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Abstract: Railway track detection, which is crucial for train operational safety, faces numerous
challenges such as the curved track, obstacle occlusion, and vibrations during the train’s operation.
Most existing methods for railway track detection use a camera or LiDAR. However, the vision-based
approach lacks essential 3D environmental information about the train, while the LiDAR-based
approach tends to detect tracks of insufficient length due to the inherent limitations of LiDAR.
In this study, we propose a real-time method for railway track detection and 3D fitting based on
camera and LiDAR fusion sensing. Semantic segmentation of the railway track in the image is
performed, followed by inverse projection to obtain 3D information of the distant railway track.
Then, 3D fitting is applied to the inverse projection of the railway track for track vectorization and
LiDAR railway track point segmentation. The extrinsic parameters necessary for inverse projection
are continuously optimized to ensure robustness against variations in extrinsic parameters during
the train’s operation. Experimental results show that the proposed method achieves desirable
accuracy for railway track detection and 3D fitting with acceptable computational efficiency, and
outperforms existing approaches based on LiDAR, camera, and camera–LiDAR fusion. To the best of
our knowledge, our approach represents the first successful attempt to fuse camera and LiDAR data
for real-time railway track detection and 3D fitting.

Keywords: camera; LiDAR; railway track detection; 3D fitting

1. Introduction

Safety is crucial for railway transportation [1–3]. Effective railway track detection
ensures the accuracy of obstacle detection [4–6] and the security of the autonomous train.
However, existing research studies mainly focus independently on either the semantic
segmentation or the point cloud segmentation of tracks, with limited studies integrating
the two to achieve distant railway track detection and vectorization.

1.1. Background

To reduce railway accidents, numerous research studies have been focused on au-
tomatic railway track detection [7–9]. Currently, two primary sensors are commonly
employed in existing methods: the camera and LiDAR. Methods based on vision and those
based on LiDAR each have distinct strengths and weaknesses in the railway track detection.

The images contain rich texture and color information, enabling accurate railway
track semantic segmentation [10–12]. Using a high-resolution camera, more accurate in-
formation about distant railway tracks can be obtained. The semantic segmentation of
the railway track can be mapped to the bird’s-eye view (BEV) using a transformation
matrix, which in fact realizes the distant railway track detection with 3D information [13].
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However, this method lacks 3D information about the surrounding environment, and its
transformation matrix is fixed, leading to limited robustness against changes in extrinsic
parameters. Additionally, the camera is susceptible to illumination variations, particu-
larly in low-illumination conditions, which significantly impairs our perception of the
surrounding environment.

LiDAR-based methods provide precise, accurate 3D information about the shape and
position of the track [14,15], while also exhibiting robustness to changes in illumination.
However, LiDAR-based methods detect shorter track lengths, constrained by the LiDAR
performance and the low reflectivity of the track surface. Even with high-performance
LiDAR, which is more expensive, the acquired railway point cloud becomes sparser as
the distance increases, resulting in a significantly shorter detection range compared to
high-resolution cameras. Additionally, after rainfall, a layer of water film forms on the
surface of the railway, reducing its reflectivity and further limiting the detection distance of
LiDAR. Without distant railway track point clouds, we cannot accurately determine the
trajectory of the tracks. This poses safety risks to train operation.

In recent years, research on the fusion of camera and LiDAR data has gained increasing
attention, gradually extending into the field of railway transportation [16,17]. Due to the
complementarity of the camera and LiDAR, the fusion of the camera and LiDAR can
achieve more accurate and distant railway track perception.

Accordingly, this paper proposes a real-time railway track detection and 3D fitting
framework that integrates the camera and the LiDAR data. Figure 1 demonstrates the
framework of the proposed method. Firstly, synchronized data captured by the onboard
camera and LiDAR are acquired. Subsequently, the architecture is divided into three stages:
railway track detection in the image, railway track detection in LiDAR, and adaptive
extrinsic parameter optimization.
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Figure 1. Framework of the proposed method. In the semantic segmentation result, red pixels
represent the railway tracks and purple pixels represent the railway track area. In refined track
points, green points are refined track points and red points are excluded points. In the final track
detection and 3D fitting, green points represent LiDAR track points and red points represent the
inverse projection.

In the first stage, the semantic segmentation of railway tracks is performed. Subse-
quently, the inverse projection is applied to the semantic segmentation to obtain the 3D
information of the tracks.

In the second stage, 3D fitting is applied to the inverse projection of the tracks for
track vectorization and then is used to determine the region of interest (ROI) and obtain
the LiDAR point clouds in the region. Subsequently, post processing is applied to obtain
points representing the surface of the railway tracks.
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In the third stage, LiDAR points and the inverse projection of railway tracks are used
to optimize the extrinsic parameters between coordinate systems.

1.2. Contributions

The main contributions of this paper include the following:

(1) A real-time railway track detection and 3D fitting framework based on camera and
LiDAR fusion sensing is designed. The framework includes railway track detection
in the image, railway track detection in LiDAR, and adaptive extrinsic parameter
optimization. It exhibits robust performance in challenging scenarios such as a curved
track, obstacle occlusion, and vibrations during the train’s operation.

(2) An inverse projection and 3D fitting method for semantic segmentation of railway
tracks is proposed. The 3D track vectorization and accurate environmental informa-
tion establish a foundational basis for subsequent analysis and decision-making in
autonomous train systems.

(3) An accurate segmentation method for railway track point clouds is proposed. The
method utilizes the inverse projection of railway tracks to segment the point clouds,
achieving a significant improvement in accuracy compared to existing methods. It
also demonstrates superior accuracy in distinguishing points like track bed points
that are prone to being misclassified as track points during segmentation.

