
Citation: Yang, F.; Feng, Q.; Zhou, Y.;

Li, W.; Zhang, X.; He, B. Monitoring

Total Phosphorus Concentration in the

Middle Reaches of the Yangtze River

Using Sentinel-2 Satellites. Remote

Sens. 2024, 16, 1491. https://

doi.org/10.3390/rs16091491

Academic Editor: Assefa M. Melesse

Received: 28 February 2024

Revised: 10 April 2024

Accepted: 19 April 2024

Published: 23 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Monitoring Total Phosphorus Concentration in the Middle
Reaches of the Yangtze River Using Sentinel-2 Satellites
Fan Yang 1,2 , Qi Feng 1,2, Yadong Zhou 1,2, Wen Li 1,2, Xiaoyang Zhang 3 and Baoyin He 1,2,*

1 Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy
for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Geospatial Sciences Center of Excellence, South Dakota State University, Brookings, SD 57007, USA
* Correspondence: heby@apm.ac.cn

Abstract: Total phosphorus (TP, a non-optical sensitivity parameter) has become the primary pollutant
in the Yangtze River, the third largest river in the world. It is strongly correlated with turbidity
(an optical sensitivity parameter) in rivers. In this study, we constructed a turbidity-mediated TP
retrieval model using Sentinel-2 observations and field-measured daily-scale water quality. The
model was successfully applied to estimate the temporal and spatial variations of TP concentration
in the middle reaches of the Yangtze River (MYR) from 2020 to 2023. Our results show: (1) the model
accuracy of TP concentration retrieval with turbidity is significantly higher (R2 = 0.71, MAPE = 15.78%)
than that for the model without turbidity (R2 = 0.62, MAPE = 16.38%); (2) the turbidity and TP
concentration in the MYR is higher in summer and autumn than in winter and spring; and (3) the
turbidity and total phosphorus (TP) concentration of the Yangtze River showed a significant increase
after passing through Dongting Lake (p < 0.05).
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1. Introduction

In recent decades, significant amounts of nutrients, such as nitrogen (N) and phos-
phorus (P), have been entering aquatic environments. This influx has accelerated the
eutrophication process, resulting in a notable decrease in water quality [1,2]. The eutroph-
ication of water bodies often leads to an increase in harmful algal blooms, which can
adversely affect other aquatic organisms and alter the color and function of the water. The
eutrophication of water bodies has already had a significant impact on public health and
ecosystem services globally [3]. Phosphorus is recognized as the main nutrient that restricts
eutrophication in aquatic environments [4], and it is also a major contributor to 80% of
water eutrophication [5]. It is essential to conduct the long-term and effective monitoring
of total phosphorus (TP) to provide early warnings of eutrophication in water bodies and
to manage and protect water ecosystems.

Rivers play a crucial role as phosphorus land-sea transport corridors [6]. Alterations
to phosphorus concentration within rivers can lead to significant ecological impacts on
reservoirs, nearby lakes and coastal areas [7,8]. The TP concentration in rivers is generally
spatially and temporally diverse [9,10]. Traditional methods for sampling and monitor-
ing water quality are costly, time-consuming, and only offer limited information about
localized water quality. This does not accurately represent the overall water quality status
and changes across large areas. Most of the current studies on remote sensing of water
quality have focused on optically active compounds such as chlorophyll-a [11], suspended
sediment concentration [12], turbidity [13] and suspended particulate matter [14]. Few
studies have focused on non-optical compounds in water. Because TP has no direct opti-
cal properties [15], it is difficult to estimate its content using a remote-sensing analytical
model [16]. However, previous studies have shown that TP concentrations correlate well
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with chlorophyll-a concentrations, colorimetric dissolved organic matter (CDOM), and
turbidity values in some water bodies [17–19]. Therefore, it can be estimated from these
optically active compounds. In recent decades, satellite remote-sensing data such as Land-
sat, and Sentinel data have been extensively used to estimate TP concentration in various
rivers around the world [20,21].

