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Abstract: The Integrated Track Splitting (ITS) is a multi-scan algorithm for target tracking in a
cluttered environment. The ITS filter models each track as a set of mutually exclusive components,
usually in the form of a Gaussian Mixture. The purpose of this research is to determine the limits
of the ‘endurance’ of target tracking of the known ITS algorithm by analyzing the impact of target
detection probability. The state estimate and the a-posteriori probability of component existence are
computed recursively from the target existence probability, which may be used as a track quality
measure for false track discrimination (FTD). The target existence probability is also calculated and
used for track maintenance and track output. This article investigates the limits of the effectiveness
of ITS multi-target tracking using the method of theoretical determination of the dependence of
the measurements likelihood ratio on reliable detection and then practical experimental testing.
Numerical simulations of the practical application of the proposed model were performed in various
probabilities of target detection and dense clutter environments. Additionally, the effectiveness of
the proposed algorithm in combination with filters for various types of maneuvers using Interacting
Multiple Model ITS (IMMITS) algorithms was comparatively analyzed. The extensive numerical
simulation (which assumes both straight and maneuvering targets) has shown which target tracking
limits can be performed within different target detection probabilities and clutter densities. The
simulations confirmed the derived theoretical limits of the tracking efficiency of the ITS algorithm
up to a detection probability of 0.6, and compared to the IMMITS algorithm up to 0.4 in the case of
target maneuvers and dense clutter environments.

Keywords: Data Association; Integrated Track Splitting; Interacting Multiple Models; Multi Targets
Tracking

1. Introduction

In the surveillance space methodology, data arrives from the sensor in equal time
intervals. The number of targets usually is a priori unknown. Each measurement has an
unknown source (clutter or target). The tracks are initialized and updated using measure-
ments, thus both true and false tracks exist at any time interval. Target measurements are
only present in a scan with some probability of detection PD < 1 [1]. A decision on the
trajectory and existence of the target must be made exclusively based on the measurements
received during one-time intervals (between successive measurements), regardless of the
type of measurement source. Each track is initialized based on measurements from two
adjacent time intervals and can be ‘false’ tracks or ‘true’ tracks. ‘False’ tracks are those that
do not follow the target and ‘true’ tracks are those that follow the target [2].

To increase the target tracking efficiency, the false track discrimination (FTD) procedure
is established. As the track quality measure, the Multiple Hypothesis Tracking (MHT) [3,4]
performs the track score procedure, which is based on the Sequential Probability Ratio Test-
SPRT. The false track rejection procedure is used to reject false tracks and (at the same time)
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confirm true tracks [5,6]. After the first attempts to establish a procedure for measuring
the quality of the track at MHT, the Probability Data Association (PDA) algorithm [7]
was created. It includes the target observation, which appears in the generalized pseudo-
Bayesian (GPB) PDA algorithm [8]. Also, the target detectability was established by the
Interacting Multiple Model (IMM) PDA [9,10]. The target existence probability is first
introduced in the literature, with the single target Integrated Probabilistic Data Association
(IPDA) [6]. Most target tracking algorithms focus solely on estimating (linear or non-linear)
measurements from sensors, often overlooking Data Association. This means that the task
of assigning new measurements to existing tracks is typically determined by measuring
the statistical distance between them [11]. In algorithms based on IPDA, track components
are formed around the track, each with its parameters [12,13]. A set of components jointly
participate in forming the track. The track components are Gaussian, so the track trajectory
probability density function is the sum of the products of individual track components
and their associated probabilities. By introducing the measurements likelihood ratio, it
is possible to calculate the track existence probability through the Markov Chains model
by the sequence of possible events associated with each new measurement to existing
tracks [14–16]. At the same time, non-linear algorithms (the Unscented Kalman Filter
(UKF), Bearings Only Tracking (BOT), Particle filter (PF), Generalized Labeled Multi-
Bernoulli Tracking (GLMBT), etc.) are looking for solutions for the introduction of Data
Association and track quality measure [17–21]. Also, the Poisson multi-Bernoulli mixture
(PMBM) conjugates before multiple extended object filtering. A Poisson point process is
used to describe the existence of yet undetected targets, while a multi-Bernoulli mixture
describes the distribution of the targets that have been detected [22]. The particle filters [19]
sample nonlinear (non-Gaussian) state probability density function (PDF) using a set of
random particles [23]. They accommodate both nonlinear measurement and nonlinear
state propagation. Tracking with the state-dependent probability of target detection is also
proposed for the Gaussian Mixture Probability Hypothesis Density (GMPHD) filter [24].
However, the Data Association capabilities of the GMPHD filter appear to be significantly
below the ITS-based trackers [25]. In previous research, the impact of PD on target tracking
and Data Association quality was not significantly considered, especially outside the realm
of ITS-based algorithms. In this paper, we will explore the influence of lower PD values
at various clutter densities on tracking effectiveness. The contributions of this paper are
as follows:

• A theoretical model of the dependence of the probability of target detection on the
likelihood function (relative to the target existence probability) will be investigated for
the well-known ITS algorithm, which has not been investigated in the literature so far;

• The theoretical results achieved should be proven practically, by numerical simula-
tions, by obtaining probability of detection values that enable efficient tracking of a
maneuvering target in a dense cluttered environment;

• To compare the obtained results, an efficient combined algorithm that successfully
tracks maneuvering targets (IMMITS) was tested in parallel.