1.3. Paper Organization

The remainder of this paper is structured as follows. Section 2 gives a brief overview
of related approaches that deal with railway track detection, followed by a detailed presen-
tation of the railway track detection and 3D fitting approach in Section 3. Section 4 shows
the experimental results. Finally, the conclusion is presented in Section 5.

2. Related Work

Currently, railway track detection [18] has gained widespread attention and become an
important module of automated train systems. Generally, current methods of railway track
detection fall into three categories: vision-based approaches, LiDAR-based approaches,
and fusion-based approaches.

2.1. Vision-Based Approach

Traditional railway track segmentation methods are based on the computer vision
features and geometric features of the railway track. Qi et al. [19] computed the histogram of
oriented gradients (HOG) features of railway images, established integral images, and used
a region-growing algorithm to extract the railway tracks. Nassu and Ukai [20] achieved
railway extraction by matching edge features to candidate railway patterns which were
modeled as sequences of parabola segments. Recently, with the development of deep
learning and the publication of datasets for semantic scene understanding for autonomous
trains and trams [21,22], methods based on deep learning have been widely used in railway
track detection. Wang et al. [7] optimized the SegNet to achieve railway track segmentation
by adding dilated cascade connections and cascade sampling. An improved polygon fitting
method was applied to further optimize the railway track. Wang et al. [8] modified the
ResNet [23] to extract multi-convolution features and used a pyramid structure to fuse
the features. Yang et al. [13] proposed a topology-guided method for rail track detection
by applying an inverse perspective transform to rail-lanes. These methods based on deep
learning enhance the performance of the railway track segmentation and demonstrate
robust adaptability to the shape of the track. However, it should be noted that those
methods appear incapable of providing accurate 3D information about the railway track.

2.2. LiDAR-Based Approach

Compared to images, LiDAR provides accurate geospatial and intensity information.
In addition, point clouds are robust to illumination variations. Traditional methods [15,24]
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classify point clouds according to the geometric and spatial information, thereby achieving
the segmentation of railway tracks. Some studies [25,26] have used LiDAR density for the
segmentation of railway infrastructure. Deep learning techniques have been widely used in
railway transportation. PointNet and KPConv were combined by Soilán et al. [27] to obtain
a similar performance to the heuristic algorithm in a railway point cloud segmentation
study. Due to the limited railway data, the trained network is prone to overfitting, making
it difficult to ensure the algorithm’s robustness in other scenes. Jiang et al. [28] proposed
a framework named RailSeg, which contains integrated local–global feature extraction,
spatial context aggregation, and semantic regularization. This method is computationally
intensive and is difficult to be applied in real time. In addition, it tends to confuse railway
track points with ground points, resulting in a relatively low precision in the segmentation
of railway track point clouds. So far, there is limited research on the real-time segmentation
of distant railway tracks using single-frame LiDAR data [14]. While some studies [25,28–30]
claim high precision and recall in railway track point cloud segmentation, most of them are
conducted on non-real-time processing using data collected from Mobile Laser Scanning
(MLS). Moreover, these methods rely on the elevation of the point cloud for segmentation,
which may fluctuate significantly due to the installation angle of the LiDAR sensor, terrain
variations, and train vibrations, resulting in misclassification of track beds and rail tracks.

2.3. Fusion-Based Approach

Due to inherent limitations of each single sensor, multi-sensor fusion is increasingly
becoming popular, and has been applied to autonomous vehicles. Wahde et al. [31] trained
several fully convolutional neural networks for road detection by fusing LiDAR point
clouds and camera images. Jun et al. [32] proposed a fusion framework, which contained a
LiDAR-based weak classifier and a vision-based strong classifier, for pedestrian detection.
So far, limited studies have been conducted on railway track detection by fusing camera
and LiDAR data. Wang et al. [17] proposed a framework for railway object detection. A
multi-scale prediction network is designed for railway track segmentation via the image.
And the LiDAR points are mapped onto the image through coordinate projection [33] to
obtain the LiDAR points within the railway track area. In practical application, the inherent
limitations of LiDAR and the low reflectivity of the railway track surface pose challenges in
obtaining railway track points at extended distances. Consequently, accurately determining
the trajectory of the railway track in a 3D space becomes a formidable task. Inspired by
these methods, this study aims to fuse vision and LiDAR data to achieve distant railway
track detection with 3D information.

3. Approach
3.1. Railway Track Detection in the Image

In this study, the railway track detection and 3D fitting aims to obtain the spatial
coordinates of the tracks to determine their accurate 3D trajectory. It should be noted
that we do not intend to model the detailed size and external shape of the tracks [34,35].
Therefore, a two-stage method for railway track detection in the image is proposed.

In order to extract the railway track pixels from the image, we carry out the first stage
of railway track detection in the image—semantic segmentation. Through this stage, the
railway track pixels are extracted from the image.

The geometric properties of the railway tracks in the camera view are not obvious. So,
we carry out the second stage of railway track detection in the image—inverse projection.
Through this stage, the 3D coordinates of the railway tracks are obtained, allowing us to
explore the geometric characteristics of the railway tracks.

3.1.1. Railway Track Semantic Segmentation

A semantic segmentation network is applied to obtain the accurate rail pixels in the
image. We employ the on-board camera and LiDAR. To address the stability concerns
during the train’s operation, we apply a classical lightweight semantic segmentation
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network, BiSeNet V2 [36], which ensures the computational efficiency and speed. The
model is trained on a public dataset [21] for semantic scene understanding for trains and
trams, employing three classification labels: rail-raised, rail-track, and background. The
segmentation results of the model for the railway track are depicted in Figure 2b, where
red pixels represent the railway tracks, and purple pixels represent the railway track area.
From the output results, the semantic segmentation of the railway tracks is extracted, as
shown in Figure 2c.
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Figure 2. Railway track semantic segmentation. (a) Original image. (b) Segmentation results of the
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The semantic segmentation results appear coarse, directly transforming them through
inverse projection into a 3D space would hinder the accurate extraction of the railway track
trajectory. Therefore, we refine the semantic segmentation by obtaining the centerline of
the railway track, which serves as the final representation of the railway track, as shown in
Figure 2d.

