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Abstract: As one of the four major bay areas in the world, the Guangdong–Hong Kong–Macao
Greater Bay Area (GBA) is a highly integrated mega urban agglomeration and its unparalleled
urbanization has induced prominent land contradictions between humans and nature, which hinders
its sustainability and has become the primary concern in this region. In this paper, we probed the
historical characteristics of land use and land cover change (LUCC) in the GBA from 2005 to 2015,
and forecasted its future land use pattern for 2030, 2050, and 2070, using a cellular automata–Markov
(CA–Markov) model, under three typical tailored scenarios, i.e., urban development (UD), cropland
protection (CP), and ecology security (ES), for land use optimization. The major findings are as
follows: (1) The encroachments of build-up land on the other land uses under rapid urbanization
accounted for the leading forces of LUCCs in the past decade. Accordingly, the urban sprawl was up
to 1441.73 km2 (23.47%), with cropland, forest land, and water areas reduced by 570.77 km2 (4.38%),
526.05 km2 (1.76%), and 429.89 km2 (10.88%), respectively. (2) Based on the validated CA–Markov
model, significant differences are found in future land use patterns under multiple scenarios, with the
discrepancy magnified over time and driven by different orientations. (3) Through comprehensive
comparisons and tradeoffs, the ES scenario mode seems optimal for the GBA in the next decades,
which optimizes the balance between socio-economic development and ecological protection. These
results serve as an early warning for future land problems and can be applied to land use management
and policy formulation to promote the sustainable development of the GBA.

Keywords: land use and land cover change; land use dynamic simulation; cellular automata–Markov
model; multiple scenarios; Guangdong–Hong Kong–Macao Greater Bay Area

1. Introduction

Land use and land cover change (LUCC) is an important factor altering ecosystems
and the natural balance at regional and global scales and has intensified in recent decades
due to human interventions [1–3]. Under the general trend of global urbanization, LUCC
occurs frequently and manifests as the conversion from natural covers to artificial surfaces,
especially in developing countries [4–6]. It breaks the balance of the Earth’s system and
has led to a series of subsequent effects, such as land degradation, climate change, eco-
environment deterioration, biodiversity loss, food security, etc. [7–10]. Thus, how to
rationally manage limited land resources to balance socio-economic development and
ecological needs is at the core of sustainable development.

Land use simulations illuminate the dynamic mechanism of land systems and
anthropogenic–natural impacts, by qualitatively or quantitatively modeling land use con-
versions in the past and using the underlying driving forces to forecast future land use
demand and spatial allocation at various temporal or spatial scales [11–13]. To effectively
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model LUCCs, numerous land use simulation models have been put forward in the past
decades. According to the working scheme, they can be summarized into three main
kinds: the quantitative prediction model, spatial simulation model, and coupling model of
quantitative prediction and spatial simulation [3,14].

The quantitative prediction model mainly focuses on land use demand estimation to
give a possible area for each land use in the future, but ignores the spatial distributions
of various land uses for land allocation guidance. The representative methods include
the logistic regression (LR) model [15,16], system dynamic (SD) model [17,18], Markov
chain model [19,20], and so on. The spatial simulation model pays more attention to
the interactions between geographical units and spatial drivers to estimate the growth
probability of different land uses in each geographical unit, with the cellular automata
(CA) model [21,22], conversion of land use and its effects (CLUE) model [23,24], and
agent-based model [25,26] as typical representations. Such methods directly provide land
allocations, but with a limited ability to model global influencing factors, like policy, econ-
omy, etc. The coupling model takes full advantages of the above two methods to give
more accurate and comprehensive simulation results and has been a common strategy
in land use simulation [27,28]. The typical examples are the CA–Markov model [29,30],
CA–SD model [31,32], and Dyna–CLUE–Markov model [33,34]. Among them, the
CA–Markov model combines the advantages of the CA and Markov chain models to
simultaneously predict the spatial pattern and temporal trend and is suitable for the
complex change simulation of multiple land uses, which has been widely applied to
LUCC analysis [35,36].

The scenario simulation based on the above models gives reasonable forecasting
consequences of land use demand and spatial allocation in the future, which enables
strategical land use optimization and scientific decision-making [37,38]. In the past years,
extensive LUCC simulation research projects under certain scenarios have been carried
out at various scales, which greatly improves the understanding of the comprehensive
influences of anthropogenic processes and policy formulation on land system evolution.
For instance, Han et al. combined CLUE-S and Markov models to conduct a development-
and-protection scenario simulation for Beijing during the period between 2010 and 2020
and found that the conversion from arable land to build-up land was the major feature,
especially for mountainous areas [39]. Zou et al. explored a sustainable land use model in
Nan’an City through land use conflict (LUC) management, with seven conflict levels and
16 LUC zones considered, to draw a conclusion that differentiated strategies might be
adopted to relieve the conflicts in various LUC zones [40]. In addition, Yang et al. investi-
gated LUCCs in the Beijing–Tianjin–Hebei region during the period between 2000 and 2015
and projected its future land use pattern in 2030 based on the Dyna–CLUE model under
three tailored scenarios, with the results indicating that the ecology security scenario is
optimal for regional planning [41].

China has undergone significant urbanization in the past decades, with urbanization
accompanied by intense expansion [42–45]. Since the 1990s, a large amount of manpower
and resources have concentrated into the coastal metropolitan cities, which accelerates the
development of big cities like Beijing and Shanghai, in addition to promoting the rapid
urbanization of municipalities directly under the central government and sub-provincial
cities [42]. With favorable policies, superior geographical locations, and resource advan-
tages, a rapid rise of marginal cities occurs [43]. The process of urbanization in China
is closely related to economic development, which is not only consistent with the pro-
cess of population migration but is also the result of economic structure transformation
and development. Therefore, as a result of urbanization, city functions have been con-
stantly strengthened, with the gaps between them gradually decreased and the develop-
ment of urban agglomerations becoming an important symbol of China’s urbanization
process [44]. The core–periphery spatial layout of urban agglomerations becomes more
and more obvious, with core cities strengthened and coexisting with the rapid rise of
periphery cities [45].
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The Guangdong–Hong Kong–Macao Greater Bay Area (GBA) is one of the most
open and prosperous zones in China and is the focus of the world [46]. However, it has
been perplexed by excessive urbanization, with frequent landscape changes occurring,
which induces serious land use problems and hinders its sustainability [47,48]. In recent
years, large amounts of research have focused on urbanization and relevant LUCCs in
the GBA. For example, Zhang et al. compared the urbanization of several mega urban
agglomerations in China from 1980 to 2015 and found that the GBA has the highest
proportions for urban land (8.03%) and urban impervious surface (75.16%) [49]. Wu et al.
investigated the relation between urban sprawl and ecological changes in the GBA during
the period between 2000 and 2018 based on nightlight data, and the results indicated that
both urbanization and the eco-environment had a circular structure, and their coupling
level became larger [50]. Wang et al. evaluated the ecological service changes induced
by LUCCs in the GBA during the period between 1980 and 2018, and found an extensive
loss of ecological service value of CNY 40.5 billion, with the major loss caused by water
reduction [51]. Yang et al. explored the forest reduction induced by urbanization in
the GBA and found a large forest loss of 4046 km2 during the period between 1987 and
2017, with 25.60% caused by urbanization, especially for Dongguan, Guangzhou, and
Shenzhen [52]. Moreover, Chen et al. employed the FLUS model to simulate local climate
zone (LCZ) changes from 2020 to 2100 and the results showed that different shared socio-
economic pathways (SSPs) would lead to different LCZ changes, with different cities
exhibiting different LCZ patterns [53]. Accordingly, many policies were formulated to
relieve these problems. Specifically, Guangdong province encouraged the reclamation of
unsuitable land into farmland after 2011, with some vacated land used for industrial city
construction in areas suitable for transformation [54,55]. Agricultural land received more
attention, with farmland areas more effectively protected through the optimization of the
structure of farmland [54,55]. Furthermore, the Guangdong provincial government issued
the “Three Lines and One List for Environmental Zone Management Plan”, requiring the
strict implementation of an environmental protection red line, an environmental quality
bottom line, resource utilization limitations, and an environmental access list [56,57], which
promoted the maintenance of regional ecological stability.

