference sample migration task (Figure 8). In contrast, decreased ED and
increased SAD values corresponded to higher reference sample migration task accuracy.
Moreover, decreased ED and increased SAD values cause a considerable drop in the
number of migrated training samples, which in turn causes a shortage of sufficient training
samples for image classification. For example, decreases in ED values from 0.15 to 0.1
and increases in SAD from 0.95 to 0.99 resulted in significant reductions in the migrated
number of samples. The obtained thresholds in this study are slightly different than those
incorporated by Huang et al. [15] and Phan et al. [32]. Huang et al. [15] proposed 0.2 as
the threshold for ED and 0.9 for SAD, while the proportionate values declared by Phan
et al. [32] were 0.05 for ED and 0.95 for SAD. This difference in threshold values may be
caused by the type of satellite image, study period, and differences in LC.

4.3. Migrated Training Samples in Different Years

The statistical analysis of migrated training samples throughout different years showed
an increase in the time difference between the reference and target year yielded decreases
in the number of migrated training samples (see Appendix B). For example, it decreased to
82% in 2017 from 90% in 2020 using S1 images for the sample migration purpose. In the
case of S2 images, this reduction was 6%. It dropped to 78% from 86% between 2020 and
2017. In the case of shared use of S1 and S2 data, the descending trend can be seen from
78% in 2020 to 69% in 2017. As apparent by the numbers of migrated training samples for
different LC classes, the water class holds the highest number of migrated training samples
from images of different years, most probably because of the class homogeneity as well
as its relatively large span compared to the entire study region. In contrast, the lowest
numbers of migrated training samples were observed in the wetland class, which could be
described by the heterogeneity and corresponding small area size of this LC class.
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4.4. Migrated Training Sample Accuracy

Accuracy assessments of migrated training samples show that despite the higher
number of migrated training samples coming from S1 images, the overall accuracy of
migrated samples is lower compared to migrated samples from S2 images. Yet, the low
number of LC classes somewhat ameliorates the slight dwindles in accuracy of S1 migrated
images. On the other hand, the higher number of spectral bands and the absence of speckle
effects in S2 images promotes the accuracy of migrated training samples from this image
set compared to S1 images. Training sample migration based on the shared use of S1 and
S2 images also showed higher migration accuracy and sample migration rate.

The accuracy for migrated training samples per LC class, in order from highest to low-
est, was obtained by water, built-up, bare land, grassland, cropland, and wetland classes.
The homogeneity of the water class and differences in the spectral behavior of different
bands of the S2 sensor for this class (high reflectance in the green and red area bands and
low reflectance in the short and near-infrared bands) help better distinguish and migrate
training samples, while the wetland class suffers from lower migration accuracy due to the
variability of vegetation and heterogeneity of this class as well as its spectral similarity with
other types of vegetation (cropland and grassland). Similar conditions are also observed in
RADAR backscattering of images from this class, wherein lower values of backscattering
from water surfaces have resulted in less inconsistency and higher accuracy of migrated
samples. On the other hand, relatively similar backscattering values for wetland and
other vegetative covers (cropland and grassland) caused by volume scattering have also in-
creased inconsistency of migrated training samples from these classes and thereby reduced
their accuracy.

4.5. Image Classification and Accuracy Assessment

The comparison of RF and SVM algorithms showed that the RF algorithm provided
better results in all cases (migrated training samples based on S1, S2, and the combination of
S1 and S2 images). The highest overall accuracy based on migrated training samples from S1
images in 2020 was 84.16% and 82.86% for RF and SVM algorithms, respectively. According
to the migrated training samples from S2 images in 2020, the overall accuracy of RF and
SVM algorithms was 93.37% and 92.07%, respectively. The overall accuracy of RF and
SVM algorithms in 2020 was 95.55% and 94.25%, respectively, based on migrated training
samples from S1 and S2 images. However, both algorithms performed well and classified
different LCs accurately. Considering assessments of the overall classification accuracy
of different training samples and images, the lowest classification accuracy (79.23%) was
observed for images classified using the SVM algorithm and training samples migrated to
2017 from S1 images, while the highest classification accuracy (95.55%) was observed for
the RF algorithm and training samples migrated in 2020 using both S1 and S2 images.