The rest of the paper is organized as follows: common theoretical assumptions and
models used are presented in Section 2. The framework of the Integrated Track Splitting
approach is detailed in Section 3, considering the impact of the probability of detection on
the effectiveness of tracking (expressed through the probability of the track existence). A
way to apply the Interacting Multiple Model algorithm to the ITS is presented in Section 4.
The proposed approach is indicated by simulations in Section 5, followed by the concluding
remarks in Section 6.

2. Assumptions and Models

Assume that a target exists and is always detectable with a given probability of
detection PD. Dynamic models of target trajectory are usually described by στ

k . The
existence of a target being followed by each track is a random event, which is defined at
each time interval k for each track τ:
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• χτ
k -the event that the track is following a target, i.e., that the target exists;

• χ̄τ
k -the event that the track is not following a target, i.e., that the target does not exist;

• στ
k = µ -the event that the trajectory of the target τ uses model µ in the time interval

between k − 1 and k.

where superscripts τ denote tracks. At each time interval, we initialize tracks by using
random measurements of unknown origin, thus each track may be a true track (following a
target) or a false track. Consider the existence χτ

k at time k of target τ as a random event,
which is propagated as a Markov Chain process [6,11]. Also, each target follows a constant
trajectory model between measurement times, and may switch to another model at each
measurement time with a linear dynamic model [25,26]:

xτ
k = F(σ

τ
k ) · xτ

k−1 + ντ
k (σ

τ
k ) (1)

where στ
k ∈ [1, M], M is the number of trajectory propagation models, F(στ

k ) is the state
propagation matrix noise and the process noise ντ

k is a zero mean and white Gaussian
sequence with covariance matrix Qστ

k
.

2.1. Target Measurements

Each target τ generates one measurement yk, at one sample interval. Due to the
connecting path noise, the target comes with some probability of occurrence (probability
of detection) PD(xτ

k ). Consider the target trajectory state xτ
k . Then the linear measurement

equation is given by [27]:

yτ
k = Hxτ

k + ωτ
k (2)

where the additive measurement noise ωτ
k is a zero mean white Gaussian sequence with

covariance matrix Rk.

2.2. Sensors

At each scan, the sensor returns a random number of target measurements and a
random number of clutter measurements. The measurement of existing and detectable
targets is taken with a given probability of detection. At time k, one sensor delivers a set of

measurements zk,j =
{

zk,j

}Mk

j=1
, out of which a set of measurements are selected for track

update, where measurement zk,j denotes the j − th element of zk. The infinite resolution
sensors are assumed, where each measurement has only one origin (either a target or the
clutter) [28].

2.3. Clutter Measurements Model

Consider the nonhomogeneous clutter measurements as Poisson process density. At
this time, the intensity of the Poisson process (at point y) in the measurement space can
be denoted by ρ(y) and is a priori known. Then the sensor measurements are estimated
by ρk,j(y) and its mean is ρ(zk,j) [29]. The measurements are generated from one or more
sensors. At time k, sensors deliver a set of measurements zk,j, j = 1, .., mk out of which a set
of measurements is selected for track update. The measurement sets may be empty, with
Mk = 0. Denote by Zk the sequence of selected measurement sets up to and including time
k, Zk = {Zk−1, zk,1, zk,2, ..., zk,j, ..., zk,mk

}. Measurements may originate from targets as well
as from other objects. Otherwise, the sequence of measurements sets may be denoted by
Zk =

{
Zk−1, zk

}
[30–32].

3. Integrated Track Splitting Filter Approach

The existing target tracking approach performs the FTD procedure at each scan and
each track. To perform a false track discrimination procedure, ITS determines target
existence based on the average track measurement likelihood ratio; thus, ITS is a mean
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target existence estimator. We calculate the target existence probability ψk and trajectory
state PDF recursively. Relative to the value of ψk, we conclude the following:

• if the value of χk is less than the threshold, the target does not exist and we terminate
the track,

• if the value of χk is greater than the threshold, the target exists and the track is
confirmed.