3.1.2. Inverse Projection

With the semantic segmentation of the tracks, the inverse projection of the tracks can
be performed. Figure 3 illustrates the positions of the camera and LiDAR on the train,
along with the coordinate systems for the camera, LiDAR, and the rail.
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To enhance the reflectivity of the railway track surface for obtaining points at a greater
distance, the camera and LiDAR are tilted downward. All these coordinate systems adhere
to the right-hand coordinate system convention of OpenGL. The transformation relationship
between the coordinate systems is defined by Equation (1), where the points Pl , Pc, and Pr
are the coordinates of the same point P in the LiDAR coordinate system, camera coordinate
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system, and rail coordinate system, respectively. R1, R2, and R3 are rotation matrices, and
t1, t2, and t3 are translation matrices between the coordinate systems.

Pl = R1Pr + t1
Pl = R2Pc + t2
Pc = R3Pr + t3

(1)

The transformation relationship between the camera coordinate system and the pixel
coordinate system is represented by Equation (2), where K−1 represents the inverse of the
camera intrinsic parameter matrix K, which is obtained through camera calibration [37]
before the train’s operation, and Zc is the depth from the object point to the image plane.
Clearly, to obtain the 3D coordinates of railway tracks, it is essential to determine the depth
Zc corresponding to each pixel on the tracks.Xc

Yc
Zc

 = ZcK−1

u
v
1

, K =

 fx 0 u0
0 fy v0
0 0 1

 (2)

Two assumptions are proposed based on the geometric characteristics of the railway tracks:

(1) Within a short distance in front of the train, the slope of the railway tracks changes
slowly [13].

(2) In the semantic segmentation of railway tracks, points represented by the same v
maintain the same depth Zc.

In assumption (1), we only consider a short distance ahead of the train (200 m), and
the variation in slope within this range is negligible. Assessing whether the railway tracks
within this range are on a plane should be based on the variation in slope rather than the
slope itself. In assumption (2), at curve tracks, the heights of the inner and outer tracks vary,
resulting in different v-values for points with the same depth Zc. However, due to the large
curvature radius of the railway tracks, during the inverse projection, the differences in
v-values mainly manifest in longitudinal deviations, while lateral deviations are relatively
smaller. Considering the continuity of the railway tracks, the impact of longitudinal
deviations on train operation safety is much smaller than that of lateral deviations, making
errors associated with assumption (2) acceptable in practical applications.

Figure 4 illustrates the side view of the camera. Once the camera is installed, the
camera’s mounting height h and the angle θ1 between the camera optical axis zc and the
railway track plane are thereby determined. For any point P on the surface of the railway
track, the 3D coordinates of that point can be determined by knowing the angle θ2 of the
line OcP to the zc axis, as shown in Equation (3), where |OcP| represents the length of the
line segment OcP.

Zc = |OcP|·cosθ2 =
h

sin(θ1 + θ2)
·cosθ2 (3)
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Figure 5 illustrates the pinhole camera model. Based on assumption (2), points pro-
jected onto the line P′P′′ possess the consistent depth Zc in the camera coordinate system.
The angle of the line OcP′′ to the line OcOi corresponds to θ2 as defined in Equation (3).
Based on geometric relationships, θ2 can be computed by Equation (4), where yP′′ is the
y-coordinate of point P′′ in the image coordinate system, f is the focal length, v is the
ordinate of the point P′′ in the pixel coordinate system, v0 is the ordinate of the camera’s
optical center in the coordinate system, dy is the physical size of each pixel on the camera
sensor, and fy is the focal length expressed in pixels. The values v0 and fy can be obtained
through camera calibration [37].

θ2 = arctan
yP′′

f
= arctan

(v − v0)dy
f

= arctan
v − v0

fy
(4)
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By integrating Equations (2)–(4), the camera coordinates of the railway track can be
determined from its pixel coordinates, as expressed in Equation (5).Xc

Yc
Zc

 =
h

sin
(

θ1 + arctan v−v0
fy

)cos
(

arctan
v − v0

fy

)
K−1

u
v
1

 (5)

Based on Equation (1), the camera coordinates of the railway track points are trans-
formed into LiDAR coordinates. The LiDAR and camera are rigidly mounted together, and
the extrinsic parameters between them are theoretically constant, which can be determined
through LiDAR–camera calibration [38] before the train operation.

3.2. Railway Track Detection in LiDAR

In this stage, 3D fitting is applied to the inverse projection for track vectorization.
Subsequently, the 3D fitted curve is utilized to determine the ROI and filter the LiDAR
track points within the ROI.

3.2.1. Application of 3D Fitting

The 3D fitting involves curve fitting of spatial points, using the piecewise functions to
ensure robustness in both straight and curve track scenarios, as illustrated in Figure 6.
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For each fixed length, such as 10 m, a segmented interval is established, with each
subfunction maintaining the same function form but varying parameters. The form of
each subfunction is illustrated in Equation (6), where i presents the interval to which
the point belongs. To ensure continuity and accuracy between adjacent intervals, when
computing the subfunction for the current interval, points from both the current interval
and its neighboring intervals are included in the curve fitting calculation.

xi = fi(zi) =
2
∑

j=0
ajz

j
i

yi = gi(zi) =
1
∑

j=0
bjz

j
i

(6)