However, most past research in the GBA mainly focused on the macro change trend
and pattern of typical land uses in the past and the subsequent influences. In-depth
and systematic explorations of the future dynamics of land systems in the GBA under
different development modes are still rare; this leads to an insufficient understanding of
the impacts of anthropogenic–natural forces and policies on land system evolution [58–60].
Accordingly, there are large challenges and uncertainties for land use optimization and
rational decision-making to promote regional sustainability.

For example, the extensive pursuit of rapid economic development may be beneficial
for urban agglomeration construction, but it may threaten food security and ecological
security [61–63]. Additionally, the distribution of urban functional areas, ecological protec-
tion areas, etc., will affect the regional sustainability to a large extent [61,62]. Furthermore,
with the changes in climate, environment, population, economy, and social preferences, the
land use management modes and policies will undergo changes. How to make reasonable
policies is a big problem [63]. Generally, without an in-depth understanding of future land
use dynamics, all these issues cannot be solved.

In view of this, the purpose of this research is to quantitatively explore and understand
the historical LUCCs in the GBA from 2005 to 2015 and forecast its future land use pattern
in the short, medium, and long-term future, i.e., 2030, 2050, and 2070, with a CA–Markov
model integrating multiple anthropogenic–natural forces, under three typical tailored
scenarios, i.e., urban development (UD), cropland protection (CP), and ecology security
(ES). Then, based on the simulated results, we comprehensively analyze the preferences
and comparative advantages of various scenarios, to give an early warning for future land
use risks, which can be applied to land use management and policy formulation to promote
the sustainable development of the GBA.
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2. Study Area and Materials
2.1. Study Area

The GBA (111◦21′–114◦53′E, 21◦28′–24◦29′N) is located in the southern coast of China
(Figure 1). It is known as one of the world’s four bay areas along with the New York Bay
Area, San Francisco Bay Area, and Tokyo Bay Area. The GBA is an integrated mega urban
agglomeration, consisting of eleven internal cities, including nine cities of the Pearl River
Delta in Guangdong Province and two special administrative regions, i.e., Guangzhou,
Shenzhen, Zhuhai, Foshan, Huizhou, Dongguan, Zhongshan, Jiangmen, Zhaoqing, Hong
Kong, and Macau. It has a total area of about 56,000 km2, with a coastline of 3201 km for
the mainland and islands. The permanent population of the GBA reached 72.7 million in
2019 [64], with a gross domestic product (GDP) of approximately CNY 116,000 billion [64],
accounting for more than one-tenth of the total GDP of China. The development orientation
of the GBA is to be a world-class bay area and urban agglomeration.
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Figure 1. The location of the Guangdong–Hong Kong–Macao Greater Bay Area.

The GBA has a special terrain, i.e., low in the middle and high around the perimeter,
with an average altitude of 132 m. It has a high urbanization rate and a large natural
woodland coverage, with cities concentrated in the plain areas near the Pearl River and
woodlands mainly distributed in the surrounding mountainous areas. The average annual
temperature and precipitation are around 22 ◦C and 1800 mm [65]; the GBA belongs to a sub-
tropical monsoon climate. The GBA went through significant urbanization with tremendous
landscape changes driven by national strategies and economic prosperity [47,48]. The in-
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tensive land transformations led to a series of land use conflicts [66] and eco-environmental
problems, such as ecological quality and service degradation [47,50,67], forest reduction [52],
local climate change [53], air pollution [68], etc. Thus, land use optimization has been the
primary concern in this region.

2.2. Data Materials and Preprocessing

In this study, the land use/cover products in 2005, 2010, and 2015 [69,70] and an
administrative vector map generated by the Chinese Academy of Sciences, were utilized as
basic data for the LUCC analysis and simulation, with the land use/cover data produced
by extensive manual field verification and a comparison of similar products to have high
quality and accuracy. In addition, multiple socio-economic and natural driving factors were
collected as assistance (Table 1). Specifically, nine driving factors with various properties
were considered, including the distance from the trunk road, primary/second road, high-
way, railway, important towns, annual mean temperature, elevation, and slope, which are
highly correlated with land use changes, with good properties of accessibility, continuity,
reliability, and representativeness. These driving factors involve point, line, and polygon
data, which contribute to land system evolution from different perspectives (Figure 2).

Table 1. Presentation of data source utilized in this study.

Materials Data Type Original
Resolution Data Resource

Land use/cover data
(2005/2010/2015) Land use/cover data 30 m https://www.resdc.cn/DOI/doi.aspx?DOIid=54,

accessed on 7 May 2022

Administrative
vector map (2015) Vector map ---

Resource and Environmental Science Data Platform
(https://www.resdc.cn/DOI/DOI.

aspx?DOIid=120, accessed on 11 June 2022)

Socio-economic
factors

Distance from highway

30 m
OpenStreetMap (https://www.openstreetmap.org/,

accessed on 11 June 2022)

Distance from trunk road

Distance from primary road

Distance from secondary road

Distance from railway

Distance from important
towns 30 m http://lbsyun.baidu.com/, accessed on 11 June 2022

Natural factors

Annual Temperature 30 arc-s WorldClim v2.0 (http://www.worldclim.org/,
accessed on 11 June 2022)

Elevation 30 m
NASA SRTM1 v3.0

Slope 30 m

Firstly, the land types of land use/cover data were reclassified to six primary classes
based on the land type codes, on the basis of the land use classification standard issued by
the Chinese Academy of Sciences, including cropland, forest land, grassland, water area,
build-up land, and unused land, which is a common class system for LUCC analysis [3,11].
Then, the coordinate reference system of the land use/cover data and the administrative
vector map was geographically unified from Krasovsky_1940_Albers to World Geodetic
System (WGS) 1984 to have the same geographic system with all driving factors, according
to the requirements of the simulation model. Meanwhile, the projection system was also
unified as Universal Transverse Mercator (UTM)_Zone_49N. Considering the large amount
of data and computational efficiency, all data were sampled to a unified spatial resolution
of 100 m for land use simulation.