3.1. ITS Propagation

Each track is a set of components, which is represented by the mean x̂c
k−1|k−1, covari-

ance Pc
k−1|k−1 and probability, ξc

k−1, given that the track component measurement history c
is correct, and given that the target exists. Essentially, each track component represents a
possible ‘measurement-to-target’ association history. Components are mutually exclusive.

The target trajectory state, at time interval k, is defined by a discrete event χk (target ex-
istence) and track trajectory state estimate xk [3,5]. In each iteration, a set of measurements,
zk, is selected in the current scan and is used to update the track state. Also, Zk = {zk; Zk−1}
denoting the sequence of all selected measurements up to and including scan k. Within
this terminology, we note that the a priori track state is conditioned on Zk−1, and the a
posteriori track state is conditioned on Zk. To calculate both, a priori (propagation) and a
posteriori (update) target existence probability, we use the Markov Chain One model. Then
the propagation of the target existence probability from time k − 1 to time k is given by [7]:

P{χk|Zk−1} = π11P{χk−1|Zk−1} (3)

The value of π11 depends on the time interval between measurements [6]. The track
state estimates PDF of the single component is a single Gaussian PDF. The track component
existence contains the target position at each measurement, assuming that the target exists.
Thus, the a posteriori PDF of target trajectory state estimate at time k − 1 is given by

p(xk−1|χk, Zk−1) =
Ck

∑
c=1

ξc
k−1 p(xk−1|χk, c, Zk−1) (4)

where ∑Ck
c=1 ξc

k−1 = 1, index c denotes the track component, ξc
k−1 denotes the probability

that track component measurement history c exists, Ck is the total number of components
and Zk−1 is the given measurement set, received before the current scan. At such time, we
have predicted component state PDF as following [8]:

p(xk−1|c, χk−1, Zk−1) = N(xk−1; x̂c
k−1|k−1, Pc

k−1|k−1) (5)

where N represents Gaussian distribution. The PDF of the predicted target trajectory state
is therefore a mixture of track component PDFs:

p(xk|χk, Zk−1) =
Ck

∑
c=1

ξc
k−1 p(xk|χk, c, Zk−1) (6)

where

p(xk|c, χk, Zk−1) = N(xk; x̂c
k|k−1, Pc

k|k−1) (7)

When the measurements arrive, each track component state PDF propagates (from
k − 1 to k), as a Kalman filter (KF) prediction by

x̂c
k|k−1 = Fx̂c

k−1|k−1 (8)

Pc
k|k−1 = FPc

k−1|k−1FT + Q (9)
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where Fk and Qk denote the state propagation and covariance matrix, between time intervals
k − 1 and k, respectively.

3.2. Measurements Selection

The selected measurements are those found within a region V in measurement space,
known as a gate, which is generally centered around the predicted measurement. The size
of the selection gate depends on the measurements matrix R and process noise matrix Q.
Let zk,j denote the jth measurement in zk. The gate size is based on the estimated PDF of
the residual between the track and measurements. The gating region is defined as [9]:

d2
c,j = (zk,j − ẑc

k)
T(Sc

k)
−1(zk,j − ẑc

k) (10)

The gate size is chosen so that all measurements j satisfying d2
c,j ≤ (V) are retained;

all others are discarded. The likelihood of each track component is given by

pc
k,j = (1/PG)N(zk,j; ẑc

k, Sc
k) (11)

zc
k = Hx̂c

k|k−1 (12)

Sc
k = HPc

k|k−1HT + R (13)

Thus, the a priori measurements likelihood PDF for the measurement zk,j within the
predefined gate is given by

pk,j =
Ck

∑
c=1

ξc
k−1 pc

k,j (14)

3.3. ITS Update

In the update step, a component state estimate PDF, conditioned on the measurements
component association history (assuming the target exists and is detected) is calculated.
It is a Gaussian mixture of mutually exclusive component state PDF. The result is a track
trajectory state estimate PDF. That means each track selects a set zk of mk candidate
measurements. The probability of measurement selection in the gate is a parameter, defined
as PG. Its measurements likelihood, pc{zk,j|Zk−1}, refers to measurement zk,j, concerning
tracking component c. Denote by ρk,j ⋄ ρ{zk,j} clutter measurement density at zk,j. Define
measurement likelihood ratio at time k by

λk = 1 − PDPG

mk

∑
j=1

pk,j

ρk,j
(15)

Each measurement is paired with each old track component c to create a new compo-
nent. We obtain a state estimate of new components by the prediction of component state
PDF c paired with the measurement zk,j. If the event χk,j that measurement outcome j ≥ 0
is true, each pair denoted by (c, j), where j = 1, 2, ..., mk, generates a new component, either
from an old component selected or from a ‘null’ measurement. Each new component c+ is
defined by

