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Abstract: The instantaneous frequency (IF) is an important feature for the analysis of nonstationary
signals. For IF estimation, the time–frequency representation (TFR)-based algorithm is used in a
common class of methods. TFR-based methods always need the representation concentrated around
the “true” IFs and the number of components within the signal. In this paper, we propose a novel
method to adaptively estimate the IFs of nonstationary signals, even for weak components of the
signals. The proposed technique is not based on the TFR: it is based on the frequency estimation
operator (FEO), and the short-time Fourier transform (STFT) is used as its basis. As we know, the FRO
is an exact estimation of the IF for weak frequency-modulated (FM) signals, but is not appropriate for
strong FM modes. Through theoretical derivation, we determine that the fixed points of the FEOwith
respect to the frequency are equivalent to the ridge of the STFT spectrum. Furthermore, the IF of the
linear chirp signals is just the fixed points of the FEO. Therefore, we apply the fixed-point algorithm
to the FEO to realize the precise and reliable estimation of the IF, even for highly FM signals. Finally,
the results using synthetic and real signals show the utility of the proposed method for IF estimation
and that it is more robust than the compared method. It should be noted that the proposed method
employing the FEO only computes the first-order differential of the STFT for the chirp-like signals,
while it can provide a result derived using the second-order estimation operator. Moreover, this new
method is effective for the IF estimation of weak components within a signal.

Keywords: instantaneous frequency; frequency estimation operator; linear chirp signals; fixed-point
algorithm; weak component detection

1. Introduction

In many situations, most nonstationary signals are the superposition of amplitude-
modulated and frequency-modulated (AM–FM) modes. Defined nonstationary signals
( f (t)) are named multicomponent signals and are given by

f (t) =
N

∑
n=1

An(t)eiϕn(t) (1)

where An(t) is the instantaneous amplitude and ϕn(t) is the instantaneous phase of the nth
component. The derivative of the instantaneous phase is the instantaneous frequency (IF).
Boashash defined and systematically represented the importance of the IF [1,2]. The IF is
a significant parameter for such multicomponent signals. In practice, such as in seismic
analysis, radar, remote sensing, and communications, the IF is a specific descriptor [3–5].
The estimation of the IF is a classical and important problem and is very meaningful work,
especially in signal processing and communications [1,2].
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The traditional IF estimation methods can mainly be divided into two kinds: time–
frequency methods and non-time–frequency methods [6–10]. Empirical mode decomposi-
tion (EMD) is a representative non-time–frequency method [11]. It is an efficient data-driven
method to decompose a multicomponent signal into several intrinsic mode functions (IMFs).
EMD has been widely utilized in many applications [12]. However, non-time–frequency
methods are not robust for noise, which largely restricts their application [13].

The time–frequency analysis (TFA) method can transform a one-dimensional signal
into a two-dimensional TF distribution. It is thus considered as one of the most efficient
tools to reveal the TF features of nonstationary signals [13]. The short-time FT (STFT),
wavelet transform (WT), S transform (ST), and Wigner–Ville distribution (WVD) are typical
representative TFA methods [14–19]. If a TF representation (TFR) is well matched to the
structures of a signal, each component will appear as a “curve” in the time–frequency
domain. The curve is composed of a unique sequence of amplitude peaks in the TFR,
i.e., ridge points. Based on the characteristics of these curves, we can estimate the corre-
sponding IF [20–24]. Moreover, in addition to noise, it may include possible crossing and
self-crossing, i.e., time–frequency overlapping of the signal and noise in the time–frequency
plane, which makes it difficult to estimate the IF [8]. Therefore, it is necessary to enhance
the quality of the TFR, especially for multi-component signals.