https://www.resdc.cn/DOI/doi.aspx?DOIid=54
https://www.resdc.cn/DOI/DOI.
aspx?DOIid=120
https://www.openstreetmap.org/
http://lbsyun.baidu.com/
http://www.worldclim.org/
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3. Method
3.1. Land Use Simulation Using a CA–Markov Model
3.1.1. Cellular Automata

The CA model is an extended self-organizing dynamic system with a discrete time,
space, and state, focusing on local interactions of neighboring cells with disparate spa-
tiotemporal coupling features within a “bottom-up” framework [22,29]. It forecasts the
state change of each cell based on the previous states of it and its neighbors under a
predefined transition process [71,72]. Owing to the formidable capabilities of nonlinear
representation and spatial calculation, the CA model has been widely applied to model
complex geographic processes and disclose local or global LUCC patterns.

A complete CA model consists of four components, including cell, state, neighborhood,
and transition rules [73,74]. In this system, the state of each cell heavily relies on the
spatiotemporal states of its neighboring cells, which makes full use of spatial and temporal
coupling features and local interactions to generate a reasonable prediction [75]. Generally,
the CA model can be formulated as in Equation (1):

S(t + 1) = f (S(t), N) (1)

where S(t) and S(t + 1) denote the state set of cells at time t and t + 1, respectively, N stands
for the neighborhoods, and f represents the transition rules of local space.



Remote Sens. 2024, 16, 1512 7 of 31

3.1.2. Markov Chain

The Markov chain model is a no-aftereffect random process based on the Markov
theory, which is widely used to forecast future land use demand based on a transition
probability matrix that depicts the probability of a land type turning from one state to
another state over a given time interval [71,76]. The future state only depends on the
beginning state and the transition step rather than the previous states [77]. It not only
accounts for the transition states between different land uses but also gives the transition
rates. However, the Markov chain only estimates the LUCC quantity without an accurate
prediction of the spatial allocation. Mathematically, according to the conditional probability
formula, the Markov chain can be defined as follows [76,78]:

S(t + 1) = P × S(t) (2)

where P is the Markov transition probability matrix, which can be calculated as in Equation (3):

P =


P1,1 P1,2 · · · P1,c
P2,1 P2,2 · · · P2,c

...
...

...
...

Pc,1 Pc,2 · · · Pc,c

s.t. 0 ≤ Pi,j ≤ 1 and
c

∑
j=1

Pi,j = 1 (i, j = 1, 2, · · · , c) (3)

where Pi,j denotes the transition probability from land use i to land use j, and c is the
number of land uses.

3.1.3. CA–Markov Model

In this study, the CA–Markov model was employed to conduct the land use simulation,
which integrates the advantages of the Markov chain and CA models in quantity and
spatial pattern prediction to generate an accurate spatiotemporal simulation result under
complex circumstances [71,75]. It is considered to be a valuable tool for geographical
process simulation and has broad applications in LUCC analysis, attributed to its explicit
prediction, simple calibration, and powerful simulation ability of multiple types.

Specifically, the CA–Markov model, integrated in the IDRISI software version 17.02,
was employed [36,71]. The overall technical route is shown in Figure 3, with the detailed
steps as follows:

(1) Determining transition rules. Based on the land use data of two basic dates, the
Markov chain was employed to calculate the transition probability matrix and transition
area matrix, which records the transfer probability of land type from one state to another
state, and the expected amount in a predetermined period, respectively [36,63]. These
matrices were utilized to forecast future land dynamics according to the preceding states.
In detail, based on the land use data in 2005 and 2010, the transition probability matrix of
2010–2015 was firstly calculated. Then, the transition probability matrices of 2015–2030,
2030–2050, and 2050–2070 were successively calculated for LUCC prediction in 2030, 2050,
and 2070. In practice, the transition probability matrix serves as the transition rules of the
CA–Markov model.

(2) Creating spatial suitability maps. The spatial suitability map for each land use is a
prerequisite for land use simulation, which can be derived from the driving factors and
constraints through a multi-criteria evaluation [36,72]. Specifically, the driving factors were
standardized using the fuzzy function (Table S1), with the original value converted to a
membership ranging from 0 (least suitability) to 255 (most suitability), and the constraints,
like the existing water bodies, were standardized into Boolean maps consisting of 0 (un-
suitable land conversion) and 1 (suitable land conversion). The weights of various driving
factors were calculated based on the Analytic Hierarchy Process (AHP) (Table S2) [36,79].
Using a multi-level analysis, the relative importance of driving factors was rated in pairs,
and a matrix consistency ratio was utilized to determine whether there was a need to
adjust the weights of different drivers (Table S3). Generally, a ratio less than 0.1 indicates a
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good consistency and a ratio of more than 0.1 suggests an imperative re-evaluation for the
weight matrix.
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(3) Setting the model. CA filters generally have a direct influence on the final simula-
tion result by taking into account the states of adjacent cells to determine the state of the
central cell. In this study, a standard 5 × 5 contiguity filter was utilized to define the spatial
neighborhood for each cell, which means the state of each cell can be significantly affected
by the states of its surrounding 5 × 5 neighboring cells [36,71]. Then, taking 2015, 2030, and
2050 as the starting points, the land use patterns in 2030, 2050, and 2070 were successively
simulated, with the number of iterations defined by the time intervals between the basic
year and the target year.

3.2. Model Validation and Accuracy Assessment

Model validation/calibration is an important guarantee for future land use simulation,
where the actual case is unavailable [78,80]. In this study, the CA–Markov model was
validated using the past time interval of 2005–2015, with the land use/cover data in 2015 as
the reference to assess the simulated effect under a natural development scenario, which
continues current LUCC trends without any extra policy constraints.
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Two common strategies were utilized to comprehensively evaluate the simulation ac-
curacy, including a confusion matrix assessment [80,81] and three map comparison [41,82].
Among them, the confusion matrix describes the consistency between the simulated result
and the reference map, and derives the producer’s accuracy (PA), user’s accuracy (UA),
overall accuracy (OA), and Kappa statistics. The PA and UA indicate the omission and
commission rate of the forecasted result for each land use, with a range of [0%, 100%]. The
OA and Kappa statistics evaluate the consistency from the whole, with a range of [0%,
100%] and [0, 1], respectively. For all these metrics, a large value over 80% or 0.8 indicates a
high performance and a low value near to 0% or 0 indicates a poor performance. The three
map comparison reflects the consistency between the real change and the simulated change
in a definite time interval, with a figure of merit (FoM) and total error (T) derived. The
FoM and T generally enable a better measurement of cell-to-cell consistency; these values
indicate the overall accuracy and simulation error. The range of the FoM is from 0% to
100%, and the range of T is from 0 to all pixels. Generally, a larger value and a lower value
are pursued by the FoM and T, respectively.