• probability of new component ξ
c+j
k ,

• mean of new component x̂
c+j
k|k, and

• covariance error of new component P
c+j
k|k

The a posteriori probability of component is given by

ξ
c+j
k =

ξc
k−1
λk

{
1 − PDPG, j = 0, ‘null-measurements’

PDPG
pk,j
ρk,j

j ≥ 0. (16)
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The Kalman filter update for each target component is given by

x̂
c+j
k|k = x̂c

k|k−1 + Kc(zk,j − Hx̂c
k|k−1) (17)

P
c+j
k|k = [I − KcH]Pc

k|k−1 (18)

where Kc is the Kalman gain for component c, given by

Kc = Pc
k|k−1HT(Sc

k)
−1 (19)

Finally, the updated target existence probability for the next ITS iteration is calculated
by the following:

P{χk|Zk} =
λkP{χk|Zk−1}

1 − (1 − λk)P{χk|Zk−1}
(20)

From the point of view of computational efficiency, it is proportional to the num-
ber of track component updates. Component termination, merging, and pruning tech-
niques are used [5], along with the elimination of small probability components. We have
two techniques to reduce the number of components.

3.4. ITS Algorithm: Analysis of Effectiveness

The effectiveness of the target tracking system depends on the parameters of the
sensor, the connecting path (from the sensor to the tracking system) and the environment.
The most significant parameters are the probability of target detection, clutter density
and the reflectivity of the surface of a target. The reflectivity of the surface of the target
often depends on the position of the target relative to the sensor, which can be attributed
to the maneuver of the target. Therefore, we will limit ourselves to the influence of the
target detection probability, the clutter measurement density and target maneuver. In
the Prediction step, a priori target existence probability is calculated, by Equation (8). In
the Update step, a posteriori target existence probability (for the next iteration) ψk|k is
calculated by the following:

ψk|k = P{χk|Zk} = λk P{χk |Zk−1}
1−(1−λk)P{χk |Zk−1} =

λkψk|k−1
1−(1−λk)ψk|k−1

(21)

Also, the likelihood is a function of the detection probability PD and some factor ϑk,
given by the following equation:

λk(PD) = 1 − PDPG + PDPG

mk

∑
i=1

pk,i

ρk,i
= 1 − PDϑk (22)

where PG is the probability that the measurement belongs to the gate [4], and

ϑk = PG(1 −
mk

∑
i=1

pk,i

ρk,i
) (23)

is independent of PD. This iterative function is shown in Figure 1, for some selected frequent
cases of the coefficient ϑk. The track probability existence reaches its maximum for PD close
to 1, while the PD ≤ 0.4, the probability of seeding a track tends to zero, so the algorithm
below this value is unjustified.
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Figure 1. Target existence probability vs. probability of target detection diagram.

Based on the Prediction step, we have the a priori target existence probability:

ψk|k−1 = π11ψk−1|k−1 (24)

In the Update step, the aposteriori target existence probability is

ψk|k(PD) =
λk(PD)ψk|k−1

1 − (1 − λk(PD))ψk|k−1
=

λk(PD)π11ψk−1|k−1

1 − (1 − λk(PD))π11ψk−1|k−1
(25)

Additionally, we have

ψk−1|k−1(PD) =
λk(PD)π11ψk−2|k−2

1 − (1 − λk(PD))π11ψk−2|k−2
. (26)

By appropriate substitution, we have

ψk|k(PD) =
λk(PD)π11

λk(PD)π11ψk−2|k−2
1−(1−λk(PD))π11ψk−2|k−2

1 − (1 − λk(PD))π11
λk(PD)π11ψk−2|k−2

1−(1−λk(PD))π11ψk−2|k−2

(27)

By arranging the above equation, we get:

ψk|k(PD) =
λk(PD)λk−1(PD)π

2
11ψk−2|k−2

1 − (1 − λk(PD)λk−1(PD)π11)π11ψk−2|k−2
(28)

Given that π11 ≈ 1, and since the above equation is iterative, it can be completed (for
the general case) as follows:

ψk|k(PD) =
ψk−n|k−n(PD)∏n

i=1 λk−i(PD)

1 − (1 − ∏n
i=1 λk−i(PD))ψk−n|k−n(PD)

, n = 1, ..., k − 1 (29)

λk−i(PD) = 1 − PDPG(1 −
mk

∑
j=1

pk−i,j

ρk−i,j
), i = 0, 1, 2, ..., n (30)
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4. Interacting Multiple Model ITS Algorithm

In the Interacting Multiple Model approach, the target obeys one of a predefined set
of models. Also, the motion of the target switches between models according to a Markov
chain with a known transition probabilities matrix. If N is the number of possible target
dynamic models, and Mc

k,r is the event that the target dynamic model at time k was r,
r = 1, ..., N, with component c being the true component given that the target exists, then
the component model probability can be defined as [9]:

µc
k|k−1,r = P{Mc

k,r|Z
k−1} (31)

Next, the PDF pc(xk|Zk−1) of the component state estimate is defined as the sum of
products PDF of the component model state estimate (pc

r(xk|Zk−1)) and the component
model probabilities µc

k|k−1,r, r = 1, ..., N by the following equation:

pc(xk|Zk−1) =
N

∑
j=1

µc
k|k−1,j p

c
j (xk|Zk−1) (32)

The PDF of component measurements for all dynamic models is given by the following:

pc(z|Zk−1) =
N

∑
r=1

µc,r
k|k−1 pc

j (xk|Zk−1) (33)

Each component PDF model state estimate pc
j (xk|Zk−1) is described with its mean

x̂c
k|k−1,r and error covariance Sc

k|j; thus, we have

pc
j (z|Zk−1) =

1
PG

N{z, ẑc
k|k−1,j, Sc

k|k−1,j} (34)

where ẑc
k|k−1,j is the predicted measurement for component c and Sc

k|k−1 is the associated
measurement error covariance matrix from the Kalman filter.

Interacting Multiple Model ITS Approach

The one recursion of IMMITS algorithms starts with the set of measurements from
sensor zk. State estimate PDF, pc+

r (xk|Zk), for the component c+ and model r is obtained
by applying measurement zk,j to pc

r(xk|Zk−1). First, we update the model probabilities
(from the previous time interval) and calculate the posterior probability that model r is
correct, given that component c+ is the true component, given by the following equation:

µc+
k|k,r =

µc
k|k−1,r pc

r(zk,j|Zk−1)

∑N
r=1 µc

k|k−1,r pc
r(zk,j|Zk−1)

(35)

Next, we get the track state estimate and error covariance, for each component n, given
by the following:

x̂c+
k|k =

Nr

∑
r=1

µc+
k|k,r x̂c+

k|k (36)

Pc+
k|k =

N

∑
r=1

µc+
k|k,r[P

c+
k|k,r x̂c+

k|k(x̂c+
k|k)

T ]− x̂c+
k|k(x̂c+

k|k)
T , (37)

respectively. In the IMM mixing step, for each Markov model, the transition probabilities
are calculated by the following:

βq|r = P{Mc+
k,r |M

c+
k−1,q} (38)

It produces the model prediction probabilities by the following equation:
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µc+
k+1|k,s =

N

∑
r=1

βr|sµc+
k|k,r. (39)

As a result, the mixing probabilities µc+
k+1|k+1,r,j are calculated as

µc+
k+1|k,r,j =

N

∑
r=1

βr|jµ
c+
k|k,r. (40)

Finally, the mixed component model state estimate (mean and covariance) for the next
iteration is given by

x̂c+
k|k =

N

∑
r=1

µc+
k+1|k,r,j x̂

c+,r
k|k (x̂c+,r

k|k )T (41)

Pc+
k|k =

Nr

∑
r=1

µc+
k+1|k,r,j[P

c+,r
k|k + x̂c+,

k|k (x̂c+,r
k|k )T ]− x̂c+,r

k|k (x̂c+,r
k|k )T (42)

respectively.

5. Simulations

The experimental scenario selected for numeric simulation analysis is the two-dimensional
(positions and velocities), four-state aircraft tracking problem in which the sensor observes
both position coordinates, assuming that they are independent. This area is x = [0; 1000] [m]
long and y = [0; 1000] [m] wide. The clutter measurements satisfied a Poisson distribution.
For programming the proposed theoretical models of algorithms, the MATLAB R2013a
software package was used with Intel(R) Cote (TM)i5-4460 CPU@3.2 GHz and 4 Gb RAM.
Two cases were examined, relative to the clutter density:

• Case 1: clutter density ρ = 5 · 10−5 [m−2]

• Case 2: clutter density ρ = 2 · 10−4 [m−2].

Both cases were examined with single target and multi-target scenarios. The main
difference between the simulation scenarios is that the first scenario represents a single
target with a straight-line trajectory scenario, while the second scenario represents multiple
targets with a combined straight line and maneuver trajectory scenario. Both scenarios
were tested in a Poisson clutter environment of densities 5 · 10−5 [m−2] and 2 · 10−4 [m−2].
The ITS parameters are calculated online according to the appropriate equations. The
period of scanning is T = 1 s. For initialization of tracks, we use a two point differencing
methodology [5]. The target dynamics are linear Gaussian models. The system is modeled
as the vector state xk = [x ẋ y ẏ], where x, y are the Cartesian coordinates of the target
position, and ẋandẏ are the appropriate velocities.