The Yangtze River is the largest river in China, spanning as many as 11 provinces,
municipalities, and autonomous regions of the country. In the past few decades, the
eutrophication of water bodies in the MYR has become increasingly prominent, mainly
originating from factors such as agricultural non-point source pollution, dam construction,
and climatic change [22–24]. With the aggravation of eutrophication, the rapid increase
in TP concentration in water bodies has become a focus of attention [1]. According to the
working report of the Ministry of Ecology and Environment of the People’s Republic of
China, total phosphorus is the most serious water quality parameter exceeding the standard
at 51.5% of the monitoring points in 2017–2019. It was reported that TP has become the
primary pollution that restricts the improvement of water quality in the Yangtze River
basin [25]. Therefore, it is of great significance to conduct remote-sensing research on TP
concentration in the MYR to comprehensively understand the eutrophication status of
water bodies in the region, provide a scientific basis and guide the management of water
environments.

In this paper, we used Sentinel-2 MSI (multispectral imager) data from 2020–2023 to
study the spatial and temporal distribution characteristics of TP concentration in the MYR.
The main objectives were: (1) to establish a remote-sensing retrieval model for TP concen-
tration in the MYR, map the spatial and temporal distribution of TP from 2020–2023 and
provide effective technical methods for large-scale and rapid TP concentration monitoring;
and (2) to analyze the spatial and temporal variations of TP concentration in the MYR.

2. Study Area

The Yangtze River can be divided into upper, middle and lower reaches. The middle
reaches of the Yangtze River (MYR) are from the Three Gorges Dam to Poyang Lake, located
between longitudes 110◦~115◦E and latitudes 28◦~33◦N, with a total length of about 955 km
and a basin area of 680,000 km2 (Figure 1).
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The MYR has complex landforms and dense river networks. The climate in the MYR
is dominated by a subtropical monsoon climate, with marked seasonal variation [26]. Due
to the rapid economic development and the increasing industrial and agricultural activities
in the middle reaches of the Yangtze River, the concentrations of total phosphorus and
other nutrients in water bodies have increased significantly [25]. Total phosphorus has
become the primary pollutant that limits the improvement of water quality in the Yangtze
River basin.

3. Materials and Methods
3.1. Measured Data

The Ministry of Ecology and Environment of the People’s Republic of China provided
daily water quality data for 13 water quality monitoring points in the MYR (Figure 1) from
January 2021 to May 2023. Water quality monitoring was conducted daily at 12:00 noon,
which is close to the Sentinel-2 image time (~11:00 a.m.). Nine water quality parameters
were measured including total phosphorus (TP), total nitrogen (TN), water temperature
(WT), pH, dissolved oxygen (DO), electrical conductivity (EC), turbidity, chemical oxygen
demand (COD) and ammonia nitrogen (NH3-N). Statistics for different water quality
parameters for the samples are shown in Table 1.

Table 1. Numerical description of measured water quality parameters in samples. Std: standard
deviation; Q25 and Q75 are the 1st quartile and 3rd quartile, respectively.

Range Mean ± Std Median Q25–Q75

TP (mg/L) 0.01–0.162 0.068 ± 0.024 0.067 0.05–0.08
TN (mg/L) 0.8–3.19 1.81 ± 0.45 1.76 1.48–2.05

WT. (◦C) 8–30.22 20.1 ± 5.8 20.7 15.18–25.6
pH 6.1–8.71 7.9 ± 0.4 7.9 7.64–8.19

DO (mg/L) 3.16–13.22 8.82 ± 1.56 8.87 7.66–9.87
EC (µS/cm) 249.12–523.5 356.9 ± 42.9 357.2 328.57–381.3

Turbidity (NTU) 2–135.93 33.7 ± 23.6 30.3 16.73–44.86
COD (mg/L) 0.41–14.9 1.76 ± 1.15 1.59 1.275–2.03

NH3-N (mg/L) 0.02–0.92 0.068 ± 0.137 0.025 0.02–0.028

We filtered out the outliers in the measured water quality data, matched the measured
water quality data with the reflectance values of Sentinel-2 images at the same point at the
same time to obtain samples, and used sample expansion to enhance the stability of the
samples [27], obtaining a total of 1764 samples.