In detail, PA, UA, OA, and Kappa statistics can be calculated according to
Equations (4)–(7), and the FoM and T are formulated as in Equations (8) and (9):

PAi =
xii
xi+

× 100% (4)

UAi =
xii
x+i

× 100% (5)

OA =
1
n

c

∑
i=1

xii × 100% (6)

Kappa =

n
c
∑

i=1
xii −

c
∑

i=1
(xi+ × x+i)

n2 −
c
∑

i=1
(xi+ × x+i)

(7)

FoM =
H1

H1 + H2 + M + F
× 100% (8)

T = H2 + M + F (9)

where xii denotes the number of correctly predicted cells along the diagonal line of the
confusion matrix, with xi+ and x+i standing for the number of cells belonging to the i-th
class in the reference map and simulated map, respectively; n and c represent the total
number of cells and land uses; H1, H2, M, and F indicate the true hits, partial hits, misses,
and false alarms, respectively; for detailed information, refer to [41,82].

3.3. Multi-Scenario Simulation

With rapid economic development and urbanization, an increasingly prominent land
use contradiction haunts the sustainable development of the GBA to a large degree [47,48].
Many studies have shown that with due consideration of regional characteristics, involving
the geographical environment, socio-economic situation, and natural resource distribution,
the multi-scenario simulation enables a virtually realistic assessment of land use planning
and policy formulation [12,80]. Thereby, in this study, with the validated/calibrated CA–
Markov model, the future land use pattern of the GBA under three typical tailored scenarios,
i.e., UD, CP, and ES, regarding primary aspects in urban construction, were simulated in
the short, medium, and long-term future, i.e., 2030, 2050, and 2070, to comprehensively
explore the effects and comparative benefits driven by different development modes.

Generally speaking, each scenario emphasizes a specific socio-economic development
mode with definite strategic constraints and orientations. Considering the data availability,
the latest regional planning for 2020, i.e., “Guangdong Province Land Use Master Plan
(2006–2020)”, was utilized as a reference. As reported, the build-up area in the GBA is
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expected to reach 9938.20 km2 in 2020, with basic farmland area and forest area planned
to be at least 7141.18 km2 and 28,405.62 km2. Based on the estimations of the Markov
chain, the transition probability matrix was adjusted according to the planning areas above
to generate specific land use demands for three different scenarios [41], with the details
as follows:

(1) UD scenario. This scenario takes urban development as the highest priority, which
aims at maintaining high-speed economic development. In this scenario, we intend to
explore the possible locations and upper-bound scale of urbanization in the future. The
build-up area in 2030 should be no less than the planned area in 2020, and the cropland
area should be no less than the restricted basic farmland area. Therefore, based on the
estimations of the Markov chain in 2030, the following adjustments were made to the
transition probability matrix: the transfer probability of build-up land to the other land
uses was reduced by 10%, with the reversal transfer probability increased by 10%, except
for the water restriction. Then, on this basis, the land use demand in 2050 and 2070 was
successively predicted using the Markov chain.

(2) CP scenario. This scenario emphasizes the protection of agricultural production
and food security, with inadmissibility for large-scale conversion from cultivated land to
build-up land. In this scenario, we intend to simulate the influence of cropland protection
policies on land system evolution. The cropland area in 2030 should be no less than that
in 2015. Hence, the transition probability matrix was adjusted as follows: the transfer
probability of cropland to build-up land was reduced by 50%. The transfer probability of
cropland to the other land uses reduced by 5%, with the reversal transfer probability raised
by 5%, except for the water restriction. Then, the land use demand in 2050 and 2070 was
successively estimated using the Markov chain.

(3) ES scenario. This scenario focuses on protecting ecological lands, involving forest
land, grassland, and water areas, with inadmissibility for the large-scale occupation of
them. In this scenario, we attempt to simulate the impact of ecological protection policies
on land use changes. The forest area in 2030 should be no less than the planned area in
2020. Thus, the transfer probability matrix was adjusted as follows: the transfer probability
of forest land and grassland to non-ecological lands, including cropland, build-up land,
and unused land, was reduced by 50% and 10%, respectively, with the reversal transfer
probability raised by 50% and 10%. The water area was restricted from being converted
to other land use types. Then, the land use demand in 2050 and 2070 was successively
obtained using the Markov chain.

3.4. LUCC Modeling and Analysis
3.4.1. Land Use Conversion Modeling

The land conversion matrix is a common metric for LUCC analysis, which quantita-
tively models the land system change state [83]. It directly reflects the land use conversion
relationship and amounts in detail, and can be formulated as follows:

S =


S1,1 S1,2 · · · S1,c
S2,1 S2,2 · · · S2,c

...
... · · ·

...
Sc,1 Sc,2 · · · Sc,c

 (10)

where Si,j denotes the area of land use i at the initial stage that is converted to land use j
at the last stage. The sum of each row represents the total area of the corresponding land
use at the initial stage, which reflects the transfer out state, with the sum of each column
representing the total area at the last stage, which reflects the transfer in state.

Then, based on the land conversion matrix, the Sankey diagrams can be derived, which
intuitively describes the land use conversion pattern with the flow direction and amount
clearly observed [84]. Through land use conversion analysis, the LUCC characteristics
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in the GBA can be disclosed, which is favorable to understand its land system dynamic
scheme and the existing land use contradictions.

3.4.2. LUCC Effect Analysis

In order to comprehensively analyze the LUCC effects derived from different scenario
preferences, three major aspects were taken into account, i.e., urbanization, food security,
and eco-environment. For urbanization, the expansion intensity index, expansion dynamic
index, and expansion percentage index were utilized to quantitively analyze the urbaniza-
tion characteristics of the GBA under multiple scenarios from different perspectives.

More specifically, the expansion intensity index (Ei) is the standardized average annual
growth rate of build-up land in a specific region over a given period [85]. It describes the
regional urbanization density, with a range of [0, 1], and can be defined as follows:

Ei =
∆UA

TA × ∆t
× 100 (11)

where ∆UA is the added build-up area, TA is the total area of a given region, and ∆t is the
time span. Generally, an Ei over 0.3 means a large regional urbanization density.

The expansion dynamicity index (Di) is the ratio of the increased build-up area to the
initial build-up area in a specific region over a given period [83]. It describes the regional
dynamicity of the build-up land, with values being larger than 0, and can be formulated
as follows:

Di =
∆UA

UA × ∆t
× 100 (12)

where UA is the initial build-up area. Generally, a Di over 1 indicates a high expansion
dynamicity.

The expansion percentage index (Ci) is the ratio of the increased build-up area in a
specific region to the total increment of the build-up area in the study area over a given
period [86]. It describes the regional contribution to urban agglomeration, with a range of
[0%, 100%], and can be defined as in Equation (13):

Ci =
∆UA

∆TUA
× 100% (13)

where ∆TUA is the total increment of the build-up area over a given period. Generally, a
Ci over 30% suggests a large reginal contribution to the total urban agglomeration.