In the first simulation scenario, the single target moves in a straight line, at a constant
speed, modeled by the constant velocity FCV transition matrix. In the second simulation
scenario, two targets move alternately in straight lines and with maneuvers (left and right).
The dynamic of the targets is modeled with the transition matrices, FCV , FL

CT and FR
CT ,

respectively, by the following:

FCV =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 (43)

FL
CT =


1 sin(ωT)/ω 0 [cos(ωT)]/ω
0 cos(ωT) 0 −sin(ωT)
0 −[cos(ωT)]/ω 1 sin(ωT)/ω
0 sin(ωT) 0 cos(ωT)

 (44)
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FR
CT =


1 sin(ωT)/ω 0 −[cos(ωT)]/ω
0 cos(ωT) 0 sin(ωT)
0 [cos(ωT)]/ω 1 sin(ωT)/ω
0 −sin(ωT) 0 cos(ωT)

 (45)

The process noise matrix is given by:

Q =


T4/4 T3/2 0 0
T3/2 T 0 0

0 0 T4/4 T3/2
0 0 T3/2 T

 (46)

where q = 0.252 is a maneuver coefficient. Probability of detection is variable in the range of
PD = 0.4–0.9 (single target scenario) and in the range of PD = 0.5–0.9 (multi-target scenario).
The measurements matrix and measurements noise covariance matrix are governed by
the following:

H =

(
1 0 0 0
0 0 1 0

)
(47)

R =

 σ2
x 0

0 σ2
y

,

 (48)

respectively, where σ2
x = σ2

y = 25 [m2]. All experiments were conducted over two types
of two-dimensional scenarios. The total duration of both scenarios is 60 scans, repeat-
ing over 250 Monte Carlo simulations. In the region of surveillance, the radar sensor
generates clutter according to the Poisson distribution in each scan. Thus, the average
number of clutter measurements observed in each scan for clutter density 5 · 10−5 [m−2] is
20 measurements per scan and is 200 measurements per scan for clutter density 2 · 10−4 [m−2].
In the experiments, all tracks are initiated by the initial probability Pinit = 0.02. When the
track quality measure rises above the confirmation threshold, the track is thus confirmed
by the probability of confirmation Pc = 0.99. When the track probability of existence
falls below the termination threshold Pt/3, the track is terminated. The thresholds are
determined experimentally to deliver approximately equal numbers of confirmed false
track statistics. With the confirmed false tracks statistics, the success rate of confirmed true
tracks is used to compare false track discrimination performance. Before the start of the
simulations, it is necessary to set the same level of confirmed false track. At the beginning
of each iteration, each initiated track is the false track. The track becomes a true track when
the state estimate is sufficiently close to the true target state. The track remains true as long
as it selects detections from the target.

All results are provided via confirmed true tracks (CTT) diagrams and root mean
square error (RMSE) of position (the overall for both targets). Also, the numerical value of
the processor time per one Monte Carlo run of the experiment (CPU) is presented in the
appropriate tables.

5.1. Results of Single Target Scenario

In the single target scenario, the target moves in a straight line at a constant speed. This
occurs in different clutter environments, represented by Case 1 and Case 2 (Figures 2 and 3),
respectively.

The results of numerical simulations for a single target scenario (ITS algorithm) are
given by the CTT and RMSE diagrams. Figures 4 and 5 are given CTT diagrams for clutter
density ρ = 5 · 10−5 and ρ = 2 · 10−4, respectively, while Figures 6 and 7 show the RMSE
diagrams for clutter density ρ = 5 · 10−5 and ρ = 2 · 10−4, respectively. The diagram shows
a constant decrease in tracking efficiency as the detection probability decreases, in the range
from 0.9 to 0.4 (for clutter density 5 · 10−5) and in the range from 0.9 to 0.6 (for clutter



Remote Sens. 2024, 16, 1471 11 of 21

density 2 · 10−4). It can be considered that if CTT diagram values fall below 0.5, target
tracking is not effective. Additionally, large values of RMSE are considered ineffective for
target tracking.
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Figure 2. Single target scenario, ρ = 5 · 10−5.
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Figure 3. Single target scenario, ρ = 2 · 10−4.
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Figure 4. CTT diagrams for single target scenario, ρ = 5 · 10−5.

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scan Number

C
o

n
fi

rm
e
d
 T

ru
e
 T

ra
c
k
s

Confirmed true tracks ITS (ρ = 2e
−4

)

 

 

P
D

 = 0.9

P
D

 = 0.8

P
D

 = 0.7

P
D

 = 0.6

Figure 5. CTT diagrams for single target scenario, ρ = 2 · 10−4.

The results of the experiments (CTT and RMSE diagrams) clearly show the degrada-
tion of tracking quality, when PD decreases. In Case 1, tracking makes sense up to PD = 0.4,
while in Case 2, this limit is PD = 0.6.
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Figure 6. RMSE of position for single target scenario, ρ = 5 · 10−5.
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Figure 7. RMSE of position for single target scenario, ρ = 2 · 10−4.

