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Abstract: Soil salinization has seriously affected agricultural production and ecological balance in
the Yellow River Delta region. Rapid and accurate monitoring of soil salinity has become an urgent
need. Traditional machine learning models tend to fall into local optimal values during the learning
process, which reduces their accuracy. This paper introduces Circle map to enhance the crayfish
optimization algorithm (COA), which is then integrated with the regularized extreme learning
machine (RELM) model, aiming to improve the accuracy of soil salinity content (SSC) inversion in
the Yellow River Delta region. We employed Landsat5 TM remote sensing images and measured
salinity data to develop spectral indices, such as the band index, salinity index, vegetation index, and
comprehensive index, selecting the optimal modeling variable group through Pearson correlation
analysis and variable projection importance analysis. The back propagation neural network (BPNN),
RELM, and improved crayfish optimization algorithm–regularized extreme learning machine (ICOA-
RELM) models were constructed using measured data and selected variable groups for SSC inversion.
The results indicate that the ICOA-RELM model enhances the R2 value by an average of about 0.1
compared to other models, particularly those using groups of variables filtered by variable projection
importance analysis as input variables, which showed the best inversion effect (test set R2 value of
0.75, MAE of 0.198, RMSE of 0.249). The SSC inversion results indicate a higher salinization degree in
the coastal regions of the Yellow River Delta and a lower degree in the inland areas, with moderate
saline soil and severe saline soil comprising 48.69% of the total area. These results are consistent with
the actual sampling results, which verify the practicability of the model. This paper’s methods and
findings introduce an innovative and practical tool for monitoring and managing salinized soils in
the Yellow River Delta, offering significant theoretical and practical benefits.

Keywords: soil salinity inversion; Yellow River Delta; regularized extreme learning machine;
improved crayfish optimization algorithm; chaotic mapping

1. Introduction

Salts accumulate in the soil due to groundwater-associated salinity, non-groundwater-
associated salinity, and irrigation-induced salinity, resulting in the occurrence of soil salin-
ization. This phenomenon can have significant impacts on agricultural production, en-
vironmental health, and regional economies [1]. In China, the total area of saline soils
accounts for about 4.88% of the country’s total usable land area. Saline soils are primarily
found in arid, semi-arid, and semi-humid regions [2]. The Yellow River Delta, situated in
Dongying City, Shandong Province, represents China’s best-preserved, largest, and most
recent wetland ecosystem within the warm-temperature zone. The area experiences low
precipitation and high evaporation, leading to the accumulation of salts on the soil surface.
Its proximity to the Bohai Sea facilitates seawater intrusion, exacerbated by its low-lying
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topography and inadequate drainage, resulting in high soil salinity levels. Over time,
due to the combined effects of climate conditions and seawater, as well as China’s limited
knowledge of saline land management and outdated technology, more than half of the land
in the Yellow River Delta has become salinized soil, resulting in the formation of the current
semi-humid saline area [3]. Accurate monitoring of salinity in the soil and improvement of
soil salinization has become an urgent need.

Before the adoption of remote sensing, soil salinity was monitored through time-
consuming and labor-intensive traditional methods like gravimetric analysis and electrical
conductivity measurements, limiting the scope of salinity assessment across large areas [4,5].
Remote sensing technology offers the advantage of wide-range monitoring with high spatial
and temporal resolution, providing immediate and cost-effective data, which play a crucial
role in monitoring soil salinity content [6]. Soil salinity can be effectively characterized by
band indices [7]. Subsequently, researchers have incorporated the other spectral indices as
modeling variables in salinity inversion studies, yielding favorable outcomes [8–10]. Salt
inversion models can be broadly classified into two categories: linear fitting models and
nonlinear models. Linear models mainly include multivariate spline autoregressive model
(MSA) [11], multivariate linear regression model (MLR) [12], exponential fitting model
(EF) [13], partial least squares regression model (PLSR) [14], and so on. Nonlinear models
primarily encompass the BPNN model [15], support vector machine model (SVM) [16],
random forest model (RF) [17], extreme learning machine model (ELM) [18], and other
machine learning models.