For food security, the grain yield was utilized as an indicator to compare the cor-
responding effects of different scenarios, with values larger than 0. The grain yield per
unit area in the GBA in 2015 was taken as a reference, i.e., 5.25 tons per hectare. With
an assumption that the grain yield per unit area is relatively stable under anthropogenic
efforts, the final grain yield of a given region under a certain scenario can be calculated
as follows:

Yt = YM × A (14)

where Yt and YM denote the grain yield of a given region at time t and the grain yield per
unit area, respectively, with A standing for the cropland area. Generally, a Yt over 600,000
tons indicates high regional agricultural productivity.

For eco-environment, the ecology quality index was utilized for scenario comparison,
which considers different contributions of various land uses to comprehensively evaluate
the regional ecology quality, with a range of [0, 1] [87,88]. It considers the area proportion of
each land use and is used to quantitatively characterize the overall status of the ecological
environment quality in a certain region. It can be defined as follows:

EQt =
c

∑
i=1

Ak,i

Ak
× Ri (15)
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where EQt is the ecology quality of a given region at time t, Ak,i is the area of the
i-th land use, Ak is the total area, and Ri is the ecological score of the i-th land use
(Table S4). Generally, the ecology quality index can be divided into five levels: low quality
area (EQt ≤ 0.50), relatively low quality area (0.50 < EQt ≤ 0.55), medium quality area
(0.55 < EQt ≤ 0.60), relatively high quality area (0.60 < EQt ≤ 0.65), and high quality area
(EQt > 0.65).

4. Results and Analysis
4.1. Land System Changes from 2005 to 2015

Over the period of 2005–2015, the GBA underwent an intensive land use conversion
under the background of urbanization (Table 2), with approximately 8.5% (4760 km2) of
the jurisdiction experiencing land dynamics, which led to an evident land use structure
change (Figure 4). The build-up land had an enormous transfer-in area of 2022.20 km2,
which was converted from the other land uses, especially for cropland (1071.02 km2),
forest land (566.9 km2), and water area (355.82 km2), but with a small transfer-out area of
580.47 km2. It contributed to an excessive urban expansion with a net increment of
1441.73 km2 (23.47%), more than the sum of the area of Hong Kong and Macao, which led
to prominent land use contradictions. As a consequence, cropland suffered from the largest
loss of 570.77 km2 (4.38%), followed by forest land, with a loss of 526.05 km2 (1.76%), and
water area, with a loss of 429.89 km2 (10.88%). Grassland had a certain growth of 91.7 km2

(8.46%), which mainly profited by the transfer-in area from forest land.

Table 2. Land use conversion in the GBA from 2005 to 2015 (km2).

2005
2015 Cropland Forest Grassland Water Build-Up

Land
Unused

Land
Initial
Total

Gross
Loss

Cropland 11,306.1 300.84 17.51 342.91 1071.02 0.15 13,038.53 1732.43
Forest 314.51 28,707.72 191 86.76 566.9 0.25 29,867.14 1159.42

Grassland 19.37 63.62 944.63 12.24 44.57 0.06 1084.49 139.86
Water 562.14 59.62 10.31 2982.11 335.82 0.3 3950.3 968.19

Build-up land 263.23 208.52 12.66 96 5562.94 0.06 6143.41 580.47
Unused land 2.41 0.77 0.08 0.39 3.89 5.62 13.16 7.54

Final total 12,467.76 29,341.09 1176.19 3520.41 7585.14 6.44 54,097.03
Net change −570.77 −526.05 91.7 −429.89 1441.73 −6.72
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As illustrated by the Sankey diagrams (Figure 5), at the flow-out end, cropland sus-
tained the largest gross loss of 1732.43 km2, with the majority converted to build-up land
and part converted to forest land and water areas. Forest land and water areas sustained
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the second and third largest gross loss of 1159.42 km2 and 968.19 km2, which were mostly
converted to build-up land and cropland. Additionally, the conversion from forest land
to grassland was also significant, which mainly accounted for the increment of grassland.
At the flow-in end, build-up land obtained the largest gain of 2022.20 km2, followed by
cropland, with 1161.66 km2, forest land, with 633.37 km2, and water area, with 538.3 km2.
However, it should be noted that compared with the gross loss, only build-up land and
grassland presented a positive increment during the past decade.
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4.2. Simulation Validation

The CA–Markov model was validated over the period between 2005 and 2015. From
the visualization map (Figure 6) and the corresponding quantitative evaluations (Table 3),
it can be found that a relatively good simulation effect was obtained for 2015. Generally, the
simulated result was basically in line with the reference map, whether from the whole land
use pattern or spatial detail perspectives. The PA and UA of most land uses were over 85%,
with the rest also over 70%, which suggested both the omission rate and commission rate
were at a low level. In general, a high OA of 90.27%, Kappa of 0.8495, and FoM of 89.14%
were obtained, with a low total error (T) of 587,686, which suggested the vast majority of
geographical units and changes were correctly predicted. Therefore, the simulated result
had a high consistency with the reference data [80,89].
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Table 3. Accuracy assessment of land use simulation for 2015.

Land Use Type PA (%) UA (%) OA (%) Kappa FOM (%) T

Cropland 89.19 89.45

90.27 0.8495 89.14 587,686

Forest 90.41 98.11
Grassland 78.88 85.65

Water 99.95 81.30
Build-up land 88.79 73.14
Unused land 77.33 87.83

More specifically, the prediction of forest land and cropland was accurate, according
to the relatively high PAs and UAs, i.e., 90.41% and 89.19%, and 98.11% and 89.45%, which
indicate less omissions and commissions. As part of the grassland and unused land were
not successfully forecasted, the omission rate had a certain rise, leading to a decline in PAs,
i.e., 78.88% and 77.33%, but these were still at an acceptable level for practical applications.
For build-up land and water areas, due to the misprediction of some cells, the commission
rate was relatively high, which leads to a certain decline in UAs, i.e., 73.14% and 81.30%.

A spatial consistency map (Figure 7) for each land use was also given to indicate
the position consistency between the simulated result and the reference map. In general,
the simulation has a high consistency with the reference data for each use. Especially
for forest land, the vast majority of geographical units were correctly forecasted. The
simulation of grassland and unused land was also at an acceptable level, with relatively less
inconsistences. For build-up land, the simulation was good in the central areas of the urban
agglomeration, with inconsistences mainly scattered in the northwest and southwest of the
GBA as well as the suburban areas. For cropland and water areas, the overall consistency
was at a high level, with inconsistences mainly concentrated in the junction of Zhuhai
and Zhongshan City, i.e., Doumen and Lianzhou Town. The reason may be that the main
industry in these areas was aquaculture, with a large number of ponds embedded in arable
land, which easily causes confusion between cropland and water areas.
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Overall, the CA–Markov model has a good performance for land use simulation under
complex circumstances and can be applied well to future multi-scenario simulations in
the GBA.
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4.3. Multiple Scenario Simulations for Future Land Use Pattern

In order to explore the effects of different development modes and policies on LUCCs,
land use patterns of the GBA in the short, medium, and long-term future, i.e., 2030, 2050,
and 2070, were simulated with the validated CA–Markov model under UD, CP, and ES
scenarios, respectively (Figures 8–10). As illustrated in the figures, there were significant
differences in the future land use structure between various scenarios, with the discrepancy
magnified over time.