Recently, many time–frequency transformations have been developed to improve
the quality of the TFRs of signals, such as the reassignment method (RM) [25] and the
synchrosqueezing transform (SST) [26]. In these methods, the most important operation
is calculating the IF estimation operator. For a given signal of f (t) = A(t)eiϕ(t), when
ϕ′(t) > 0, |A′(t)| ≤ ε, and |ϕ′′ (t)| ≤ ε (ε is small enough), the accuracy of the IF estimation
is acceptable. However, |ϕ′′ (t)| ≤ ε is a harsh term. Once ϕ′′ (t) is non-negligible, the error
between the IF estimation and the real one becomes large [27–29]. Therefore, the original
SST methods cannot obtain satisfactory results for a highly FM signal. To address this
issue, some new methods have been proposed to modify frequency estimation for strong
FM signals, e.g., the second-order STFT-based SST (FSST2), high-order STFT-based SST
(FSSTN), MDT-based SST, and synchro-compensating chirplet transform [27–35].

However, these methods should assume that the number of components (M) is known
and is no less than the true number of components (N), which can enable the extraction of
the IFs of all components. Unfortunately, N is always unknown in real signals [36]. In this
paper, with a new interpretation of a model of a linear chirp signal, we show that the IF can
be regarded as the fixed points of the frequency reassignment operator and further derive
the convergence of the fixed-point iteration. Based on this, we propose a novel approach to
extract the IFs of chirp-like signals via the fixed-point algorithm. It does not require prior
information about how many components are within a signal and can even detect the IFs of
weak components. This paper is organized as follows: in Section 2, we state the properties
of the STFT spectrum and the frequency reassignment operator; then, we propose a method
based on the fixed-point algorithm to estimate the IF in Section 3; the simulation results are
presented in Section 4; Section 5 gives a conclusion.

2. Foundational Background

The instantaneous frequency (IF) plays an important role in time–frequency analysis.
The estimation and representation of the IF are key topics [37,38]. In this paper, we aim to
propose a novel approach to estimate the IF of non-linear signals. We present the theoretical
basis and the algorithm in this section.

2.1. The STFT and the Frequency Estimation Operator

First, we recall the Fourier transform (FT). For a given signal f (t), the Fourier transform
is defined by [1]

f̂ (ω) =
∫
R

f (ξ) · e−iωξ dξ (2)
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Then, one can define the short-time Fourier transform (STFT) of f (t) as the local
version of the Fourier transform depending on a sliding window (g). Here, we use the
expression of the regular STFT considering an additional phase shift (eiωt). Referring to [39],
for locally stationary signals, the definition can be written as a complex-valued function:

Sg
f (ω, t) =

∫
R f (ξ) · g(ξ − t) · e−iω(ξ−t)dξ

= M(ω, t)eiφ(ω,t)
(3)

where g ∈ L2(R) is a real-valued and even Gaussian window function, whose generalized
expression is ae−t2/b. M(η, t) is the magnitude of the STFT Sg

f (ω, t), and φ(ω, t) is the
corresponding phase. The partial derivative of the STFT is given by Equation (3):

∂
∂t Sg

f = ∂
∂t

∫
R f (ξ) · g(ξ − t) · e−iω(ξ−t)dξ

=
∫
R f (ξ) ·

[
∂
∂t g(ξ − t)

]
· e−iω(ξ−t)dξ +

∫
R f (ξ) · g(ξ − t) ·

[
∂
∂t e−iω(ξ−t)

]
dξ

=
∫
R f (ξ) · [−g′(ξ − t)] · e−iω(ξ−t)dξ +

∫
R f (ξ) · g(ξ − t) ·

[
iωe−iω(ξ−t)

]
dξ

= −Sg′

f + iωSg
f ,

(4)

where g′(x) = d
dx g(x) is the time-derivative analysis window and Sg′

f is the STFT computed

based on the window function g′(t). Multiplying by 1/Sg
f (when Sg

f ̸= 0), we obtain

∂

∂t

Sg
f

iSg
f
=
[
−Sg′

f + iωSg
f

]
· 1

Sg
f
= i

Sg′

f

Sg
f
+ ω (5)

We can also calculate the derivative of Equation (3) with respect to frequency ω:

∂
∂ω Sg

f = ∂
∂ω

∫
R f (ξ) · g(ξ − t) · e−iω(ξ−t)dξ

=
∫
R f (ξ) · g(ξ − t) ·

[
∂

∂ω e−iω(ξ−t)
]
dξ

=
∫
R f (ξ) · g(ξ − t) ·

[
−i(ξ − t)e−iω(ξ−t)