In scenarios where machine learning models are employed for regression analysis,
researchers often encounter a significant challenge: the models may contain numerous
parameters, and the initial settings of these parameters critically influence the model’s
final performance. Traditionally, these parameters are initialized randomly; however, this
method has a clear drawback: it may lead the model to converge to local minima during
training, preventing it from reaching the global optimum, thereby limiting its predictive
capability [19]. The use of intelligent optimization algorithms has proven beneficial in
effectively addressing this challenge. Genetic algorithms, simulated annealing, and parti-
cle swarm optimization are capable of performing global searches within the parameter
space. During the model’s iterative training process, intelligent optimization algorithms
continuously adjust its fitness value, thereby evaluating and enhancing selected parameters,
reducing prediction errors, and enhancing accuracy [20]. The integration of intelligent
optimization algorithms with traditional machine learning models has produced excellent
outcomes in regression prediction research. This approach enhances both the predictive
accuracy and the generalizability of the models across various domains. The integrated
models, such as the particle swarm optimization–extreme learning machine (PSO-ELM) [21],
bat optimization algorithm–extreme learning machine (BOA-ELM) [22], the estimation dis-
tribution algorithm–extreme learning machine (EDA-ELM) [23], genetic algorithm-support
vector machine (GA-SVM) [24], and whale optimization algorithm–random forest (WOA-
RF) [25], incorporate intelligent optimization algorithms into machine learning models
with the aim of optimizing parameter selection and enhancing model performance. These
methods have demonstrated efficacy in various fields, including financial market forecast-
ing, bioinformatics, environmental monitoring, and energy consumption prediction. This
integrated model is extensively employed in SSC inversion studies. Zhao Wenju and his
team enhanced the BPNN model using PSO, mind evolutionary algorithm (MEA), and
GA, selecting the western corridor of China’s Taolai River Basin as their study area. It was
demonstrated that the accuracies of the PSO-BPNN, MEA-BPNN, and GA-BPNN models
surpassed those of the standalone BPNN model, with the GA-BPNN model emerging as
the most effective salinity inversion model, achieving an R2 of 0.6659 [26]. Yang Lianbing
and his colleagues employed the GA and the Bayesian optimization algorithm (BOA) to
optimize subsets of inversion parameters and RF model parameters, respectively, sub-
sequently constructing GA-RFR and BOA-RFR salt inversion models. Results indicated
that the BOA-RFR model achieved the highest predictive accuracy [27]. To enhance the
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predictive performance of the SVM, Xiaohong Zhou and his colleagues employed PSO, gray
wolf optimization (GWO), and differential evolution algorithms (DE) for SVM parameter
optimization, resulting in the development of PSO-SVM, GWO-SVM, and DE-SVM models
for the Ebinur Lake Wetland National Nature Reserve (ELWNNR) area’s SSC inversion.
Ultimately, the DE-SVM model demonstrated superior performance, evidenced by an R2

value of 0.56. Utilizing this model, the authors mapped soil salinity in the ELWNNR area
for August 2018 and May 2019 [28]. The primary strength of this methodology lies in its
systematic exploration of the parameter space, eschewing dependence on randomness or
unidirectional gradient descent. During the iterative process, the algorithm enables the
model to effectively circumvent local optima and progressively advance towards a solution
that more closely approximates the global optimum. It has been proven that integrating
intelligent optimization algorithms into the training process of machine learning models
can significantly improve the performance of the models on regression tasks, both in terms
of prediction accuracy and generalization ability of the models [29].

The crayfish optimization algorithm (COA) [30], proposed in 2023, simulates the
crayfish’s heat avoidance, competition, and foraging behaviors in varying environmental
temperatures, and has the ability of fast searching speed, strong searching ability, and the
ability to effectively balance the global search and local search. The COA algorithm exhibits
sluggish convergence toward the optimal solution during the search phase. In this paper,
the COA is improved by using the chaotic population initialization method to improve the
search capability of the model. Furthermore, the improved COA (ICOA) is integrated with
a machine learning model to analyze soil salinity information in the Yellow River Delta
region. This integration aims to mitigate the influence of random initialization parameters
on the performance of the salt inversion model.

This paper is centered on the Yellow River Delta region as the study area. Twenty-
nine spectral indices across four categories (band index, salinity index, vegetation index,
and composite index) were extracted from Landsat5 TM image data. Two optimal sets of
input variables were determined using two different variable screening methods. The SSC
inversion model was constructed by using BPNN, RELM, and ICOA-RELM. Comparative
analysis was performed to evaluate the performance of different combinations of modeling
variables and models. The most accurate and stable model was selected to create a spatial
distribution map of soil salinity in the Yellow River Delta region.

2. Materials and Methods

The content is organized into two primary sections, namely the Materials and Methods
sections. The Materials section mainly includes the basic overview of the study area, the
acquisition and analysis of experimental data, and the processing of remote data. The
Methods section is a critical component of the paper that describes in detail the intelligent
optimization algorithm used and the improvement of the optimization algorithm. Finally,
it describes the technical route of the research in this paper.

2.1. Study Area

The Yellow River Delta, situated in Dongying City in Shandong Province, is located
between the Bohai Sea and Laizhou Bay, with its coordinates ranging from 118◦9′ to
119◦18′E and 37◦16′ to 38◦9′N, as shown in Figure 1. The Yellow River Delta covers an
area of approximately 5400 square kilometers. The region experiences an average annual
temperature of 12.3–12.8 ◦C, with an average of 2590–2830 h of sunshine per year. The
average annual precipitation ranges from 542.3–842 mm, with the majority occurring
during the summer season. Additionally, the average evapotranspiration in the area is
750–2400 mm. The region falls within the warm-temperate zone and is characterized
by a semi-moist continental monsoon climate [31]. The vegetation in the area can be
categorized into two main types: artificial forests consisting of acacia, poplar, cotton, and
other cultivated plants, and natural vegetation including reeds, tamarisks, winged alkali
fluff, swede, and white fescue. The region is characterized by its vastness and topographic
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complexity. However, several factors contribute to the accumulation of salts in the soil,
including poor runoff drainage, low topography, high evaporation rates compared to
rainfall, and recurrent storm surges. These factors have a significant impact on the region’s
ecology and agricultural productivity [32].

Figure 1. Study area and sampling point location distribution map.