Additionally, the curvature of the railway track is small. Therefore, it is necessary to
apply curvature constraints to the fitted track curve. For the polynomial curve f (z), its
curvature is defined as shown in Equation (7), where a2 corresponds to the coefficient of the
quadratic term in Equation (6). The curvature of the quadratic curve f (z) is maximal at its
extreme point. Constraining the curvature at that point leads to an optimization problem
with constraints, as depicted in Equation (8), where n represents the number of LiDAR
points and R represents the minimum constraint radius we set.

k =
| f ′′ (z)|(

1 + ( f ′(z))2
)3 ≤ |2a2| (7)


[a0, a1, a2] = argmin

n
∑

i=1
( f (zi)− xi)

2, subject to |2a2| < 1
R

[b0, b1] = argmin
n
∑

i=1
(g(zi)− yi)

2
(8)

The parallel constraint is applied to the left and right tracks to ensure their respective
fitting curves f (z) have identical coefficients for both the quadratic and linear terms. This
constraint implies that the left and right tracks only have translation differences along the
x-axis. In other words, the left and right tracks share the same parameters a1, a2, and b2,
differing only in a0 and b0.

3.2.2. Railway Track Point Cloud Segmentation

The Railway track point cloud segmentation process is illustrated in Figure 7. Initially,
the 3D fitted curve is utilized to determine the ROI and filter the LiDAR track points within
the ROI, as illustrated in Figure 7a.

Post processing is applied to these LiDAR point clouds to extract the surface point
clouds of the railway track. The details of the post processing are elaborated as follows:

(1) Divide small intervals such as 1 m along the z-axis and select points with relatively
higher y-values in each interval, as illustrated in Figure 7b.

(2) Divide these points into two groups based on their z-values, such as points within
50 m and those beyond 50 m. Apply the Random Sample Consensus (RANSAC)
algorithm [39] to perform plane fitting on the near track points and pick out the near
track points on the fitted plane. Compute the distances from the distant track points
to the fitted plane and select the distant track points that are relatively close to the
fitted plane, as illustrated in Figure 7c.

(3) Merge the two sets of selected near and distant track points. The differences between
segmented railway track points and ground truth are shown in Figure 7d.

The presence of obstacles significantly increases the maximum height value of the point
cloud, potentially causing track points not to be selected. Partitioning smaller intervals can
effectively reduce the impact of obstacles. Employing the RANSAC algorithm for plane
fitting can further remove the track bed points. Constrained by the performance of LiDAR,
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as the distance increases, the reliability of the point clouds decreases. Therefore, fitting
the railway track plane using nearby track points achieves more accurate results. After
employing such a post processing procedure, accurate point clouds of the railway track
surface can be obtained.
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3.3. Adaptive Extrinsic Parameter Optimization

The camera and LiDAR are fixed on a device, which is subsequently installed on the
train. This setup ensures the constancy of the extrinsic parameters between the camera and
LiDAR. During the actual operation of the train, slight vibrations may occur. Additionally,
when the train ascends or descends slopes, the angle between the camera’s optical axis and
the railway track plane may change. This indicates that the extrinsic parameters between
the camera and the rail coordinate system may change. Applying inverse projection to the
semantic segmentation of the railway track and transforming it to the LiDAR coordinate
system with incorrect extrinsic parameters leads to deviations from reality. Therefore, the
adaptive extrinsic parameter optimization becomes crucial.

In this study, the extrinsic parameters between the camera and LiDAR are assumed to
be constant. If the adaptive optimization of the extrinsic parameters between the LiDAR
and the rail coordinate systems is achieved, then based on Equation (1), the extrinsic
parameters between the camera and the rail coordinate systems can be computed.

As illustrated in Figure 3, in the rail coordinate system the origin is located at the center
of the left and right railway tracks below the LiDAR. The x-axis is oriented perpendicular
to the right railway track, pointing towards the left railway track. The y-axis is vertical to
the railway track plane pointing upwards. The z-axis aligns with the forward direction of
the train’s head, specifically following the tangent direction of the railway track. Using the
LiDAR point clouds of the left and right railway tracks, the position of the rail coordinate
system in the LiDAR coordinate system can be determined. Subsequently, the extrinsic
parameters between the LiDAR coordinate system and the rail coordinate system can
be calculated.



Remote Sens. 2024, 16, 1441 10 of 20

The three axes and origin of the rail coordinate system are denoted as xr, yr, zr, Or;
while in the LiDAR coordinate system, they are denoted as xl

r, yl
r, zl

r, Ol
r, as illustrated by

the yellow coordinate system in Figure 8.
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Based on Equation (1), there is a relationship between these two sets of parameters as
illustrated in Equation (9), where R1 and t1 represent the rotation matrix and translation
matrix from the rail coordinate system to the LiDAR coordinate system, respectively.{

Ol
r = R1Or + t1[
xl

r, yl
r, zl

r

]
= R1[xr, yr, zr]

(9)

In fact, xr, yr, zr, andOr are defined as [1, 0, 0]T , [0, 1, 0]T , [0, 0, 1]T , and [0, 0, 0]T , respec-
tively. xl

r, yl
r, zl

r, and Ol
r are computed from the LiDAR point clouds of the left and right

railway tracks. Consequently, R1 and t1 can be obtained by Equation (9). In this study, the
extrinsic parameter optimization algorithm is proposed, as shown in Algorithm 1.