]
dξ

= −i
∫
R f (ξ) · (ξ − t) · g(ξ − t) · e−iω(ξ−t)dξ

= −iStg
f ,

(6)

where tg = t · g(t) is the time-weighted analysis window and Stg
f is the STFT computed

based on the window function tg(t).
To arrive at an expression for the partial derivative of the spectral phase with respect to

the frequency, we take the partial derivative of Equation (3) to obtain the following equality:

∂
∂ω Sg

f = ∂
∂ω M(ω, t)eiφ(ω,t)

= ∂M(ω,t)
∂ω · eiφ(ω,t) + M(ω, t) · i ∂φ(ω,t)

∂ω eiφ(ω,t)

= ∂M(ω,t)
∂ω · eiφ(ω,t) + i ∂φ(ω,t)

∂ω · Sg
f

(7)

According to Equations (6) and (7), multiplying by 1/Sg
f gives the following equation:

∂

∂ω

Sg
f

Sg
f
= −i

Stg
f

Sg
f
=

∂ ln(M(ω, t))
∂ω

+ i
∂φ(ω, t)

∂ω
(8)
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The reassignment method (RM) and synchrosqueezing transform are two classical
techniques to enhance the energy concentration of a TF representation. For the harmonic
signals, the IF is estimated using the so-called frequency estimation operator (FEO), which
is defined as follows [25,26]:

ω̂(ω, t) = Re

(
∂tS

g
f

iSg
f

)
(9)

For a weak frequency-modulated (FM) signal, ω̂(ω, t) is indeed an exact estimation of
the IF [23–26]. Now, we study the property of the special points that satisfy ω̂ f (ω, t) = ω.
Since the window function is a Gaussian function,

Im(Sg′

f /Sg
f ) = 0 ⇔ Im(Stg

f /Sg
f ) = 0 (10)

According to Equations (5) and (8), and substituting Im(Stg
f /Sg

f ) = 0 into equality (9),
we immediately obtain ∂ ln(M(ω, t))/∂ω = 0. ∂(M)/∂ω = 0, i.e., the ridge of the STFT,
satisfies ω̂ f (ω, t) = ω, which can therefore be used to characterize the IF. As we know,
ω̂(ω, t) is no longer a good estimation of a highly FM signal (e.g., a chirp signal). However,
the trace ω̂ f (ω, t) = ω still can accurately describe the IF. A theoretical analysis is given in
the next section; the result inspired a novel idea for the extraction of the IF.

2.2. Unbiased IF Estimation Based Fixed Point of FEO

We consider a special category of signals: linear chirp signals of f (t) = Aeiϕ(t), where
ϕ(t) = a2 + b2t + 1

2 c2t2 and A > 0, a2, b2, c2 are real numbers. For each η and t,

f (η + t) = f (t)ei[ϕ′(t)η+ 1
2 ϕ′′ (t)η2] (11)

According to Equation (3), the STFT of f (t) is derived as [40]

Sg
f (ω, t) =

∫
R f (ξ) · g(ξ − t) · e−iω(ξ−t)dξ

=
∫
R f (η + t) · g(η) · e−iωηdη

=
∫
R f (t)ei[ϕ′(t)η+ ϕ′′(t)η2

2 ] · ae−
η2
b · e−iωηdη

= a · f (t)
∫
R e(i

ϕ′′(t)
2 − 1

b )η
2
e−iη(ω−ϕ′(t))dη

= a · f (t)
∫
R e−u(η+ iv

2u )
2
dη · e−

v2
4u

= a · f (t) ·
√

π
u · e−

v2
4u

(12)

where η = ξ − t, u = 1
b − i ϕ′′ (t)

2 , and v = ω − ϕ′(t).
Then, the IF estimation of signal f is obtained as

ω̂ f (ω, t) = ℜ
(

∂tS
g
f

iSg
f

)
= ϕ′(t) +

(ϕ′′ (t))2

4/b2 + (ϕ′′ (t))2

(
ω − ϕ′(t)