2.2. Test Data Acquisition and Preprocessing
2.2.1. Soil Sample Analysis

The soil salinity data used in this paper were obtained from the National Science
and Technology Resources Shared Service Platform–National Earth System Science Data
Center (http://www.geodata.cn) (accessed on 1 March 2023). Soil samples were collected
from the field in October 2003. A total of 94 sampling points were evenly distributed
throughout the study area, with an average spacing of 6 km and sampling depths ranging
from 30 to 40 cm. The locations of the sampling points can be seen in Figure 1. At the time
of sample collection, the sample number, longitude, latitude, feature type, groundwater
level, and collection time were recorded. The data were processed and analyzed in the
laboratory to obtain the pH, organic matter content, ion concentrations, and SSC. The data
characteristics of the sampling points are shown in Table 1. The maximum value of SSC is
2.036%, the minimum value is 0.044%, the average value is 0.547%, the standard deviation
is 0.463%, and the coefficient of variation is 0.846. (The coefficient of variation reflects
the dispersion of the sampling point values, with a coefficient of variation less than 0.1
indicating weak variability, between 0.1 and 1 indicating moderate variability, and greater
than 1 indicating strong variability.) In this paper, the coefficient of variation falls within
the range of moderate variability.

Table 1. Mathematical statistics of soil salt content.

Dataset Sample Size Min (%) Max (%) Avg (%) Standard Deviation (%) Coefficient of Variation

SSC 94 0.044 2.036 0.547 0.463 0.846

2.2.2. Remote Sensing Data Acquisition and Preprocessing

In this paper, we selected the Landsat5 TM remote sensing image captured on 26
October 2003, which corresponds to the sampling time of the soil salinity measurement
data. The image has a spatial resolution of 30 m and was acquired from the geospatial data
cloud (https://www.gscloud.cn/) (accessed on 2 March 2023). The image was preprocessed

http://www.geodata.cn
https://www.gscloud.cn/
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using Envi 5.3.1.0 software, which included radiometric calibration, atmospheric correction,
and cropping. This process resulted in obtaining corrected images of the study area. Finally,
we extracted the reflectance data corresponding to the sampling points from the corrected
images using ArcGIS 10.8 software in order to construct each spectral index. The Landsat5
TM sensor parameters for each band are shown in Table 2 (Landsat5 was the fifth satellite
in the U.S. Landsat series, launched on March 1, 1984, from Vandenberg Air Force Base,
California). The preprocessing process of the Landsat5 TM remote sensing data for Yellow
River Delta is shown in Figure 2.

(a) (b)

(c) (d)

(a) (b)

(c) (d)

Figure 2. Preprocessing of the Landsat5 TM remote sensing image for Yellow River Delta. All images
above are false color composite images. (a) The original remote sensing image; (b) the remote sensing
image after radiometric calibration; (c) the remote sensing image after atmospheric correction; (d) the
remote sensing image after data cropping.

Table 2. Landsat5 TM sensor parameters.

Band Band Name Spectrum
Range (µm) Resolution (m)

Band 1 BLUE 0.45–0.52 30
Band 2 GREEN 0.52–0.60 30
Band 3 RED 0.63–0.69 30
Band 4 NIR 0.76–0.90 30
Band 5 SWIR1 1.55–1.75 30
Band 6 LWIR 10.40–12.50 120
Band 7 SWIR2 2.08–2.35 30

2.2.3. Construction of Spectral Indices

Building on prior research in the field of SSC inversion, we screened spectral indices
that are suitable for SSC inversion. The effectiveness of these indices has been validated
in multiple studies. Each index and its corresponding literature are detailed in Table 3.
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The band reflectance data of the Landsat image are extracted at each sampling point based
on their respective locations. A total of twenty-nine spectral indices are calculated for
salinity inversion purposes. The indices are classified into four groups as follows. (1) Band
index group: BLUE, GREEN, RED, NIR, SWIR1, SWIR2; (2) Salinity index group: SI1
(salinity index 1), SI2 (salinity index 2), SI3 (salinity index 3), SI4 (salinity index 4), SI5
(salinity index 5), SI7 (salinity index 7), SI8 (salinity index 8), SI9 (salinity index 9), SI-
T (salinity index T), NDSI (normalized differential salinity index); (3) Vegetation index
group: MSAVI (modified soil adjusted vegetation index), ALBEDO, NDVI (normalized
difference vegetation index), ENDVI (extended normalized difference vegetation index),
ERVI (extended ratio vegetation index), EDVI (extended difference vegetation index),
NDWI (normalized difference water index), GRVI (green band ratio vegetation index);
(4) Composite index group: SDI (salinization detection index), SRSI (remote sensing index
of salinization), CORSI (combined spectral response index), EEVI (extended enhanced
vegetation index), SIMSAVI (salinity index–modified soil adjusted vegetation index). The
formula for each indicator is shown in Table 3.

Table 3. Remote sensing spectral indices.

Category Abbreviation Formula Reference

Band indices BLUE/GREEN/RED/
NIR/SWIR1/ SWIR2 — —

Salinity indices

SI1
√

Blue × Red [33]
SI2

√
Green2 + Red2 + NIR2 [34]

SI3
√

Green2 + Red2 [34]
SI4 SWIR1 / NIR [34]

SI5 (RED − SWIR1) / (RED +
SWIR1) [35]

SI7 RED × NIR / GREEN [7]
SI8 SWIR1 − SWIR2 [36]

SI9 (SWIR1 × SWIR2 − SWIR2 ×
SWIR2) / SWIR1 [36]

SIT RED / NIR × 100 [37]
NDSI (RED − NIR) / (RED + NIR) [37]

Vegetation indices

MSAVI
2 × NIR + 1 −

(
√
(2 × NIR + 1)2 − 8 × (NIR − Red))

/ 2
[38]