Algorithm 1 Extrinsic Parameter Optimization

Input: LiDAR points of railway tracks
Output: Extrinsic parameters between coordinate systems
pointsle f t, pointsright : LiDAR points of the left and right railway tracks
vl , vr: Fitted spatial straight lines based on least-squares
Plc, Prc : Centers of pointsle f t, pointsright, respectively
Fit spatial straight lines vl , vr of pointsle f t, pointsright, respectively
zl

r = (vl +vr)/2
Fit the plane on the points pointsle f t, pointsright and take its normal vector as yl

r

xl
r = yl

r × zl
r

Plc = mean (pointsle f t ), Prc= mean (pointsright )
Plrc = (Plc +Prc)/2
Ol

r = Plrc−
Plrc [2]
zl

r [2]
zl

r

R1 =
[

xl
r, yl

r, zl
r

]
t1 = Ol

r
return R1, t1

Step 1: Use the least squares method to perform spatial line fitting on near track points,
as illustrated by the red fitted line in Figure 8. The direction of this line corresponds to zl

r.
Apply the RANSAC algorithm to fit the railway track plane, as illustrated by the green
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fitted plane in Figure 8. The normal vector of the plane corresponds to yl
r. Compute the

cross product of yl
r and zl

r, corresponding to xl
r.

Step 2: Compute the centers of the left and right railway tracks, respectively, as
illustrated by the points Plc and Prc in Figure 8. Then, calculate the midpoint between these
two points, as illustrated by the point Plrc in Figure 8. Translate the point along the z-axis
to the z-value of 0, and this point corresponds to Ol

r. The absence of track points below the
LiDAR is the reason for doing this.

Step 3: Calculate the rotation matrix R1 and translation matrix t1 from the rail coordi-
nate system to the LiDAR coordinate system based on Equation (9).

By employing this algorithm and following Equation (1), the update of extrinsic
parameters during the train’s operation is ensured. Convert the rotation matrix R3 to the
Euler angle [pitch1, yaw1, roll1] form rotated in order ‘xyz′, as depicted in Equation (10). It
should be noted that when the coordinate systems are defined differently, the corresponding
Euler angle directions are not the same. Equation (10) is applicable in the coordinate system
defined in this study.

R3 =

1 0 0
0 cos(pitch1) −sin(pitch1)
0 sin(pitch1) cos(pitch1)

·
 cos(yaw1) 0 sin(yaw1)

0 1 0
−sin(yaw1) 0 cos(yaw1)



·

cos(roll1) −sin(roll1) 0
sin(roll1) cos(roll1) 0

0 0 1


(10)

In Equation (5), the angle θ1 between the camera’s optical axis and the railway track
plane corresponds to the negative of angle pitch1; in other words, θ1 = −pitch1. The
absolute value of the second component of the translation matrix t3 corresponds to the
height h from the camera’s optical center to railway track plane. Using the updated
extrinsic parameters, the inverse projection on the semantic segmentation of the tracks is
performed again.

In fact, the extrinsic parameters obtained from LiDAR–camera calibration or extrinsic
parameter optimization may not be entirely accurate, due to various factors such as poor
quality of LiDAR point clouds or image distortions. Therefore, an extrinsic parameter
fine-tuning algorithm is designed. A slight rigid rotation is applied to the inverse projection
of railway tracks, minimizing the distance between the LiDAR railway point clouds and
the inverse projection of railway tracks.

As illustrated in Algorithm 2, curve fitting is performed on the LiDAR railway track
points and the inverse projection of railway tracks according to Equation (6). Then, sample
points along the z-axis on the two curves. Find the optimal Euler angles [pitch2, yaw2, roll2],
ensuring that upon rotating the sampling points of the fitted curve of the inverse projection
of railway tracks, the distance between the two curves is minimized. The selection of Euler
angles followed a coarse-to-fine strategy. Appling this algorithm, the extrinsic parameter θ1
in Equation (5) is updated again, as illustrated in Equation (11).

θ1 = −(pitch1 + pitch2) (11)

Using the optimized extrinsic parameters, the inverse projection on the semantic
segmentation of the tracks is performed again. The result is then transformed into the
LiDAR coordinate system and presented jointly with the segmented LiDAR railway track
points as the final output.
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Algorithm 2 Extrinsic Parameter Fine-Tuning

Input: Sampling points of the fitted curves of LiDAR railway track points and inverse projection
of railway tracks
Output: Fine-tuned extrinsic parameters
Pl , Pr: Sampling points of the fitted curve of LiDAR railway track points
Sl , Sr: Sampling points of the fitted curve of the inverse projection of railway tracks
Euler_angles: the Euler angles [pitch, yaw, roll] used for rotation
R: Rotation matrix corresponding to Euler_angles
St

l , St
r: Points after rotating Sl and Sr

Cl , Cr: Points on the rotated curve of the inverse projection of railway tracks with the same
z-values as Pl , Pr
n: Number of sampling points
d: Distance between the corresponding points of Pl , Pr and Cl , Cr
d_min: The minimum value of d during iteration
Euler_angle_optimal: The optimal Euler angles during iteration
Euler_angle_initial: Initial value during the iterative process from coarse to fine
d_min = in f
Euler_angle_initial = [0,0,0]
step = 0.1
while step ≥ 0.01

for i = 0 to 10 do
for j = 0 to 10 do

for k = 0 to 10 do
Euler_angle = Euler_angle_initial + step·[i − 5, j − 5, k − 5]
St

l = R · Sl , St
r = R · Sr

d = ∑n
i=1(|Pl−Cl |+|Pr−Cr | )

n
if d < d_min then

d_min = d;
Euler_angle_optimal = Euler_angle

end
end

end
end
Euler_angle_ initial = Euler_angle_optimal
step = 0.1·step

end
return Euler_angle_optimal

4. Experiments
4.1. Dataset

In this study, we initially trained a neural network on the RailSem19 dataset [21] to
perform semantic segmentation of railway tracks. RailSem19 consists of a diverse set of
8500 railway scenes from 38 countries in varying weather, lighting, and seasons. Subsequently,
LiDAR and camera data from railway scenarios were collected for railway track detection
and 3D fitting experiments, using the Neuvition Titan M1-R LiDAR with a repetition rate
of 1 MHz and a synchronized high-resolution Alvium G5-1240 camera with a resolution of
4024 × 3036, as shown in Figure 9. To examine the algorithm’s generalization to LiDAR, we
conducted additional experiments by replacing the LiDAR in certain scenarios with Livox
Tele-15, featuring a longer detection range but sparser point clouds.