Specifically, it can be observed that urbanization will be the main melody for all
three scenarios in the next decades, which is very obvious in the main body of the urban
agglomeration, such as Shenzhen, Guangzhou, Foshan, Dongguan, and Zhongshan City.
The urbanization expands from inside to outside and gradually connects into pieces,
forming an increasing compact structure. Meanwhile, the marginal cities, such as Zhaoqing,
Jiangmen, and Huizhou, also show a rapid growth on the original basis. In general, the
newly added build-up areas are mainly distributed along both banks of the rivers, forming
a typical belt-like expansion. However, the urbanization degree and LUCC pattern are
quite different between various scenarios.
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Figure 9. Multi-scenario simulation for 2050.

Under the UD scenario, the build-up land expands outwardly in a rapid and free
manner, at the expenditure of any surrounding land use types. Accordingly, abundant
cropland and forest areas are occupied, especially for the regions around cities, which leads
to an immense reduction of arable land and woodland. By contrast, the forest loss is more
significant, since most areas of the GBA are covered by woodland. This phenomenon will
be more evident in 2050 and 2070 with the intensification of urbanization, which brings
about a great challenge to the sustainability of the GBA.

Under the CP scenario, urbanization is obviously slowed down, with agricultural
production and food security as primary objectives. The encroachment of cropland is
significantly relieved in permanent farmland regions around cities, with cultivated land
in other regions further enlarged under land reclamation activities, especially for the
northwest and the south of the GBA, which is in accord with cropland protection policies
and accounts for a certain increment of the total amount of cultivated land. Naturally, forest
land has been the major consumptive land source of urbanization to meet the needs of
urban development, with an increasing loss in the next decades.
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Under the ES scenario, the ecological lands, in terms of forest, grassland, and water
areas, are well protected without significant reduction, compared with that in 2015, which
indicates an ecologically friendly development mode in the future. In the northwest and the
northeast of the GBA, forest land and grassland have a certain increment, benefitting from
ecological constructions and afforestation/greening projects. The urbanization becomes
moderate under the restriction of ecological protection policies, with the occupation of
ecological lands significantly reduced, which effectively relieves the contradictions be-
tween socio-economic development and ecological service. As the major expenditure of
urbanization, cropland has an obvious reduction.

To gain further insight into the scenario differences, the land use details of three
typical scenes in the medium term, i.e., 2050, are compared (Figure 11). It can be clearly
observed that LUCCs differ a lot among the three scenarios. The UD scenario brings about
a much more intensive urban sprawl under the principle of urban priority, with original
discrete build-up areas connected into a piece and expanding outwardly in a rapid manner.
The build-up land encroaches its surrounding land unscrupulously, which leads to large
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fragmentation to cropland and forest land. By comparison, the CP and ES scenarios restrict
the free growth of build-up land to protect their preferred land use, with urbanization
significantly relieved. More specifically, the CP scenario tries to avoid the expenditure of
cropland, with forest land as the major land source of urbanization, as shown in the top left
corner and middle lower part of Figure 11(a2), the left part of Figure 11(b2), and the lower
right corner of Figure 11(c2). The EP scenario focuses on the protection of ecological lands,
with urban sprawl mainly occurring in cropland regions. Consequently, it can be noted
that the distribution of ecological lands, i.e., forest land, grassland, and water areas, have
small changes compared with that in 2015.
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4.4. Future Land System Dynamics under Multiple Scenarios

To better understand the influences of different scenario modes on the future land
system evolution in the GBA, the differences in land allocation and dynamic patterns were
further explored (Table 4 and Figure 12). It can be clearly observed that the future land
dynamics will be quite different between the scenarios.
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Table 4. Land allocation under multiple scenarios in 2030, 2050 and 2070 (km2).

Time Scenario Cropland Forest Grassland Water Build-Up Land Unused Land

2030
UD 11,891.39 26,189.76 2123.79 3550.04 10,337.74 4.31
CP 13,082.65 26,276.64 2132.02 3549.01 9052.39 4.32
ES 10,856.46 28,659.44 2156.83 3572.24 8847.73 4.33

2050
UD 11,772.97 22,460.17 2311.55 3358.87 14,191.34 2.13
CP 14,102.63 22,797.79 2342.44 3365.04 11,486.78 2.35
ES 9669.38 27,859.89 2457.66 3525.93 10,581.83 2.34

2070
UD 11,967.37 18,154 2341.51 3130.48 18,502.74 0.93
CP 15,377.63 18,661.33 2236 3032.34 14,788.58 1.15
ES 8945.99 25,923.37 2558.55 3520.76 13,146.51 1.85
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Figure 12. Land use dynamics in the period of 2015–2030, 2030–2050, and 2050–2070 under
multiple scenarios.

Under the UD scenario, the build-up area shows an excessive growth, profiting by
priority policies, and significantly exceeds that under the other two scenarios. As shown in
Table 4, The build-up area reaches 10,337.74 km2 in 2030 and increases 2752.60 km2 (36.29%)
compared with that in 2015, with 1285.35 km2 and 1490.01 km2 more than the CP and EP
scenarios. Additionally, it exceeds the planned area of 9938.20 km2 in 2020, which demon-
strates the effectiveness of this scenario for promoting urban development. Furthermore,
urbanization will be accelerated during the periods between 2030 and 2050 and 2050 and
2070, with an increment of 3853.60 km2 and 4311.40 km2, respectively, leading to a gross
gain of 10,917.60 km2 (143.94%) during the period between 2015 and 2070. Accordingly,
a large number of forests and croplands are occupied, with a gross loss of 11,187.09 km2

(38.13%) and 500.39 km2 (4.01%), which further exacerbates land contradictions and hin-
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ders regional sustainable development. It can be noted that forest land accounts for the
main land source of urbanization and undergoes a continuous reduction. Water areas also
decrease in the next decades, with a total loss of 389.93 km2 (11.08%). Grassland continues
an increasing trend as in 2005–2015, with an overall increment of 1165.32 km2 (99.07%).

Under the CP scenario, cropland presents an obvious and constant growth, driven
by cropland protection policies and land reclamation activities, forming a sharp contrast
with that under the other two scenarios. As in Table 4, the gross area of cropland reaches
13,082.65 km2 in 2030, with an increment of 1191.26 km2 (10.02%), compared with that in
2015. It is up to 14,102.63 km2 and 15,377.63 km2 in 2050 and 2070, respectively, with a
general gain of 2909.87 km2 (23.34%) during the period between 2015 and 2070. On the
other hand, build-up land still presents an increasing trend in the next decades, but with a
much smaller magnitude, with a total increment of 7203.44 km2 (94.97%). As a consequence,
forest land constantly decreases, with a significant loss of 10,679.76 km2 (36.40%). For water
area and grassland, these types have similar dynamic trends as in the UD scenario, with a
total loss of 488.07 km2 (13.86%) and a total gain of 1059.81 km2 (90.10%), respectively.