ALBEDO
0.356 × BLUE + 0.13 × RED +
0.373 × NIR + 0.085 × SWIR1

+ 0.072 × SWIR2 − 0.0018
[39]

NDVI (NIR − RED) / (NIR + RED) [16]

ENDVI (NIR + SWIR2 − RED) / (NIR
+ SWIR2 + RED) [16]

ERVI (NIR + SWIR2) / GREEN [16]
EDVI NIR + SWIR1 − RED [16]

NDWI (GREEN − NIR) / (GREEN +
NIR) [40]

GRVI NIR / GREEN [41]

Composite indices

SDI
√
(NDVI − 1)2 + SI1GYH2 [38]

SRSI
√
(NDVI − 1)2 + SI12 [42]

COSRI (GREEN + BLUE) / (RED +
NIR) × NDVI [43]

EEVI (2.5 × EDVI) / (NIR + SWIR1
+ 6 × RED − 7.5 × BLUE + 1) [16]

SIMSAVI
√
(MSAVI − 1)2 + BLUE × RED [44]
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2.3. Crayfish Optimization Algorithm and Its Improvement

To enhance the performance of the machine learning model for soil salinity inversion,
this paper introduces the COA for optimizing the parameters of the RELM model. The
COA is affected by different population initialization methods when searching for the
optimal solution. By employing chaotic mapping to initialize the crayfish population, we
have enhanced the algorithm’s convergence speed and mitigated the risk of converging to
local optimal solutions.

2.3.1. Crayfish Optimization Algorithm

The COA [30] is a recently proposed swarm intelligence algorithm. The algorithm aims
to find the optimal solution to the problem by simulating the heat avoidance, competitive, and
foraging behaviors of crayfish. It consists of two main stages: exploration and exploitation.
Both stages’ behaviors are influenced by the environmental temperature.The algorithm utilizes
X to represent the initial population position, where Xij represents the position of crayfish i in
dimension j. The value of Xij is calculated using the following equation:

xi,j = lbj + (ubj − 1bj)× rand (1)

where lbj denotes the lower bound of the jth dimension, ubj denotes the upper bound of
the jth dimension, and rand is a random number.

Crayfish thrive in environments with temperatures ranging from 15 to 30 ◦C. When
the temperature variable “temp” exceeds 30 ◦C, crayfish seek refuge in caves. In situations
where the number of available caves is limited, cave scrambling events may transpire. To
represent the absence of a cave scrambling event, rand < 0.5 is employed, and in such
cases, the following formula is utilized to indicate the crayfish’s entrance into the cave.

Xi+1
i,j = Xt

i,j + C2 × rand ×
(

Xshade − Xt
i,j

)
(2)

where t denotes the current iteration number, C2 is the decreasing curve, and Xshade denotes
the location of the cave.

If the temperature (temp) exceeds 30 and the random variable (rand) is greater than or
equal to 0.5, crayfish engage in competition for burrows. This behavior is represented by
the following equation:

Xi+1
i,j = Xt

i,j − Xt
z,j + Xshade (3)

where z is a random individual of the crayfish; z = round(rand × (N − 1)) + 1.
Crayfish initiate feeding when the temperature variable “temp” is less than or equal

to 30. Due to their limited body size, crayfish exhibit two distinct feeding behaviors. When
the food is excessively large, crayfish employ their claws to shred the food into manageable
pieces before feeding, utilizing their second and third walking feet in an alternating manner.
Conversely, when the food size is suitable, crayfish engage in direct feeding. The foraging
behaviors for oversized and normal-sized food are represented by the following equations:

Xt+1
i,j = Xt

ij + Xfood × p × (cos(2 × π × rand )− sin(2 × π × rand )) (4)

Xt+1
i,j = (Xt

i,j − Xfood)× p + p × rand × Xt
i,j (5)

where X f ood represents the location of the food, and p represents a mathematical model of
crayfish intake. Sine and cosine functions are employed to depict the alternating feeding
behavior of crayfish.

The crayfish, as it enters the cave and consumes the food, symbolizes the optimal
solution during various stages of the algorithm. By continuously updating the position
of the crayfish, it remains in close proximity to the target variable, thus achieving the
optimization function of the algorithm. The pseudocode for COA is shown in Table 4.
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Table 4. Crayfish optimization algorithm pscudo-code.

Crayfish Optimization Algorithm Pscudo-Code

Initialization iterations T, population N, dimension dim
Randomly generate an initial population
Calculate the fitness value of the population to get XG, XL
While t < T

Defining temperature temp
End

If temp > A30
Define cave Xshade
If rand < 0.5

Crayfish conducts the summer resort stage according to Equation (2)
Else

Crayfish compete for caves through Equation (3)
End

Else
Define the food intake p and food size Q
If Q > 2

Crayfish shreds food
Crayfish foraging according to Equation (4)

Else
Crayfish foraging according to Equation (5)

End
End
Update fitness values, XG, XL
t = t + 1

End

2.3.2. The Improved Crayfish Optimization Algorithm

The COA population initialization method limits the speed and directionality with
which the optimal solution is found, thereby affecting the overall performance of the
algorithm. To enhance its global search capability, chaotic mapping is introduced to
improve the population initialization method. Chaotic mapping is utilized for sequences
that exhibit characteristics of ergodicity, randomness, and orbital instability. Commonly
used chaotic mapping functions include the Logistic map, Circle map, Sin map, Singer
map, and Tent map. Among them, the Circle map is known for its stability and wider range
of chaotic values. In this paper, the Circle map is employed to initialize the population
crayfish, and its formula is as follows:

xn+1 = mod
(

xn + 0.2 − 0.5
2π

sin(2πxn), 1
)

(6)

where n is the dimension of the solution.