We collected some static scenarios of the train on straight and curve tracks, as well as
dynamic scenarios of the train moving at a speed of 10 km/h using the LiDAR and camera.
We manually segmented the railway tracks as ground truth. Due to limitations in LiDAR
performance, there are numerous noise points along the edges of the railway tracks. To
address this, we struggled to segment the surface points on the railway track as the ground
truth for railway track point cloud segmentation. We attached retroreflective tape and
placed traffic cones alongside the railway tracks to obtain the ground truth for railway track
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detection and 3D fitting. In the straight track scenario, the semantic segmentation of railway
tracks obtained from the camera extends up to 200 m, while the LiDAR railway track point
clouds typically cover distances of no more than 50 m. In the curve track scenario, due to
the increased reflectivity on the side of the railway tracks, LiDAR is capable of detecting
tracks at the distance of around 80 m. Overall, the camera outperforms LiDAR in detecting
railway tracks at a longer distance.
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The camera and LiDAR data are processed on the NVIDIA Jetson AGX Orin, a com-
puting platform designed for autonomous vehicles and intelligent machines, equipped
with GPUs and AI accelerators. Leveraging this edge computing device, we aim to perform
real-time processing of camera and LiDAR data to achieve railway track detection and
3D fitting.

4.2. Railway Track Point Cloud Segmentation

The accuracy of railway track point cloud segmentation is crucial for subsequent
extrinsic parameter optimization, as it provides precise extrinsic parameters for inverse
projection. Firstly, we describe the railway track point level evaluation indicators. If the
segmented LiDAR points coincide with the ground truth of the railway track point clouds,
then these points are considered true positives (TP). If the segmented LiDAR points do
not belong to the ground truth of the railway track point clouds, then these points are
considered false positives (FP). If the points from the ground truth of the railway track point
clouds do not appear in the segmented LiDAR points, then these points are considered
false negatives (FN). We choose precision, recall rate, and F1 score as evaluation metrics, as
illustrated in Equations (12)–(14).

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

F1 = 2 × Precision × Recall
Precision + Recall

(14)

It should be noted that, due to the presence of noise points along the edges of the
railway tracks, for the sake of algorithm robustness, post processing is applied to obtain
surface points on the railway tracks. This leads to a slight reduction in recall rate. In
other words, we aim to maximize precision under the condition of a sufficiently high recall
rate. The F1 score is used as the comprehensive evaluation metric for railway track point
cloud segmentation.

We compared the proposed method with the existing LiDAR-based method [15] and
camera–LiDAR fusion method [17]. Due to the generalization problem of these methods,
it is difficult to apply these methods directly to our data. For a fair comparison, some
adjustments were made to these methods. The LiDAR-based method initially filters track
bed and track points based on the height of the point cloud. However, implementing this
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on our data is challenging since our LiDAR was not horizontally mounted. We use prior
knowledge to obtain the ROI area of the track bed, followed by applying the RANSAC
algorithm to perform plane fitting on the points within this area. Points not on the plane
are then filtered, and these points mainly include the track points. Finally, the LiDAR-based
method segments the track point clouds using clustering and region-growing algorithms.
As for the camera –LiDAR fusion method, originally designed for obstacle detection, the
LiDAR point clouds are projected onto the image. Using the semantic segmentation of the
tracks, the LiDAR track point clouds are filtered out. The results of railway track point
cloud segmentation obtained by our method and other methods are presented in Table 1.

Table 1. Results of railway track point cloud segmentation.

Scenario
LiDAR-Based Method [15] Wang et al. [17] Proposed Method

Pre Rec F1 Pre Rec F1 Pre Rec F1

Straight 0.922 0.935 0.928 0.714 0.915 0.802 0.986 0.940 0.962
Curve 0.876 0.500 0.634 0.512 0.847 0.637 0.930 0.749 0.828

Dynamic 0.939 0.811 0.870 0.519 0.524 0.521 0.999 0.905 0.950

Bold indicates the best-performing metric among the compared methods.

Compared with other methods, our method achieves the highest precision, recall rate,
and F1 score in the straight and dynamic scenarios. In the curve scenario, our method
exhibits the highest precision and F1, with a recall rate slightly lower than that of the camera–
LiDAR fusion method. This difference in recall rate is attributed to our post processing of
the railway track point clouds, where only the surface points on the tracks are retained.
The LiDAR-based method lacks robustness, frequently encountering severe railway track
segmentation errors in the curve and dynamic scenarios. The camera–LiDAR fusion
method heavily relies on the accuracy of rail semantic segmentation, often misclassifying
track bed points as track points. Additionally, changes in the extrinsic parameters of the
camera and LiDAR result in decreased accuracy in railway track point cloud segmentation.
Visualization results of some railway track point cloud segmentations are presented in
Figure 10, indicating that our method achieves more accurate and robust railway track
point cloud segmentation.
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4.3. The 3D Fitting of Railway Tracks

The precise acquisition of the 3D track trajectory is crucial for train operational safety.
We assess the 3D fitting of railway tracks at specific distances, using the lateral deviation
from the ground truth as the evaluation metric. As illustrated in Equation (15), xi

pred and

xi
gt represent the x-values of the 3D fitted curve and the ground truth of the railway track,

respectively, at the specific z-value.