Under the ES scenario, ecological lands, including forest land, grassland, and wa-
ter areas, show obvious advantages to ecological lands under the UD and CP scenar-
ios, benefitting from ecology protection policies and afforestation/greening projects. As
in Table 4, the build-up land increases at a mild rate, with a moderate increment of
5561.37 km2 (73.32%) during the period between 2015 and 2070. Although forest land
has certain reduction under urbanization, the magnitude is significantly reduced, with a
gross loss of only 3417.72 km2 (11.65%). The forest area is retained at 28,659.44 km2 in 2030
and achieves the planned goal in 2020 of 28,405.62 km2. For 2050 and 2070, it still remains
at a high level of 27,859.89 km2 and 25,923.37 km2, without significant reduction, which
suggests the effectiveness of this scenario in balancing socio-economic development and
ecology security. As opposed to the other two scenarios, water resources are preserved
under this scenario, and have a positive growth of 0.34 km2. Grassland also presents a
certain superiority, with a larger gross gain of 1382.36 km2 (117.53%). Cropland inevitably
decreases in a large magnitude as a consequence of urbanization, with a gross loss of
3521.77 km2 (28.25%). However, the holding area of cropland in 2070 is 8945.99 km2, far be-
yond the restricted basic farmland area of 7141.18 km2 in 2020, which certainly guarantees
regional agricultural production and food security [90–92].

4.5. The Effect of Land System Changes under Multiple Scenarios

In order to more deeply learn the differences and comparative advantages of various
scenarios, in this section, the effect of land system changes concerning three major aspects,
i.e., urban expansion, grain yield, and ecology quality, are comprehensively explored.

4.5.1. Urban Expansion Analysis

To better understand the urbanization characteristics of the GBA under various sce-
narios, three different quantitative metrics were utilized to indicate the internal pattern
over two typical periods, i.e., 2030–2050 and 2050–2070 (Figure 13).

Generally, it can be observed that the UD scenario leads to much larger values of all
three indices for most cities. More specifically, the developed cities, like Shenzhen, Zhuhai,
and Hong Kong, which are affected by having a smaller jurisdiction and high-density
construction, present a larger expansion intensity in both periods. Especially for Macao,
it shows a significant expansion during the period between 2030 and 2050. However,
restricted by the limited space, urbanization in Macao tends to be saturated in 2050–2070,
with a very small expansion intensity. For the marginal cities with other major functions,
like Zhaoqing and Huizhou, the broad jurisdiction makes urban sprawl inconspicuous and
leads to a small expansion intensity.
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Figure 13. Urban expansion of different cities in the GBA under multiple scenarios in the
next decades.

On the other hand, Zhaoqing, Jiangmen, and Huizhou show a much larger expansion
dynamicity compared with the developed cites, as a result of a smaller foundation area and
high-intensity expansion. Meanwhile, it can be found that these three cities contribute most
to the total urbanization of the GBA in both periods, accounting for more than half under the
UD and CP scenarios during the period between 2030 and 2050 and under all three scenarios
during the period between 2050 and 2070. Additionally, the contribution of Guangzhou and
Foshan is also significant, especially under the ES scenario. In summary, the combination of
further strengthening the core urban agglomeration and rapidly developing the marginal
cities of the GBA is in accord with the general law of urbanization in China.
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4.5.2. Grain Yield Estimation

To understand the impacts of different scenario modes on agricultural production,
both the total grain yield of the GBA and the regional output of 11 internal cities under
multiple scenarios in 2030, 2050, and 2070 were compared (Table 5 and Figure 14).

Table 5. Total grain yield under multiple scenarios in future years (ton).

Scenario 2030 2050 2070

Urban development 6,242,664.75 6,180,489 6,282,528
Cropland protection 6,868,076.25 7,403,555.25 8,072,893.5

Ecology security 5,699,326.5 5,076,109.5 4,696,324.5
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Figure 14. Grain yield of different cities in the GBA under multiple scenarios in future years.

It can be found that the CP scenario has an obvious superiority in grain yield in
comparison to the other two scenarios, with an increasing total grain yield, which indi-
cates its effectiveness in ensuring food security. The total grain yield of the GBA reaches
8,072,893.5 tons, with an increment of 17.54% during the period between 2030 and 2070,
accounting for 1.21% of the national grain yield according to the reports in 2020.

The distribution of the grain yield among 11 internal cities is basically same for differ-
ent scenarios and different years, with the main grain producing areas, such as Zhaoqing,
Jiangmen, and Huizhou, having the largest contribution, followed by Guangzhou and
Foshan. The sum of grain production in Zhaoqing, Jiangmen, and Huizhou accounts for
more than 64% of the total output for all cases, with Jiangmen contributing the most. The
developed cities, like Hong Kong, Macau, Shenzhen, Zhuhai, and Zhongshan, have a
much lower grain yield, as they are highly industrialized with little room for agricultural
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development. On the other hand, it can be noted that under the CP scenario, the grain
yield gradually increases in Zhaoqing, Jiangmen, and Huizhou, but is kept stable in the
other cities.

4.5.3. Ecology Quality Evaluation

To compare the subsequent effects of LUCCs on the eco-environment under different
scenarios, the total ecology quality index of the GBA in 2030, 2050, and 2070 was evaluated
(Table 6), with regional ecology quality indices of 11 internal cities also provided (Figure 15).

Table 6. Total ecology quality index under multiple scenarios in future years.

Scenario 2030 2050 2070

Urban development 5.3261 4.7496 4.2650
Cropland protection 5.3821 4.8486 4.3248

Ecology security 5.7017 5.5221 5.1725
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Figure 15. Ecology quality index of different cities in the GBA under multiple scenarios in
future years.

Affected by urbanization, the total ecology quality of the GBA decreases for all three
scenarios, with the UD scenario suffering from the fastest decline. Comparatively speaking,
the ES scenario has the best ecology quality in all three years and shows a significant
superiority to the other two scenarios. It maintains a basic stability for the eco-environment,
with little degradation in the next decades. The total ecology quality of the GBA is retained
at a high-level of 5.1725 in 2070 under the ES scenario, but it is reduced below 5 in 2050
under the UD and CP scenarios, with an obvious backwardness of 0.91 and 0.85 in 2070.
The reason is that, driven by specific development orientations, i.e., the emphasis on
cultivated land [93] and urban development priority [94], more and more ecological lands
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are encroached upon; woodland has the greatest ecological contribution, resulting in the
continuous degradation of the eco-environment.