2.4. Model Construction

ELM is a machine learning method for training single-layer feedforward neural net-
works, used for improving the issue of slow training speed in the BP algorithm and
demonstrating good generalization performance. However, ELM, based on the principle of
empirical risk minimization does not consider the impact of noise and outliers on model
performance, making the model prone to overfitting. RELM has made improvements upon
ELM by introducing a regularization parameter to balance between empirical risk and struc-
tural risk, thereby enhancing model performance and improving prediction accuracy [45].
A soil salinity prediction model for the research area based on RELM is established in this
paper, using MATLAB 2022 software, with three sets of different variables as input data
and measured soil salinity data as output data.

The architecture diagram of the ICOA-RELM model used in this paper is shown in
Figure 3.
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Figure 3. ICOA-RELM model architecture diagram.

The process begins with the initialization of parameters for the COA and the RELM,
which include the number of crayfish populations, limits of parameter values, maximum
iterations, input and hidden nodes, and the regularization parameters for RELM. Next,
crayfish populations are initialized using the Circle map. The fitness value for each pop-
ulation is then calculated by the RELM model. Subsequently, the model updates global
and individual optimal solutions according to fitness values, and populations adjust their
positions accordingly. Parameters are updated iteratively, and the algorithm cycles through
steps 3 to 5 until the predetermined number of iterations is completed. In the end, the opti-
mal solution of the regression algorithm is represented by the parameters of the population
that achieves the best fitness.

2.5. Accuracy Evaluation

We input the feature variables into the pre-trained model to generate predictions for
SSC in the test set samples. The performance of each model was evaluated using three
metrics: the coefficient of determination (R2), the root mean square error (RMSE), and the
mean absolute error (MAE). Models with a high R2, low RMSE, and small MAE exhibit
better performance. This demonstrates that the model exhibits strong predictive ability and
high stability. The formulas for each evaluation indicator are provided below:

R2 = 1 − ∑i(ŷi − yi)
2

∑i(yi − yi)
2 (7)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (8)

MAE =
1
n

n

∑
i=1

|(yi − ŷi)| (9)
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where n represents the number of samples, yi denotes the measured value of SSC, ŷi refers
to the predicted value of SSC, and yi refers to the average value of the measured value
of SSC.

2.6. Flowchart

Based on remote sensing image data and measured soil salinity data, BP and RELM
models were established based on the full variable group and two groups of preferred
variables. Circle chaotic mapping was introduced to optimize the initialization mode of
crayfish population, and the ICOA was used to optimize the RELM model. The accuracy
of all models was compared, and the optimal model was selected to establish the salt
inversion image of the study area. The technical methods adopted in this paper are shown
in Figure 4.

1.Data acquisition and 

preprocessing

2.Variable 

construction and 

screening

3.Model construction 

and selection

Landsat5 TM image

Measured soil salt content

Radiometric calibration

Atmospheric correction

Band index  Salinity index
 Vegetation 

index

 Composite 

index

Pearson correlation analysis Variable projection importance analysis

Variable group : PCC  VIP  TV 

Chaotic mapping is introduced to improve COA

BP ICOA-RELM RELM

Select the most accurate model for grade distribution of soil salt content

Crop

Figure 4. The working flowchart of this paper.

3. Results and Analysis
3.1. Statistical Analysis of Soil Salt Content Characteristics

According to Feng Xueli’s study on soil salinization monitoring in the irrigation
domain of Jiefangzha, Hetao Irrigation District, Inner Mongolia [46], the level of soil
salinization was classified into five classes: non-saline, slight saline, moderate saline, severe
saline, and extreme saline. The distribution of various salinity classes across the 94 sets of
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measured data is presented in Table 5. Non-saline soil samples accounted for the largest
percentage (38.3%) among all samples. Sample points in both slight saline and severe saline
soil accounted for 21.28% of all samples. Moderate saline soil samples accounted for 19.14%
all samples. No extreme saline soil samples were found in any of the samples in this paper.

Table 5. Descriptive statistics of soil salinity.

SSC (%) Sample Number Percent (%)

Non-saline (0–0.3) 36 38.3
Slight saline (0.3–0.5) 20 21.28

Moderate saline (0.5–1) 18 19.14
Severe saline (1–2.2) 20 21.28

Extreme saline (>2.2) 0 0
Total 94 100

3.2. Filtering of Input Variables

As the calculation of various spectral indices occurs within the basic band of the image,
these indices are often significantly correlated. Using correlated variables to train a machine
learning model often leads to overfitting. Consequently, before model training, constructed
variables must be analyzed and screened to mitigate overfitting, simplify the model, and
enhance its efficiency. In this section, two analysis methods are employed to screen the
constructed variables.

Pearson correlation analysis is a statistical method used to measure the strength and
direction of a linear relationship between two continuous variables, and it can help to
understand the degree of association between the variables, which is useful for feature
selection, variable screening, and understanding patterns and associations in the data. The
variable importance score is calculated by considering both the predictive performance
of the model and the contribution of the independent variables. Generally, a higher score
signifies that the associated independent variable contributes more significantly to the
model. This method aids in identifying the independent variables that hold the most
importance for the prediction objective. Consequently, it facilitates feature selection and
model optimization.