3.2. Sentinel-2 Data and Processing

In this study, a total of 126 available Sentinel-2 Level-2A images on the MYR for
the period January 2020–May 2023 were downloaded from the Copernicus Open Access
Hub (https://browser.dataspace.copernicus.eu, accessed on 18 April 2024). The L2A
image is a bottom-of-atmosphere corrected reflectance product, obtained using the Sen2cor
method [28]. The study area can be obtained using a mosaic of nine Sentinel-2 images.
All bands were resampled at a resolution of 10 m. We processed all bands of Sentinel-2
with median and mean filtering (3 × 3) and then calculated the normalized difference
water index (NDWI) [29]. Image filtering is a remote-sensing image-enhancement method,
which redistributes the mathematical calculations of surrounding pixels to the central pixel.
Filtering before extracting water can eliminate non-water pixels, such as boats and bridges
on the water surface [30]. The NDWI, which typically ranges from −1 to 1, is an important
metric for identifying water features in an image. Typically, a value greater than 0 indicates
the presence of a water body, while a value less than 0 indicates a non-water body [29].
For the specific case of the Yangtze River, a threshold of NDWI values exceeding 0.1 is

https://browser.dataspace.copernicus.eu
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chosen for accurate delineation and extraction of its water body. The expression for NDWI
is as follows:

NDWI =
B3 − B8

B3 + B8
(1)

where B3 and B8 are the green and near-infrared (NIR) bands of the Sentinel-2 image,
respectively.

At present, remote-sensing retrieval of river water quality data has been applied
in different areas of the world (Table 2). Relevant research has been used to retrieve
water quality parameters such as TP, turbidity, total suspended solid (TSS), etc., using
different satellite sensors, and most of the bands used were in the visible and NIR regions,
confirming that water information is mainly concentrated in the visible and NIR bands [31].
In this study, we calculate all single-band and two-band ratios and the differences in
Sentinel-2 images, as well as other band combinations used in relevant research, and make
a correlation analysis between them and the water quality parameters in the samples to
select the input bands for TP retrieval.

Table 2. Recent application of related research to remote sensing of river water quality.

Study Area Water Quality
Parameter Satellite Band R2 References

Alpine rivers on
the Tibetan Plateau TP Sentinel-2 (B4 + B5)/B3 0.734 Wang et al. (2022)

[20]

Pearl River Estuary Total suspended solid Landsat 5, 7, 8 B5, B4 / Wang et al. (2018)
[32]

Yangtze River TP Landsat 8 B2, B3, B6 0.59 Zhao et al. (2023)
[21]

The Red River Turbidity Sentinel-2 B2, B3, B4, B8 0.774 Tham et al. (2022)
[33]

Mississippi and
Missouri Rivers

Surficial suspended
sediment concentration Landsat 5 B2, B3, B4, B5 0.72 Umar et al. (2018)

[34]

3.3. Retrieval Model of TP

TP is widely acknowledged as a non-optically active parameter in water bodies and does
not directly influence the optical properties or spectral characteristics of water bodies [15]. TP
in water bodies has complex physical and chemical connections with many other water quality
parameters, rather than being completely independent [35]. Previous studies have shown
that there is a high correlation between total phosphorus (TP) and turbidity, transparency
and colored dissolved organic matter (CDOM) in water bodies [35–37], and this correlation
can be used to determine the sensitive spectral variables for the remote-sensing estimation of
TP, which also provides a theoretical basis for the retrieval of TP by remote-sensing satellites.
In this study, we calculated the correlation coefficients for measured TP with other water
quality parameters in the study area, and the results showed that TP has the best correlation
with turbidity (r = 0.56, p < 0.05, Figure 2). Turbidity is an optically active parameter [13],
so we chose turbidity as an intermediate variable for the remote-sensing retrieval of TP
concentration. In Figure 2, the three band combinations that have the best correlation with TP
are (B4 + B5)/B3, (B3 − B4)/(B3 + B4) and B5 − B9, with correlation coefficients of 0.59, −0.59
and 0.59, respectively. Similarly, the three band combinations with the best correlation with
turbidity are (B4 + B5)/B3, (B3 − B4)/(B3 + B4) and B5 − B11, with correlation coefficients of
0.85, −0.86 and 0.84, respectively.
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Because the optical characteristics of most inland water bodies are complex, the rela-
tionship between reflectance and water quality parameters cannot be established by simple
linear regression [14]. Machine learning can establish statistical relationships between
reflectance and measured water quality parameters, simplifying the water quality remote-
sensing retrieval process and yielding high accuracy. This makes it suitable for modeling
the intricate relationship between remote-sensing images and water quality parameters.
Therefore, various machine learning algorithms have been developed to estimate TP con-
centrations in inland waters [4,5,35]. The radial basis function neural network (RBFNN)
is a machine learning algorithm with a strong nonlinear fitting ability and better perfor-
mance for fitting localized data. Previous studies have shown that RBFNN is suitable for
remote-sensing water-quality data retrieval [27,30,38].