Similarly, the distribution of ecology quality is basically same for the different scenarios.
With the passage of time, the gap between the ES and the other two scenarios becomes more
and more obvious for most cities. Naturally, the marginal cities with high ecological land
coverage, like Zhaoqing, Jiangmen, and Huizhou, have a better ecology quality. In contrast,
the inner cities of the urban agglomeration, which are dominated by an impervious layer,
have a much lower ecology quality, such as Zhuhai, Zhongshan, Shenzhen, Dongguan,
and Macao. However, Hong Kong and Guangzhou are exceptions. Benefiting from a high
vegetation coverage, these two cities maintain a high ecological value with the developed
economy, whose development mode provides a good reference for others.

5. Discussion
5.1. Scenario Preference and Suitability for Regional Sustainability

The GBA is the fourth largest bay area in the world and is one of the regions with
the highest openness degree and the strongest economic vitality in China. It has become
a national planned strategic area in recent years, with grand development goals of not
only being a world-class bay area and urban agglomeration but also being a high-quality
life circle suitable for living, business, and tourism [46]. Due to the advantages of ge-
ographical location, many cities of the GBA have been at the forefront of reform and
opening-up and have experienced unparallel development and urbanization, resulting in
an increasingly prominent land use contradiction in this region [47,48]. Therefore, balanc-
ing socio-economic development, food security, and ecological needs has become a major
concern to governments and planners. In order to promote land use optimization and
formulate favorable policies to boost regional sustainability, multi-scenario simulations in
the short, medium, and long-term future were comprehensively compared and analyzed in
this study.

Under the UD scenario, the GBA will experience significant urbanization, with build-
up land sustaining high-speed expansion, which greatly changes the original land use
pattern. It provides a reasonable reference for possible locations and the upper-bound scale
of urbanization in the next decades. However, under this scenario, urban expansion is
excessive; the build-up area in 2030 far exceeds the planned area in 2020, and the build-
up area in 2070 is almost twice of the planned area in 2020, which leads to a substantial
reduction of forest land and cropland. Accordingly, along with rapid economic growth, the
UD scenario will cause serious negative effects, such as agricultural production decline and
ecology quality degradation. The woodland coverage will reduce from 54.24% in 2015 to
48.41%, 41.52%, and 33.56% in 2030, 2050, and 2070, respectively, which seriously degrades
ecological service value in terms of water-and-soil conservation, regional climate regulation,
as well as threats to species diversity in this region. All these violate the prerequisites of
regional sustainability and the strategic positioning of high-quality development [50,53].

Under the CP scenario, urbanization will be slowed down to some degree, with the
encroachment on arable land alleviated to a great extent. Meanwhile, with a supplement of
new cultivated land under reclamation activities, the total amount of cropland exhibits an
obvious growth in 2030, 2050, and 2070, which guarantees regional agricultural production
and food security [95]. However, a large proportion of newly added cultivated land is
located in mountainous areas, mainly concentrated in Zhaoqing, Jiangmen, and Huizhou,
with complex terrain and relatively poor planting conditions in terms of soil nutrients,
irrigation, and mechanization, which requires more investments to improve tillage quality
to achieve comparable production in plain areas. Consequently, the overall agriculture
input–output ratio will be pulled down to a certain degree. Furthermore, under the joint
action of urbanization and land reclamation, extensive woodland will disappear, with
a comparable ecological degradation to that under the UD scenario [96]. Generally, the
land use pattern under this scenario has no protruding cost performance for regional
high-quality development and is detrimental to the ecosystem [97].
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Under the ES scenario, ecological lands, in terms of forest land, grassland, and water
areas, will be well protected, without a significant reduction in the next decades compared
with that in 2015. Regional ecology quality remains basically stable, which indicates
an ecologically friendly development mode. On the other hand, urbanization has been
restricted to a large extent to be more moderate, with a relatively proper incremental
amount and a more reasonable/better-organized layout of built-up land [98]. The main
roles of different functional areas, involving urban functional areas, ecological functional
areas, and agricultural functional areas, can be better highlighted [99]. Meanwhile, although
cropland suffers from a significant reduction under urbanization, the concentrated high-
quality permanent farmland is properly protected to some extent, with the total cropland
amount strictly controlled above the red line of cultivated land [100]. More specifically,
the cropland area in 2070 is far beyond the planned minimum area of 7141.18 km2 in 2020,
which certainly ensures regional food security.

Overall, the land use pattern under the ES scenario seems more desirable and the
corresponding development mode relives the intricate land contradictions between human
and nature to a greater extent, which can be optimal for the future development of the
GBA [101,102]. Under this scenario mode, a proper balance between socio-economy,
agricultural production, and eco-environmental service will be built through land resource
reallocation, which is conductive to promote the high-quality and green development of
the GBA.

5.2. Future Land Use Optimization and Policy Formulation

According to the simulated results as shown in Figures 12–15 and Tables 4–6, the ES
scenario mode seems more suitable for the future development of the GBA. Accordingly,
from a long-term perspective, land use management should stress the harmonization of
socio-economic construction and eco-environmental security to form a benign development
mode, through overall planning and comprehensive controls. Urban sprawl should be
implemented at a moderate rate with a clear route and reasonable scope, without the
extensive occupation of arable land and ecological lands. Additionally, land for resource-
intensive and high-pollution industries should be sternly limited, with a preference for
green and low-carbon industries, high-end manufacturing, and information-technology
industries [50,53]. Moreover, regional ecology protection and restoration need to be further
strengthened, with unnecessary construction land, cultivated land, and other lands returned
to ecological lands.

On the other hand, regional decision-making and policy formulation should pay more
attention to high-quality and green development, giving appropriate priority to ecology
improvement. Socio-economic growth, ecological needs, and food security should be
comprehensively taken into account for policy formulation [103–105]. For instance, the
increment of build-up land should be limited within a rational range to leave enough eco-
logical and agricultural space. It is imperative to take administrative measures to promote
a regional industrial structure that is upgraded toward eco-friendly and deep-tech models,
which has less land occupation, less use of natural resources, and less pollution [106,107].
Furthermore, a long-term ecological protection mechanism and a multi-level ecological pro-
tection system should be set up to build a high-quality life circle and boost the sustainable
development of the GBA.

6. Conclusions

In this paper, the historical land system changes in the GBA from 2005 to 2015 were
investigated; further, future land use patterns were simulated for 2030, 2050, and 2070
using a CA–Markov model under three tailored scenarios, i.e., UD, CP, and ES. The study
found that excessive urbanization enlarged the urban space by 23.47% in the past decade,
with substantial destruction of cropland, forest land, and water areas, leading to prominent
land use contradictions. According to the simulated results, land use patterns will be
significantly different in the next decades depending on which scenario mode is adopted,
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with disparate subsequent effects. Among the three scenarios, the ES scenario optimizes the
balance between urban development and ecology protection, with promising perspectives
for regional sustainable development. Thus, it is meaningful to restrict current excessive
urban expansion, give appropriate priority to eco-environment improvement, and imple-
ment targeted land use optimization and positive policy formulation to promote future
green development.

Supplementary Materials: The following supporting information can be downloaded at:
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importance of pairwise driving factors for important land use types; Table S4. The ecological score Ri
for each land use.
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