3.2.1. Correlation between Spectral Indices and Soil Salt Content

The original band data at the corresponding locations were extracted from the cor-
rected remote sensing image using ArcMap 10.8.12790 software, based on the latitude and
longitude information of the measured soil samples. The values of all characteristic vari-
ables corresponding to each measured soil sample were calculated using IBM SPSS Statistics
24.0.0.0 software. Pearson’s correlation coefficients were calculated between the four types
of characterization variables and the measured values of soil salinity. The correlation heat
map showing the relationship between SSC and different categories of characterization
variables is presented in Figure 5. The color red indicates a positive correlation between the
variables, whereas blue indicates a negative correlation. The intensity of the color darkens
as the correlation increases. Based on the graph, we can conclude that: (1) Among the
band index group, SWIR1 exhibited the strongest negative correlation with SSC, with a
correlation coefficient of −0.6. The GREEN band showed the weakest correlation with SSC,
with a correlation coefficient of 0.21. Within the salinity indices group, SI5 demonstrated
a robust positive correlation with SSC, evidenced by a high correlation coefficient of 0.76,
in contrast to SI2, which exhibited the weakest correlation. In the vegetation indices cate-
gory, ENDVI presented the strongest correlation with SSC, whereas ALBEDO displayed
the weakest. Within the composite indices category, CORSI and SWIR1 each registered a
correlation coefficient of −0.6 with SSC. (2) The mean absolute values of the correlation
coefficients between each group of variables and the SSC were calculated separately. The
mean absolute correlation values for the band indices group, the salinity indices group, the
vegetation indices group, and the composite indices group were 0.375, 0.469, 0.571, and
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0.42, respectively. The vegetation indices group had the highest mean absolute correlation
with SSC, whereas the band indices group had the lowest. (3) SI5 emerged as the variable
with the strongest correlation to SSC, succeeded by ENDVI and EDVI from the vegetation
indices category, both manifesting negative correlations with SSC. GREEN and SI2 each
displayed the weakest correlation with SSC, with their correlation coefficients having an
absolute value of 0.21. Following the correlation analysis, four variables—SWIR1, SI5,
ENDVI, and COSRI—were chosen to constitute the input variable group PCC.

(a) (b)

(c) (d)

Figure 5. Heat maps of Pearson correlation analysis between four spectral indices and SSC: (a) band
indices; (b) salinity indices; (c) vegetation indices; (d) composite indices.

3.2.2. Importance Analysis of Characteristic Variables

Variable importance in the projection analysis was used to screen twenty-nine spectral
indices, including six band indices, ten salinity indices, eight vegetation indices, and five
composite indices. The results are presented in Figure 6. In the figure, the blue dots
represent the projected importance value of the variable, and the red circles represent the
positions where the projected importance value is 1. The figure reveals that certain band and
composite indices exhibit low VIP value, whereas several vegetation and salinity indices
possess VIP value greater than 1. Among them, SI5 has the highest importance, indicated
by a VIP value of 1.444, whereas SI3 has the lowest VIP value of 0.578. (A VIP value
greater than 1 indicates that the variable is highly important for the dependent variable, a
value greater than 0.5 but less than 1 suggests unclear importance, and a value less than
0.5 indicates that the variable is not important for the dependent variable.) Sixteen variables
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were selected for the input variable group VIP, comprising SI5, ENDVI, SI4, SWIR1, EDVI,
ERVI, SI9, COSRI, SWIR2, SIT, MSAVI, EEVI, GRVI, NDWI, NDSI, and NDVI.

Figure 6. Characteristic importance values for all spectral indices.

After variable analysis and screening, three different groups of input variables were
finally created for the experimental part of this paper. The spectral indices of the three
input variable groups are shown in Table 6.

Table 6. Different input variable groups.

Name Variables

PCC SWIR1, SI5, ENDVI, COSRI

VIP
SI5, ENDVI, SI4, SWIR1, EDVI, ERVI, SI9,
COSRI, SWIR2, SIT, MSAVI, EEVI, GRVI,

NDWI, NDSI, NDVI

TV

BLUE, GREEN, RED, NIR, SWIR1, SWIR2, SI1,
SI2, SI3, SI4, SI5, SI7, SI8, SI9, SI-T, NDSI,

MSAVI, ALBEDO, NDVI, ENDVI, ERVI, EDVI,
NDWI, GRVI, SDI, SRSI, CORSI, EEVI,

SIMSAVI

3.3. Soil Salinity Inversion Model

The variable group PCC, variable group VIP, and full variable group TV are used as
modeling variables to build three machine learning models—RELM, BP, and ICOA-RELM,
respectively—and the performance of each model is evaluated using R2, RMSE, and MAE.