5.2. Results of Multi-Target Scenario

The multi-target scenario, Figures 8 and 9 for Case 1 and Case 2, respectively, contains
a combined movement of the target (straight line and maneuver). The initial states of the
targets are x1 = [200; 14; 100; 10]′ (target 1) and x2 = [100; 14; 800;−10]′ (target 2). In this
scenario, at the beginning, both targets move in a straight line at a constant speed towards
the center of the surveillance region for fifteen scans, after which they enter a left maneuver
(CT) with an angular speed ω = π/20 for the next six scans. Then they continue in a
straight line for eighteen scans and after that, enter the right maneuver (with the same
angular speed) for about nine scans. In the last eleven scans of the simulation, the target
moves in a straight line at a constant speed.
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Figure 8. Multi target scenario, ρ = 5 · 10−5.
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Figure 9. Multi target scenario, ρ = 2 · 10−4.

Also, the combined algorithm was obtained when the Integrated Track Splitting
(ITS) tracker was extended by the incorporation of the Interacting Multiple Model (IMM)
algorithm to enable the filter to efficiently track a maneuvering target in a various cluttered
environment, named IMMITS. These are the uses of multi-scan tracking methods along
with adaptive maneuver tracking.

The results of numerical simulations in a multi-target scenario are shown by the CTT di-
agrams, Figures 10 and 11 (ITS) for clutter density ρ = 5 · 10−5 [m−2] and ρ = 2 · 10−4 [m−2],
respectively, while Figures 12 and 13 (IMMITS) represent clutter density ρ = 5 · 10−5 [m−2]
and ρ = 2 · 10−4 [m−2], respectively. CTT diagrams show the decreasing efficiency of the
ITS algorithm in the target maneuver, proportionally for all detection probabilities. At
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PD = 0.6, tracking is practically non-existent for both clutter densities. IMMITS shows
significantly better tracking efficiency in the target maneuver, so it can track the target up to
PD = 0.7. Also, Figures 14 and 15 (ITS) display the RMSE of position diagrams for clutter
density ρ = 5 · 10−5 [m−2] and ρ = 2 · 10−4 [m−2], respectively. Figures 16 and 17 display
RMSE diagrams (IMMITS) for clutter density ρ = 5 · 10−5 [m−2] and ρ = 2 · 10−4 [m−2],
respectively. Diagrams show a significant influence of the maneuver on the tracking effi-
ciency. At the same clutter density and detection probability, the efficiency is lower by an
order of magnitude in the case of the target’s left and right maneuver.

The CPU time analysis, as depicted in Tables 1 and 2 for single target and multi-
target scenarios respectively, indicates a higher consumption of processing time by the
IMMITS algorithm compared to ITS. However, it also demonstrates the higher robustness
of IMMITS in scenarios involving two maneuvering targets. Therefore, the use of the
IMMITS algorithm is computationally justified in cases of dense clutter and maneuvering
targets, while standard ITS can be retained in scenarios with weak clutter and straight-line
target trajectories.
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Figure 10. CTT diagrams for multi-target scenario (ITS) ρ = 5 · 10−5.
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Figure 11. CTT diagrams for multi-target scenario (ITS), ρ = 2 · 10−4.
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Figure 12. CTT diagrams for multi-target scenario (IMMITS), ρ = 5 · 10−5.
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Figure 13. CTT diagrams for multi-target scenario (IMMITS), ρ = 2 · 10−4.
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Figure 14. RMSE of position diagrams for multi-target scenario (ITS), ρ = 5 · 10−5.
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Figure 15. RMSE of position diagrams for multi-target scenario (ITS), ρ = 2 · 10−4.
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Figure 16. RMSE of position diagrams for multi-target scenario (IMMITS), ρ = 5 · 10−5.
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Figure 17. RMSE of position diagrams for multi-target scenario (IMMITS), ρ = 2 · 10−4.

In a multi-target scenario, the results of the experiments (CTT and RMSE diagrams)
also show the degradation of tracking quality when PD decreases. In Case 1, tracking
makes sense up to PD = 0.5, while in Case 2, this limit is PD = 0.7.
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Tables 1 and 2 give results of CPU time for single and multi-target scenarios, respec-
tively. From the diagrams, one can see the weak tracking efficiency, especially pronounced
in the case of target maneuvers. In both tables, a slight increase in computing resources can
be observed when reducing PD.

The comparison table of the average RMSE of position for both single and multi-target
scenarios, (Tables 3 and 4, respectively) shows an increase in tracking error during target
maneuvers. A significant improvement is noticeable when using the IMMITS algorithm
compared to the standard ITS. In other words, it is necessary to use IMMITS whenever
maneuvering targets appear, especially when detection probabilities are low. However, it
happens that the influence of heavy clutter and noise can briefly disrupt this relationship.