)
(13)

Therefore, ∣∣∣ω̂ f (ω, t)− ϕ′(t)
∣∣∣ = (ϕ′′ (t))2

4/b2 + (ϕ′′ (t))2

∣∣ω − ϕ′(t)
∣∣ (14)

which clearly shows that the IF estimation ω̂ f (ω, t) ̸= ϕ′(t) as soon as ϕ′′ (t) ̸= 0, i.e., c ̸= 0.
Furthermore, the deviation between the IF estimation and the true one is positively related
to |ϕ′′ (t)|. Therefore, ω̂ f (ω, t) cannot be regarded as a good estimation of the IF [41].
To achieve a more accurate IF estimation, the operator defined in Equation (9) has been
improved [42]. However, when substituting ϕ′(t) for the variable ω in Equation (14),
we can obtain ω̂ f (ϕ

′(t), t) = ϕ′(t). That is to say that the IF of ϕ′(t) is the fixed point
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of ω̂ f (ω, t) with respect to frequency ω, which motivates us to use a novel method to
represent the IF by combining the fixed-point algorithm with the frequency reassignment
operator. Furthermore, the proposed algorithm can mitigate the impact of signal amplitude
variations on frequency estimation. Thus, it will also present the IFs of weak components.

3. The Proposed Algorithm

Based on the above analysis, we can propose a novel method to extract the IF of a chirp
signal. It solves a fixed-point equation with the form F(ω) = ω, where F(ω) = ω̂ f (ω, t) at
each time (t). This problem is considered as follows: for a given time (t0), find ω such that
ω̂ f (ω, t0) = ω.

To solve the equation of the extraction of a constant-amplitude linear chirp, we can nat-
urally use the classical fixed-point algorithm, which is as follows: let ω0(t0) be an “arbitrary”
initial value; ωk+1(t0) = ω̂ f (ωk(t0), t0); the convergence criterion is |ωk+1 − ωk| < to; and
t0 is fixed, arbitrary, and small.

In order to ensure the convergence of the algorithm, we need to check that for any
two consecutive iterations (k and k + 1), |F(ωk+1)− F(ωk)| < |ωk+1 − ωk|. Based on
Equation (12), the derivative of F(ω) with respect to ω is given by

∂F(ω)

∂ω
=

(ϕ′′ (t))2

4/b2 + (ϕ′′ (t))2 (15)

whose absolute value is obviously smaller than L given that 0 < L < 1. Since ∂F(ω)
∂ω

is independent of ω, F is contractive on ω ∈ [ϕ′(t)− ∆, ϕ′(t) + ∆]. The corresponding
flowcharts of algorithms are displayed in Figures 1 and 2.

Remote Sens. 2024, 16, x FOR PEER REVIEW 6 of 18 
 

 

bitrary” initial value;   
+

=
1 0 0 0

ˆ( ) ( ( ), )
k f k

t t t ; the convergence criterion is 1k k o
t 

+
−  ; 

and 0
t  is fixed, arbitrary, and small. 

In order to ensure the convergence of the algorithm, we need to check that for any 

two consecutive iterations ( k  and 1k+ ), 1 1
( ) ( )

k k k k
F F   

+ +
−  − . Based on Equa-

tion (12), the derivative of ( )F   with respect to   is given by 

( )

( )

2

22

( )( )

4 / ( )

tF

b t



 


=

 +
 (15) 

whose absolute value is obviously smaller than L  given that 0 1L  . Since 
( )F 






 is 

independent of  , F  is contractive on ( ) , ( )t t     −  +   . The corresponding 

flowcharts of algorithms are displayed in Figures 1 and 2. 

 

Figure 1. The flowchart of algorithm 1. Figure 1. The flowchart of algorithm 1.



Remote Sens. 2024, 16, 1412 6 of 17Remote Sens. 2024, 16, x FOR PEER REVIEW 7 of 18 
 

 

 

Figure 2. The flowchart of algorithm 2. 