The R2 values of the nine model test sets and the fitting equations for the measured
and predicted values are depicted in Figure 7. The results indicate that optimizing the
RELM model using ICOA substantially improved the model’s performance, resulting in
enhanced predictions of SSC in the study area. Among all the models, ICOA-RELM-TV
achieved the second-best performance with a test set R2 value of 0.728, followed by BP-TV
(R2 value of 0.676). RELM-TV exhibited a similar R2 value of 0.676, with higher MAE and
RMSE compared to BP-TV. BP-PCC attained an R2 value of 0.661, whereas RELM-VIP had
an R2 value of 0.607. ICOA-RELM-PCC achieved an R2 value of 0.6, BP-VIP had an R2

value of 0.594, and RELM-PCC obtained an R2 value of 0.589.
The prediction results of SSC based on datasets selected by different feature band

selection methods and different models are shown in Table 7. The analysis of the table
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reveals that the RELM and BP models exhibit the best performance when utilizing the
full set of variables as modeling variables. They achieved an R2 value above 0.67 for both
the training and test sets, along with lower MAE and RMSE. In the ICOA-RELM model,
ICOA-RELM-VIP demonstrates the best performance and the highest inversion accuracy,
with a test set R2 of 0.75, MAE of 0.198, and RMSE of 0.249. ICOA-RELM-TV follows closely,
with R2 of 0.748 and 0.728 for the training and test sets, respectively. On the other hand,
ICOA-RELM-PCC performs the worst, with R2 below 0.7 for all the models. Comparatively,
the models constructed using ICOA-RELM outperformed the unoptimized RELM model
across all three input variables, yielding an average improvement of approximately 0.1 in
the test set’s R2.

Figure 7. Scatter plots of measured and estimated SSC based on different models for different input
variable groups. (a) BP-PCC; (b) BP-VIP; (c) BP-TV; (d) RELM-PCC; (e) RELM-VIP; (f) RELM-TV;
(g) ICOA-RELM-PCC; (h) ICOA-RELM-VIP; (i) ICOA-RELM-TV. The red line is the fitting line
between the measured and predicted values.

Table 7. Quantitative statistics of the SSC inversion.

Model Input Variables
Training Set Test Set

R2 MAE RMSE R2 MAE RMSE

BP
PCC 0.708 0.183 0.261 0.661 0.18 0.238
VIP 0.641 0.219 0.282 0.594 0.253 0.293
TV 0.736 0.195 0.253 0.676 0.183 0.229

RELM
PCC 0.619 0.203 0.299 0.589 0.213 0.263
VIP 0.656 0.221 0.295 0.607 0.167 0.231
TV 0.706 0.191 0.254 0.676 0.191 0.266

ICOA-RELM
PCC 0.63 0.19 0.27 0.6 0.2 0.32
VIP 0.771 0.149 0.217 0.75 0.198 0.249
TV 0.748 0.182 0.244 0.728 0.135 0.186
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3.4. Inversion of Soil Salt Spatial Distribution Based on ICOA-RELM-VIP Model

The Yellow River Delta wetlands include both perennial and seasonal storage wet-
lands. Perennial wetlands, predominantly characterized by mudflat ecosystems, consist
of rivers, lakes, estuaries, and various types of ponds, including those for salt, shrimp,
and crab. Conversely, seasonal storage wetlands comprise heavily saline supratidal areas,
marshes, wet meadows, and paddy fields. As a result, salinization levels in the Yellow
River Delta region vary significantly [47]. Soil salinization in this region arises from both
natural factors and human activities. The Yellow River Delta’s unique geographic location
causes an imbalance in precipitation and distribution, exacerbated by an arid climate and
scarce rainfall. This leads to soil moisture evaporation exceeding recharge, resulting in
inadequate moisture and subsequent soil salinization. Additionally, a significant decline in
the water table accelerates salt migration in groundwater, worsening surface soil saliniza-
tion. Extensive soil erosion alters the nutrient composition of the land, further contributing
to soil salinization. Excessive reclamation and rapid industrialization have disrupted the
land’s nutrient composition. Prolonged irrigation and improper water management have
further exacerbated soil salinization [48].

The 16 spectral indices, selected through variable projection importance analysis,
were utilized as model inputs. The ICOA-RELM model which performed best, was then
employed for field inversion of the study area to obtain the distribution of soil total salinity
classes in October 2003, as depicted in Figure 8. Subsequently, the percentage of soils in
each class was tabulated, and the results are presented in Table 8.

In the study area, spatial distribution patterns reveal higher salinity levels along the
coastal regions and lower salinity levels inland. The southeastern coastal region, accom-
panied by segments of the northwestern coast and the northeastern countryside, predom-
inantly features soil with extreme and severe salinization, encompassing approximately
2351.5 square kilometers, which constitutes 43.36% of the entire study area. These areas
are prone to repeated saltwater intrusion, exacerbated by drought and high temperatures,
which promotes salt accumulation in the soil. Moderate saline soils are predominantly
found in the central region, characterized by granite terraces and fluvial uplands at higher
elevations, covering approximately 1266.94 square kilometers, accounting for 23.36% of the
study area. Slight saline soils are primarily located along both sides of the Yellow River
and in the northwestern region, where irrigation is extensively utilized. This area consists
of river terraces, flatlands, and lowlands. Despite the influence of shallow groundwater
levels and significant capillary action, these areas benefit from freshwater recharge. This
category spans approximately 948.87 square kilometers, comprising 17.5% of the study
area. Non-saline soils, the least represented category, comprise 15.78% of the entire study
area, covering approximately 855.93 square kilometers, and are primarily found in the
northeastern region, excluding coastal areas.

Figure 8. Spatial distribution map of soil salinity.
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Table 8. Soil area and proportion of different salinization levels.