Lateral deviation =
∣∣∣xi

pred − xi
gt

∣∣∣, i ∈ special z-values (15)

We compared the proposed method with a LiDAR-based method [15], a camera-based
method [13], and a camera–LiDAR fusion method [17]. Due to limitations in LiDAR
performance and the low reflectivity of the railway track surface, only the near track points
are detectable, while the distant track points remain inaccessible. For a fair comparison, the
railway track points segmented by the LiDAR-based method and camera–LiDAR fusion
method are subjected to 3D fitting using Equation (6). This procedure extends the railway
tracks to distant locations for a comprehensive evaluation. The camera-based method
achieves railway track semantic segmentation by finding a homography transformation
matrix and mapping it to the BEV. The 3D fitting results of railway tracks obtained by the
proposed method and other methods are presented in Table 2.

Table 2. Detailed 3D fitting results of railway tracks.

Distance (m) Scenario
Lateral Deviation (m)

LiDAR-Based
Method [15] Wang et al. [13] Camera-Based

Method [17] Proposed Method

40
Straight 0.05 0.04 0.04 0.03
Curve 0.03 0.04 0.03 0.02

Dynamic 0.06 0.10 0.07 0.03

80
Straight 0.11 0.11 0.09 0.06
Curve 1.06 0.10 0.09 0.08

Dynamic 0.40 0.26 0.18 0.08

120
Straight 0.19 0.20 0.13 0.10
Curve 5.25 0.33 0.15 0.14

Dynamic 0.74 0.43 0.30 0.12

160
Straight 0.27 0.29 0.18 0.13
Curve 9.61 0.70 0.19 0.17

Dynamic 1.08 0.60 0.43 0.16

200
Straight 0.35 0.40 0.23 0.17
Curve 13.91 1.07 0.25 0.22

Dynamic 1.43 0.77 0.56 0.21

Bold indicates the best-performing metric among the compared methods.

Evidently, the proposed method outperforms the other methods in all scenarios,
with the smallest lateral deviation in the 3D fitting of railway tracks. In the curve sce-
nario, the proposed method significantly outperforms the LiDAR-based method and the
camera–LiDAR fusion method. The LiDAR-based method and the camera–LiDAR fusion
method struggle to accurately segment track point clouds in the curve scenario, leading to
increasing errors in 3D fitting of railway tracks. In the dynamic scenario, the movement
of the train induces changes in extrinsic parameters. This results in an increasing lateral
deviation in the 3D fitting of railway tracks for the other three methods. In contrast, the pro-
posed method demonstrates superior adaptability to the extrinsic parameter changes. The
visualization results of the 3D fitting for railway tracks are shown in Figure 11, confirming
the accuracy of the proposed method in 3D fitting of railway tracks.



Remote Sens. 2024, 16, 1441 16 of 20

Remote Sens. 2024, 16, x FOR PEER REVIEW 16 of 21 
 

 

120 
Straight 0.19 0.20 0.13 0.10 
Curve 5.25 0.33 0.15 0.14 

Dynamic 0.74 0.43 0.30 0.12 

160 
Straight 0.27 0.29 0.18 0.13 
Curve 9.61 0.70 0.19 0.17 

Dynamic 1.08 0.60 0.43 0.16 

200 
Straight 0.35 0.40 0.23 0.17 
Curve 13.91 1.07 0.25 0.22 

Dynamic 1.43 0.77 0.56 0.21 
Bold indicates the best-performing metric among the compared methods. 

Evidently, the proposed method outperforms the other methods in all scenarios, with 
the smallest lateral deviation in the 3D fitting of railway tracks. In the curve scenario, the 
proposed method significantly outperforms the LiDAR-based method and the camera–
LiDAR fusion method. The LiDAR-based method and the camera–LiDAR fusion method 
struggle to accurately segment track point clouds in the curve scenario, leading to increas-
ing errors in 3D fitting of railway tracks. In the dynamic scenario, the movement of the 
train induces changes in extrinsic parameters. This results in an increasing lateral devia-
tion in the 3D fitting of railway tracks for the other three methods. In contrast, the pro-
posed method demonstrates superior adaptability to the extrinsic parameter changes. The 
visualization results of the 3D fitting for railway tracks are shown in Figure 11, confirming 
the accuracy of the proposed method in 3D fitting of railway tracks. 

 
Figure 11. Visualization results of 3D fitting for railway tracks. The last four rows display the 3D 
fitting results of railway tracks, with green points representing ground truth and red points repre-
senting predicted results. 

These experiments depend on accurate semantic segmentation of railway tracks in the 
images. Subsequently, we investigated the algorithm’s robustness in challenging scenarios 
where precise semantic segmentation of railway tracks may not be attainable. Experiments 
were conducted to assess the robustness of railway track detection and 3D fitting in chal-
lenging scenarios, including low illumination, occlusion, and track switches. Due to the no-
ticeable differences in color and reflectivity between the railway surface and the surround-
ing track bed, the semantic segmentation module for railway tracks can also function in low-
illumination scenarios. However, its performance may decrease slightly, with an effective 

Figure 11. Visualization results of 3D fitting for railway tracks. The last four rows display the
3D fitting results of railway tracks, with green points representing ground truth and red points
representing predicted results.

These experiments depend on accurate semantic segmentation of railway tracks in
the images. Subsequently, we investigated the algorithm’s robustness in challenging
scenarios where precise semantic segmentation of railway tracks may not be attainable.
Experiments were conducted to assess the robustness of railway track detection and 3D
fitting in challenging scenarios, including low illumination, occlusion, and track switches.
Due to the noticeable differences in color and reflectivity between the railway surface and
the surrounding track bed, the semantic segmentation module for railway tracks can also
function in low-illumination scenarios. However, its performance may decrease slightly,
with an effective detection range of only approximately 100 m. Additionally, the semantic
segmentation of the railway track might be coarse, encompassing some areas of the track
bed. Occlusion can lead to discontinuity in the semantic segmentation of the railway tracks.
The Track switch may result in a significant overlap between the left and right tracks in the
vicinity of the railway switch point. The algorithm’s robustness in challenging scenarios is
demonstrated in Table 3 and visualization results are presented in Figure 12.
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Table 3. Results of robustness experiments for challenging scenarios.