4. Experimental Results and Analysis 

We use the FSST-based methods [42,43] for comparison. One may give an estimation 

of the IF as 

max ( , ),0 1
i j ij

FSST t i N = −  (16) 

The curve ( , ),0 1
i i

t i N −  gives an IF estimation based on the FSST. 

4.1. Single-Component Signal 

In order to verify the performance of the proposed method for the extraction of the 

IF, we employ three mono-component signals with different frequency characters. The 

three test signals are a linear frequency modulation signal, a three-order polynomial 

phase signal, and a non-linear phase signal. The corresponding number forms are 

2(130 100 )

1
( ) i t tf t e += ,

3(250 50 )

2
( ) i t tf t e += , (150 9 (3 ))

3
( ) i t cos tf t e +=  (17) 

and the sample interval is 1/ 1024  s. Figure 3a–c represent the results of IF estimations 

using the proposed method. The corresponding absolute errors between the estimations 

and the ideal IF are shown in Figure 3d–f, and their mean absolute errors are 0.0276, 

0.0364, and 0.2411, respectively. From these three noise-free experiments, we directly 

draw the conclusion that the estimation error obtained using the proposed approach can 

almost be controlled under the limit value. Furthermore, it is interesting to examine the 

effectiveness and robustness of the proposed algorithm under noisy circumstances. 

Herein, we will compare the obtained result and the ideal one using the mean absolute 

error. We apply different signal-to-noise ratio (SNR) values ranging from 0 to 20 dB. 

Figure 4a–c display the results achieved using the two methods. The results show the 

benefits of taking the fixed-point operator into account. It can be observed that the new 

method is always lower than the FSST, which means that the new algorithm is more ac-

curate and robust than the FSST-based method. 

Figure 2. The flowchart of algorithm 2.

4. Experimental Results and Analysis

We use the FSST-based methods [42,43] for comparison. One may give an estimation
of the IF as

ω̃i = max
j

FSST(ωj, ti), 0 ⩽ i ⩽ N − 1 (16)

The curve (ω̃i, ti), 0 ⩽ i ⩽ N − 1 gives an IF estimation based on the FSST.

4.1. Single-Component Signal

In order to verify the performance of the proposed method for the extraction of the
IF, we employ three mono-component signals with different frequency characters. The
three test signals are a linear frequency modulation signal, a three-order polynomial phase
signal, and a non-linear phase signal. The corresponding number forms are

f1(t) = ei(130t+100t2), f2(t) = ei(250t+50t3), f3(t) = ei(150t+9cos(3πt)) (17)

and the sample interval is 1/1024 s. Figure 3a–c represent the results of IF estimations
using the proposed method. The corresponding absolute errors between the estimations
and the ideal IF are shown in Figure 3d–f, and their mean absolute errors are 0.0276, 0.0364,
and 0.2411, respectively. From these three noise-free experiments, we directly draw the
conclusion that the estimation error obtained using the proposed approach can almost be
controlled under the limit value. Furthermore, it is interesting to examine the effectiveness
and robustness of the proposed algorithm under noisy circumstances. Herein, we will
compare the obtained result and the ideal one using the mean absolute error. We apply
different signal-to-noise ratio (SNR) values ranging from 0 to 20 dB. Figure 4a–c display
the results achieved using the two methods. The results show the benefits of taking the
fixed-point operator into account. It can be observed that the new method is always lower
than the FSST, which means that the new algorithm is more accurate and robust than the
FSST-based method.



Remote Sens. 2024, 16, 1412 7 of 17Remote Sens. 2024, 16, x FOR PEER REVIEW 8 of 18 
 

 

  

  

  

Figure 3. The estimation of the IF using the proposed algorithm for the (a) 1
( )f t , (b) 2

( )f t , and (c) 

3
( )f t . The corresponding absolute errors of (d) 1

( )f t , (e) 2
( )f t , and (f) 3

( )f t , respectively. 
Figure 3. The estimation of the IF using the proposed algorithm for the (a) f1(t), (b) f2(t), and
(c) f3(t). The corresponding absolute errors of (d) f1(t), (e) f2(t), and (f) f3(t), respectively.