Salinization Level Total Non-Saline Slight Saline Moderate Saline Severe Saline Extreme Saline

Area/km2 855.93 948.87 1266.94 1373.66 977.84
Percent 15.78% 17.5% 23.36% 25.33% 18.03%

4. Discussion

In order to explore the effect of combining intelligent optimization algorithms with
traditional machine learning models for inversion of SSC, there have been scholars com-
bining the two for inversion of SSC, using intelligent optimization algorithms such as
GA [26], seagull optimization algorithm (SOA) [49], sparrow search algorithm (SSA), bird
swarm algorithm (BSA), moth search algorithm (MSA), Harris hawk optimization algo-
rithm (HHO), grasshopper optimization algorithm (GOA), particle swarm optimization
algorithm (PSO) [50], and so on. In this paper, on the basis of the previous studies, using
measured SSC and different combinations of spectral indices as modeling input, we im-
prove the crayfish optimization algorithm based on the one proposed in 2023 and combine
the improved optimization algorithm with the RELM model to train the SSC inverse model.
Circle chaotic mapping was introduced to improve the initialization of crayfish populations,
which improved the convergence ability of the algorithm and the speed of searching for
optimal solutions, as well as the accuracy of SSC inversion model. The results show that
the use of the model of ICOA-RELM can realize the monitoring of soil salinity conditions
in the Yellow River Delta region, which is conducive to the soil management in the region.

Comparative analysis of the final inversion model’s accuracy demonstrates that, across
all three input variable groups, the ICOA-RELM model introduced in this paper enhances
the accuracy of estimating SSC in the study area when compared with the unoptimized
model. This enhancement indicates that the optimization algorithm positively impacts
the model’s inversion capability. Overall, non-saline, slight saline, and moderate saline
soils intersect throughout the central part of the study area. Non-saline soils tend to form
dendritic patterns following the direction of the water network’s runoff. Extreme saline
soils are primarily found in tidal flats and tidal ditches, as well as other water bodies. The
degree of salinization generally increases toward the seaward direction, closely linked to
tidal infiltration and ground elevation. In the northern part of the study area, the former
estuary area of the old Yellow River channel is dominated by severe saline soils, and the
inner part is wrapped by a small amount of extreme saline soils. The coastal area in the
southern part of the study area is dominated by extreme saline soils, and this part of the
area is mainly tidal flats. The overall salinization level of the soil in the inversion results is
consistent with the measured data from the actual sampling.

The accuracy of the model for inverting the SSC in the study area is influenced to
some extent by the resolution and band information of the remote sensing images. The
modeling effectiveness is limited by the use of reflectance data extracted from Landsat5
TM imagery, collected in 2003, to construct the spectral indices. The availability of higher
quality imagery was not utilized. Currently, there are satellite data with higher resolution
and quality, such as Sentinel 1 and 2, Planet, and Landsat 8, that can be utilized for
studying the subsequent soil salinization levels using more recent data. Additionally,
environmental factors such as soil moisture and soil utilization type can affect the level
of salinity. Incorporating these environmental covariates into the input spectral index
allows for an investigation of their relationship with SSC, thereby enhancing the accuracy
of the inversion model [51]. The sample size used in this paper is limited, which restricts
the application of new inversion modeling techniques. Collecting a larger sample size in
future studies would be beneficial. Additionally, the utilization of deep learning algorithms
in salinity inversion can enhance the accuracy of soil salinity level identification. The
applicability of the ICOA-RELM inversion model in this paper in other regions needs to be
further verified, and comprehensive testing and evaluation are needed to determine the
performance of the model under different environmental conditions.
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5. Conclusions

This paper presents the construction of 29 modeling variables, which encompass band
indices, salinity indices, vegetation indices, and composite indices. These variables were
derived from the band data obtained from a Landsat5 TM remote sensing image. The
input variable groups PCC and VIP were obtained by screening the modeling indices using
Pearson correlation analysis and variable importance ranking methods, respectively. A
total of nine machine learning models, BP, RELM, and ICOA-RELM, were built based on
the three modeling variable combinations of PCC, VIP, and TV and the SSC, respectively.
The model with the highest accuracy was chosen based on the modeling results to generate
a distribution map depicting the levels of soil salinity in the Yellow River Delta. The
following conclusions have been drawn:

1. In the Pearson correlation analysis between spectral indices and SSC, SI5 showed the
highest correlation with SSC with a correlation coefficient of 0.76; GREEN and SI2 had
the least significant relationship with SSC. Among the four groups of spectral indices,
the vegetation indices exhibited the highest average correlation, with a mean absolute
correlation coefficient value of 0.571. The importance of the 29 spectral indices was
ranked based on the VIP score. The four variables with the highest importance were
identified as SI5, ENDVI, SI4, and SWIR1, with importance levels of 1.44, 1.31, 1.29,
and 1.23, respectively. SI3 had the lowest importance value of 0.58.

2. The ICOA-RELM model was tested using the variable group VIP as the input, re-
sulting in an R2 value of 0.75, an MAE of 0.198, and an RMSE of 0.249. The model
exhibits higher predictive accuracy and stability. The application of this model in
the inversion of soil salinization in the Yellow River Delta region carries valuable
reference significance.

3. This information is obtained from the distribution map depicting soil salinity levels in
the Yellow River Delta region. The dominant soil types in the region are severe saline
soils, followed by moderate saline soils. Severe saline soils dominate the northern part
of the study area and the eastern portion of the central region, whereas the majority
of the extreme saline soils are concentrated in the southeastern part of the region. A
smaller proportion of extreme saline soils can also be found in the northern part of
the region. Non-saline, slight saline, and moderate saline soils are evenly distributed
in the central region of the district.
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