In this study, we used MATLAB R2019a to build the RBFNN model:

(1) The input and output data were normalized to a range of −1 to 1. We divided the data
into two parts, training and validation at a ratio of 3:1, and ensured that the input and
output of each sample were spatially and temporally consistent.

(2) We used the newrb() function to construct the RBFNN.
(3) The three-band combination with the best correlation with turbidity or TP concentra-

tion is used as the input to the RBFNN (Figure 2), and the measured turbidity or TP
concentration is used as the output for training the samples to the required accuracy.

(4) The SIM function was used for simulation according to the model, and the turbidity
of the MYR was obtained through inverse normalization.

(5) Steps 1–4 were repeated to evaluate the TP concentrations, but the input parameters
for the TP retrieval model were reflectance and turbidity. We divided the data between
Model A and B based on the difference in input parameters (Figure 3); model A has
only reflectance as an input parameter and model B has reflectance and turbidity as
input parameters.
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3.4. Statistical Metrics

The coefficient of determination (R2) (Equation (2)), root mean square error (RMSE)
(Equation (3)), mean absolute error (MAE) (Equation (4)) and mean absolute percentage
error (MAPE) (Equation (5)) were statistically analyzed.

R2 =
∑n

i = 1(yi − xi)
2

∑n
i = 1(xi − xi)

2 , (2)

RMSE =
1
n

√
n

∑
i = 1

(xi − yi)
2, (3)

MAE =
∑n

i = 1|xi − yi|
n

, (4)

MAPE = 100% × 1
n

n

∑
i = 1

∣∣∣∣ xi − yi
xi

∣∣∣∣, (5)

where n is the number of data pairs, the subscript i denotes individual data points, x repre-
sents the measured water quality parameters, and y represents the water quality parameters
estimated by the remote-sensing retrieval model.

4. Results
4.1. Model Performance

The accuracy of the turbidity retrieval model is expected (Figure 4, R2 = 0.85, RMSE = 9.1,
MAE = 6.91, MAPE = 32.86%). Although most of the turbidity in the sample was concentrated
between 0 and 60, the validation points are not too scattered in the part with turbidity greater
than 60. Overall, the turbidity retrieval results are close to 1:1, which is reliable.

Compared to the TP retrieval model without the inclusion of turbidity (Figure 5A,
R2 = 0.62, RMSE = 0.01, MAE = 0.01 and MAPE = 16.38%), the accuracy of the model includ-
ing turbidity was significantly improved (Figure 5B, R2 = 0.71, RMSE = 0.01, MAE = 0.01
and MAPE = 15.78%). After adding the turbidity parameter, the retrieved TP values are
closer to the measured TP values. Importantly, the fitting effect of the model is significantly
improved when the TP value is less than 0.04 or greater than 0.1, indicating that the input of
turbidity can enhance the stability and robustness of the TP retrieval model, and improve
the TP retrieval accuracy.
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4.2. Variability of Turbidity and TP Concentration in the MYR