Evaluation Metric Low Illumination Occlusion Track Switch

Average lateral
deviation (m) 0.06 0.07 0.25

We adopted the average lateral deviation within 100 m as the evaluation metric. It
is evident that the proposed method maintains robust performance in these challenging
scenarios. In low illumination and occlusion scenarios, the 3D fitting error of railway tracks
is comparable to that in normal scenarios. In the track switch scenario, the 3D fitting error
of railway tracks increases slightly, but it remains acceptable and the algorithm continues
to operate stably.

These experiments were conducted on the edge computing device NVIDIA Jetson AGX
Orin (NVIDIA, Santa Clara, CA, USA). In view of the requirement of real-time performance
for practical application of the system, we strove to reduce the computational complexity
of the algorithm and minimize computation time. We employed parallel computing
and multi-threaded processing mechanisms, along with moderate downsampling of the
experimental data, to strike a balance between accuracy and computational efficiency
while ensuring the required precision. We divided the entire algorithm into four parts
based on their computational time consumption, namely railway semantic segmentation,
inverse projection and 3D fitting of railway tracks, railway point cloud segmentation,
and extrinsic parameter optimization. Due to the adoption of multi-threaded processing
mechanisms, the total processing time is not simply the sum of the individual module times,
but slightly greater than the time taken by the module with the maximum consumption.
The computational time of the entire algorithm is presented in Table 4.

Table 4. Results of computational time of the proposed method.

Module Time Cost (s)

Railway semantic segmentation 0.174
Inverse projection and 3D fitting of railway tracks 0.001

Railway point cloud segmentation 0.065
Extrinsic parameter optimization 0.129

Total 0.200

The modules with the highest computational time consumption in the entire algorithm
are the railway semantic segmentation module and the extrinsic parameter optimization
module. The railway semantic segmentation module involves the computation of the
railway centerline, which is a time-consuming process. Similarly, the extrinsic parameter
optimization module requires traversal operations, which also contribute significantly to the
total processing time. With parallel computing, we can maintain the algorithm’s processing
speed at around five frames per second (fps), meeting the real-time requirements effectively.
As the maximum scanning rate of the LiDAR is 100 milliseconds, the real-time performance
of the proposed method can roughly meet the requirements for practical applications.

4.4. Ablation Study

The proposed method involves three crucial modules that may influence the railway
track detection and 3D fitting: extrinsic parameter optimization, railway track point cloud
post processing, and 3D fitting constraints. To further investigate the impacts of these three
modules on the algorithm, each module was independently removed in experiments for
comparison purposes. Specifically, fixed extrinsic parameters were used instead of the
extrinsic parameter optimization module, points within the ROI are directly considered
as the final railway track points, and a conventional polynomial function was employed
instead of the piecewise function with curve constraints.
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The ablation experiments for railway track point cloud segmentation are presented in
Table 5. We chose the F1 score as the evaluation metric. Evidently, the complete algorithm
achieves the highest F1 score. When removing the extrinsic parameter optimization module,
railway point cloud post processing module, and 3D fitting constraints module, the F1
score decreases by 6%, 43%, and 15%, respectively.

Table 5. Ablation experiments for railway track point cloud segmentation.

Method
F1 Score

Straight Curve Dynamic All

W/o extrinsic parameter optimization 0.941 0.791 0.851 0.861
W/o railway track point cloud post processing 0.626 0.322 0.768 0.572

W/o 3D fitting constraints 0.961 0.479 0.948 0.796
Proposed method 0.962 0.828 0.950 0.913

Bold indicates the best-performing metric among the compared methods.

The ablation experiments for 3D fitting of railway tracks are presented in Table 6. We
adopted the average lateral deviation within 200 m as the evaluation metric. Evidently, the
complete algorithm achieves the minimum detection error. When removing the extrinsic
parameter optimization module, railway point cloud post processing module, and 3D
fitting constraints module, the average lateral deviation increases by 88%, 218%, and
42%, respectively.

Table 6. Ablation experiments for 3D fitting of railway tracks.

Method
Average Lateral Deviation (m)

Straight Curve Dynamic All

W/o extrinsic parameter optimization 0.10 0.19 0.33 0.21
W/o railway track point cloud post processing 0.15 0.67 0.23 0.35

W/o 3D fitting constraints 0.12 0.22 0.13 0.16
Proposed method 0.08 0.14 0.11 0.11

Bold indicates the best-performing metric among the compared methods.

5. Conclusions

In this study, we propose a real-time railway track detection and 3D fitting method that
integrates the camera and LiDAR data. Continuously optimizing the extrinsic parameters,
we apply inverse projection and 3D fitting to the semantic segmentation of the track,
achieving track vectorization. Experimental results demonstrate the desirable accuracy
of the proposed method in both railway track point cloud segmentation and 3D fitting of
railway tracks, outperforming existing LiDAR-based, camera-based, and camera–LiDAR
fusion methods. The proposed method achieves a 91.3% F1 score for railway track point
cloud segmentation and maintains the average lateral deviation of 0.11 m within the
200 m distance for 3D fitting of the railway tracks. Additionally, the proposed method
demonstrates robust performance in challenging scenarios such as curved tracks, obstacle
occlusion, and vibrations during the train’s operation. All these experiments help verify
the effectiveness of the proposed method.

The railway track detection and 3D fitting in this study relies on semantic segmentation;
future work will focus on iteratively enhancing the semantic segmentation of railway tracks
through the utilization of railway track point clouds. Additionally, there will be an emphasis
on improving the algorithm’s portability for deployment on edge devices.
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