Table 1. CPU time for single target scenario (ITS vs. IMMITS).

ρ [m−2] algor↓PD→ 0.9 0.8 0.7 0.6 0.5 0.4

5 · 10−5
ITS 1.60 1.82 1.89 2.31 2.61 2.83

IMMITS 2.46 2.68 3.19 4.10 4.56 5.05

2 · 10−4
ITS 14.8 16.2 17.0 17.4 -

IMMITS 24.8 28.2 32.3 35.1 -

Table 2. CPU time for multi-target scenario (ITS vs. IMMITS).

ρ [m−2] algor↓PD→ 0.9 0.8 0.7 0.6 0.5

5 · 10−5
ITS 1.84 2.06 2.23 2.7 3.0

IMMITS 2.51 2.96 3.44 4.51 5.16

2 · 10−4
ITS 15.9 17.2 17.8 19.1 -

IMMITS 24.6 29.35 36.9 46.5 -

Table 3. Average RMSE [m] for single target scenario.

ρ [m−2] algor↓PD→ 0.9 0.8 0.7 0.6 0.5 0.4

5 · 10−5
ITS 4.04 4.8 5.02 5.33 5.73 5.9

IMMITS 4.88 5.28 5.94 6.31 6.56 6.68

2 · 10−4
ITS 4.34 4.64 4.43 4.12 - -

IMMITS 4.98 5.49 5.93 3.09 - -

Table 4. Average RMSE [m] for multi-target scenario.

ρ [m−2] algor↓PD→ 0.9 0.8 0.7 0.6 0.5

5 · 10−5
ITS 10.04 11.04 11.0 10.6 10.1

IMMITS 9.74 10.6 10.7 10.6. 10.2

2 · 10−4
ITS 10.5 8.96 7.24 2.67 -

IMMITS 10.0 10.3 8.58 2.60 -

The advantages of IMMITS become apparent in the case of the target maneuver
scenario, in which a significant advantage of IMMITS over the ITS algorithm is observed.
Therefore, we suggest that future users use combined algorithms, especially in scenarios
where stronger target maneuvers are anticipated. Overall, the numerical experiments
showed that the ITS algorithm’s ‘endurance’ limit for the single target scenario is PD = 0.4
for clutter density ρ = 5 · 10−5 [m−2] and PD = 0.5 for the ρ = 2 · 10−4 [mm−2] clutter
density, while for the multi-target scenario with maneuvering targets is PD = 0.5 for the
clutter density ρ = 5 · 10−5 [m−2] and PD = 0.6 for the clutter density ρ = 2 · 10−4 [m−2].

6. Conclusions

Analysis of target tracking efficiency on the known ITS algorithm was (theoretically
and practically) examined in this paper. The results are the product of numerical experi-
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ments for single and multiple targets, measuring track quality, and recursively calculating
the track existence probability. The paper provides the testing of effectiveness for differ-
ent clutter environments and the probability of detection. To compare the efficiency, the
IMMITS algorithm is also given. The advantages of IMMITS become apparent only in
the case of a multi-target scenario with multiple maneuvers, in which a significant advan-
tage of IMMITS over the ITS algorithm is observed. The presented analysis and results
provide the user with practical advice when choosing important parameters of the target
tracking system.

The values of the parameters in which the algorithm can still work efficiently are
defined; thus, the user can choose the optimal value of the tracking algorithm parameters.
The lowest probability of detection that enables efficient tracking is PD = 0.4, applicable
to the typical clutter densities of 5 · 10−5 [m−2] for the standard ITS algorithm. Extensive
experiments showed that the dominant influence is the type of trajectory and the density of
clutter, while the probability of detection is a less significant parameter.
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The following abbreviations are used in this manuscript:

KF Kalman Filter
UKF Unscented Kalman Filter
EKF Extended Kalman Filter
FTD False Track Discrimination
GM Gaussian Mixture
GMM Gaussian Mixture measurements
GPB Generalized Pseudo-Bayesian
PHD Probability Hypotheses Density
PDF Probability Density Function
MHT Multiple Hypotheses Testing
MTT Multi-Target Tracking
STT Single Target Tracking
IMM Interacting Multiple Models
ITS Integrated Track Splitting
JITS Joint Integrated Track Splitting
LM ITS Linear Multi-target Integrated Track Splitting
PF Particle Filter
IPF Integrated Particle Filter
PDA Probabilistic Data Association
IPDA Integrated Probabilistic Data Association
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FIST Finite Sets Statistics
RSS Random Set Statistics
SMC Sequential Monte Carlo
JIPDA Joint Integrated Probabilistic Data Association
SPRT Sequential Probability Ratio test
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