Based on the trained model (Figure 5B), we used the Sentinel-2 images of the MYR as
inputs, and obtained the retrieval results for turbidity and TP concentration in the MYR
from 2020 to 2023 (Figures 6 and 7). The results showed that the average turbidity in the
MYR was 42.8 NTN and the average TP concentration was 0.072 mg/L from 2020 to 2023.
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The variability of turbidity in the MYR is significant. In August 2020, turbidity in the
MYR increased significantly as a result of flooding [39]. According to the search results
(Figure 6), the average value of turbidity in the middle reaches of the Yangtze River was
more than 100 NTU. In September 2021, a large amount of suspended sediment entered
the MYR under the influence of increased precipitation in the upper reaches of the Yangtze
River and the Three Gorges Reservoir flood discharge and storage [40], the turbidity in
the MYR increased as well, with a mean value of 59 NTU. Turbidity in other periods
was relatively low, with mean values between 10 and 30 NTU. The variation of TP in
the MYR is similar to turbidity. In August 2020, the TP concentration in the MYR also
increased significantly, with a mean value of 0.114 mg/L, and the mean TP concentration
in September 2021 was 0.072 mg/L. Mean TP concentration in other periods ranged from
0.04 to 0.06 mg/L.
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We matrixed the results for turbidity and TP concentration (Figures 8 and 9). In terms
of temporal distribution, the turbidity and TP concentrations during the flood period
(August 2020) were 150 NTU and 0.06 mg/L higher than during the other periods, and
were relatively stable during the other periods, with a slightly higher turbidity and TP
concentration in the summer and fall than in the winter and spring. In terms of spatial
variation, since the Three Gorges Dam can intercept 76% of the sediment transport from the
upper Yangtze River basin [41], the turbidity in the lower and middle Yangtze River regions
is relatively low. With the continuous flow of the Yangtze River, the input of sediment from
the basin, and the riverbed scouring, the turbidity of the Yangtze River will slowly increase
from the upper reaches to the lower reaches [42]. According to the Yangtze River Protection
Action Plan of the Ministry of Ecology and Environment of the People’s Republic of China,
the water quality target of the Yangtze River is Class II (TP < 0.1 mg/L). At present, the
TP concentration in most areas of the MYR reaches the standard, but there are still a few
areas where the TP concentration does not reach the standard. Our results also indicate that
some reaches of the MYR are not meeting Class II water quality standards (TP < 0.1 mg/L)
during the summer and fall (Figure 9).
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5. Discussions
5.1. The Limitations and Uncertainty of the Model

In this study, the limitations and uncertainties of the TP retrieval model mainly mani-
fest in two ways: the lack of physical mechanisms and choice of intermediate variables.

The remote-sensing TP retrieval models in this study are data-driven and essentially
an empirical model, and model performance is highly dependent on the representativeness
of the sample and the range of values. Our sample time range is from January 2021 to
May 2023, with more samples in the spring and winter than in the summer and fall, which
may introduce uncertainty to the results. The range of values of the samples is also an
important factor affecting the accuracy of TP retrieval. In our samples, the range of values
of measured turbidity is 2–135.93 NTU, and the range of values of TP concentration is
0.01–0.162 mg/L (Table 1). Therefore, if the turbidity/TP concentration in the Yangtze River
is higher than this range, our model is not applicable.
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In water quality remote sensing, it is not uncommon to use other environmental
parameters or other water quality parameters to retrieve the target water quality. The
growth of algae in lakes is affected by light, temperature, precipitation and other factors
with certain regularity [43,44]. For example, Liu et al. [38] added the environmental
parameter K (The K value depends on the average chlorophyll concentration of Wuhan lakes
in different months: January–April, K = 1; May, June, December, K = 2; July–November,
K = 3) to the input parameters when retrieving the Trophic Level Index of Wuhan lakes,
and the accuracy of the model was significantly improved. Because the growth of algae and
the concentration of pollutants in lakes are affected by seasonal changes in temperature and
water level [45–47], Yang et al. [27] added temperature and water level to the TLI retrieval
model of Honghu Lake to improve the stability and applicability of the model. In this study,
we added turbidity to the TP retrieval model, the stability and accuracy of the model were
improved (Figure 5), this model is an empirical algorithm and indirect estimation, which
relies on a large amount of measured data and has no strict theoretical basis, so it is only
applicable to TP retrieval in the MYR, and is not applicable in other regions.