5. Conclusions

The lack of sufficient, good quality training samples, over time, is a key challenge in
satellite image classification using supervised classification algorithms. To address this, the
present study sought to employ training sample migration using training samples acquired
in 2021 along with satellite images from the S1 and S2 missions to obtain quality training
samples from 2020, 2019, 2018, and 2017. To this end, ED and SAD were used to compare
pixel values of training reference samples with corresponding pixels in S1 and S2 images
for different years. Thresholding was then applied to ED and SAD parameters and training
reference samples with ED values lower than 0.15 and SAD greater than 0.95 for both image
types (S1 and S2) were identified as non-changed (migrated) training samples. Based on
the obtained results, training samples migrated based only on S1 images showed the lowest
accuracy, while those migrated on the shared use of both S1 and S2 images had the best
accuracy. Migrated training samples in the water class held the highest accuracy among
the LCs studied, while wetland held the lowest accuracy. The results further showed that
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increases in time difference between reference and target years led to decreased accuracy of
migrated training samples.

Training sample quality is a significant determinant of classification accuracy. Insuffi-
cient and low-quality training samples are a root cause for error in various classification
purposes. The method proposed in this study enables the generation of quality training
samples to be used for different years and different geographical regions. As the findings
suggest, quality training samples can be obtained for supervised classification algorithms,
which can be categorized apropos of different LC classes. The simultaneous use of optical
and RADAR images for training sample migration in this study facilitates the generation
of quality training samples for different environmental and climatic conditions. As S1
images were registered since 2014 and S2 images since 2017 (level-2A surface reflectance
images) and both were required for simultaneous use in this study, the study period was
selected as a short interval, starting from 2017. Given the lack of time series LC maps of the
study region, the samples used for assessment of migrated training sample accuracy and
image classification accuracy were acquired from Google Earth images. Future endeavors
are encouraged to incorporate different RADAR images at different wavelengths (such
as TerraSAR-x and ALOS-PALSAR) and RADAR-derived vegetation indices for accurate
training sample migration. The effects of increases in the number of LC classes on accuracy
of training samples migrated from optical and RADAR images is another prospective
issue requiring further investigation. Additionally, since selecting an optimal threshold to
differentiate changed samples from unchanged samples is crucial for the effective comple-
tion of the sample migration process, it is recommended to evaluate the viability of using
automatic threshold approaches for sample migration. Finally, future research can evaluate
different spectral similarity measures in sample migration.
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Appendix A

Table A1. Accuracy of the co-registered images.

Year RMSE (pixels)

2017 0.65
2018 0.78
2019 0.58
2020 0.45
2021 0.39
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Appendix B

Table A2. Number of migrated samples and percentage for each land cover type for the year 2020.

Class Number of Migrated Samples (%)

Bare land 871 68
Built-up 135 60

Cropland 207 54
Grassland 264 55

Water 507 72
Wetland 63 49

Total = 2047

Table A3. Number of migrated samples and percentage for each land cover type for the year 2019.

Class Number of Migrated Samples (%)

Bare land 845 66
Built-up 130 58

Cropland 200 52
Grassland 255 53

Water 493 70
Wetland 60 47

Total = 1983

Table A4. Number of migrated samples and percentage for each land cover type for the year 2018.

Class Number of Migrated Samples (%)

Bare land 832 65
Built-up 128 57

Cropland 192 50
Grassland 250 52

Water 486 69
Wetland 59 46

Total = 1947

Table A5. Number of migrated samples and percentage for each land cover type for the year 2017.

Class Number of Migrated Samples (%)

Bare land 807 63
Built-up 123 55

Cropland 188 49
Grassland 240 50

Water 472 67
Wetland 56 44

Total = 1886
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