5.2. The Influence of Dongting Lake on the Water Quality in the MYR

Dongting Lake is the fourth largest lake in China and the only lake connected to
Yangtze River in the MYR, covering an area of about 2580 km2, with high suspended
sediment content and high turbidity [48]. Over the past few decades, the average TP
concentration in Dongting Lake has increased from about 0.05 mg/L in 1986 to about
0.1 mg/L in 2015, showing a significant increasing trend, and TP has gradually become
the main influencing factor on the water quality change in Dongting Lake [49]. As the
TP concentration in Dongting Lake increases, more and more phosphorus will enter the
Yangtze River, bringing challenges to the improvement of the Yangtze River’s water quality.
In this study, the average turbidity and average TP concentration in the MYR are 28 NTU
and 0.047 mg/L in the upper reaches of Dongting Lake, and 43 NTU and 0.072 mg/L in the
lower reaches of Dongting Lake from 2020 to 2023 (Figures 8 and 9), which indicates that
the Dongting Lake brought different degrees of turbidity increase and TP concentration to
the Yangtze River.

Figure 10A,B represent the RGB images and turbidity/TP concentration retrieval
results at the Yangtze River and Dongting Lake confluence in August 2022, respectively.
Dongting Lake affects the water color and quality of the Yangtze River due to its higher
turbidity and TP concentration compared to the Yangtze River. When Dongting Lake water
merges with the Yangtze River, the water from the two sources does not completely mix in
a short period of time, resulting in the presence of two distinct colors in the Yangtze River.
To better understand the impact of Dongting Lake on the water quality of the Yangtze
River, we statistically analyzed the results of the remote-sensing retrieval of turbidity and
TP concentration. As shown in Figure 11, from 2020 to 2023, before the Yangtze River
passes Dongting Lake, the turbidity is concentrated at 8–12 NTU and the TP concentration
is concentrated at 0.03–0.05 mg/L; after the Yangtze River passes through Dongting Lake,
the turbidity is concentrated at 24–36 NTU and the TP concentration is concentrated at
0.06–0.08 mg/L (Figure 11). The turbidity and TP concentration of the Yangtze River
increase significantly after passing through Dongting Lake (p < 0.01, Figure 11).

The relationship between the Yangtze River and Dongting Lake is complex. On the
one hand, the hydrological situation of the Yangtze River constantly changes the pattern
of Dongting Lake [50,51]. On the other hand, the increase of industrial and agricultural
pollution, the release of endogenous pollution and the reduction of water environment
capacity in the Dongting Lake basin, and the significant increase of nutrients such as TP
and TN in the lake will also challenge the water quality of the Yangtze River [49]. Further
study is needed to determine the specific impact of Dongting Lake on the water quality of
the Yangtze River.
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Figure 11. Variation of turbidity and TP concentration before and after the Yangtze River passes
through Dongting Lake (August 2020 is not included in the statistics). Scattered dots indicate
turbidity and TP concentration values in the MYR in Figures 8 and 9, and “x” indicates maximum
and minimum values. The dash line is used to distinguish before and after the Yangtze River passes
through Dongting Lake.
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6. Conclusions

Phosphorus pollution has become the primary factor limiting the improvement of
water quality in the Yangtze River. In this study, an indirect retrieval algorithm for TP
concentration is proposed. We established a retrieval model based on the relationship
between the Sentinel-2 MSI band combination and TP, and added turbidity as an input
parameter in the retrieval TP concentration model. Compared with the TP concentration
retrieval model without turbidity (R2 = 0.62, MAPE = 16.38%), the addition of turbidity
can significantly improve the accuracy of the TP concentration retrieval model (R2 = 0.71,
MAPE = 15.78%). Our results show that in 2020–2023, the average turbidity value in the
MYR is 42.8 NTN, and the average TP concentration is 0.072 mg/L. In terms of seasonal
variation, the turbidity and TP concentrations in the MYR were higher in summer and fall
than in winter and spring. In terms of spatial variation, the turbidity and TP concentration
of the Yangtze River increased significantly after passing through Dongting Lake. Dongting
Lake, dam construction and climate change are all important causes of water quality
changes in the Yangtze River, which need to be further studied and analyzed.
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