Remote Sens. 2024, 16, 1412 8 of 17Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 18 
 

 

  

 

Figure 4. A comparison of the FSST-based method and the proposed method using signals with 

different noise levels: (a) 1
( )f t , (b) 2

( )f t , and (c) 3
( )f t . 

4.2. Multicomponent Signal 

Regardless of whether it is for the FSST or for the proposed method, to decompose 

a multi-component signal into the mono-component modes, the first step is to estimate 

the IF trajectories corresponding to each mode. Next, the proposed algorithm and the 

FSST-based method are applied to a multicomponent synthetic signal ( ( )4
f t ) with 

different levels of noises. Figure 5 illustrates the estimated IF trajectories based on the 

FSST and the proposed method. It can be seen that, for the high SNR level (Figure 5a), 

both methods can present correct IF trajectories. However, for the low SNR level (Figure 

5c,d), the estimated IF trajectories based on the FSST are untrusted. Although the pro-

posed method results are affected by noise, the IF trajectories of the three modes are still 

well estimated. Thus, it can be concluded that the IF estimations obtained using the 

proposed method (the red lines) are smoother and more robust than the FSST (the blue 

lines). Notably, different from the FSST-based method, the new algorithm is completely 

adaptive and detects the number of modes in the signal. 

Figure 4. A comparison of the FSST-based method and the proposed method using signals with
different noise levels: (a) f1(t), (b) f2(t), and (c) f3(t).

4.2. Multicomponent Signal

Regardless of whether it is for the FSST or for the proposed method, to decompose
a multi-component signal into the mono-component modes, the first step is to estimate
the IF trajectories corresponding to each mode. Next, the proposed algorithm and the
FSST-based method are applied to a multicomponent synthetic signal ( f4(t)) with different
levels of noises. Figure 5 illustrates the estimated IF trajectories based on the FSST and the
proposed method. It can be seen that, for the high SNR level (Figure 5a), both methods can
present correct IF trajectories. However, for the low SNR level (Figure 5c,d), the estimated
IF trajectories based on the FSST are untrusted. Although the proposed method results are
affected by noise, the IF trajectories of the three modes are still well estimated. Thus, it can
be concluded that the IF estimations obtained using the proposed method (the red lines)
are smoother and more robust than the FSST (the blue lines). Notably, different from the
FSST-based method, the new algorithm is completely adaptive and detects the number of
modes in the signal.
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(d) 0 dB.

4.3. Bat Echolocation

Finally, we consider a bat echolocation call, which is available at Supplementary Materials.
Figure 6 shows the estimated IF trajectories based on the proposed algorithm and the FSST.
From Figure 6a, it can be seen that the result based on the proposed method gives a better
description of IF trajectories. In Figure 6b, the estimated IF trajectories obtained by the
FSST partially overlap with each other. Utilizing the IF trajectories estimated using the
result of the proposed method, the mono-component modes are decomposed effectively.
Figure 7 displays the four decomposed components. Figure 7e lists the summation of the
four modes (the red line) and the original bat signal (the black line). The reconstruction
errors are shown in Figure 7f. From the result, it can be observed that the reconstruction
errors are small, which means that the estimated TF is comparatively accurate.
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4.4. Weak Component Detection

In this section, we utilize two simulated signals to test the performance of the proposed
method in weak signal detection and IF extraction. The two signals can be expressed as

s(t) =
3
∑

i=1
si(t), where

s1 = a · sin(2π(400t + 25arctan(2t − 1)2)),

s2 = sin(2π(250t + sin(15t))),

s3 = sin(2π(100t)).

(18)

The sampling frequency is 1 kHz, and the number of samples is 1000. Herein, we have
chosen the STFT and FSST, two representative tools, as the compared methods. The corre-
sponding results are presented in Figure 8. For the two cases where a = 0.05 or a = 0.001,
the STFT and FSST can show the TF features of s2 and s3 but not s1. The bottom of Figure 8
shows the detected IFs (colored lines) by the proposed algorithm and the theoretical values
(black lines). Even though each case has a weak mode with much lower amplitude than the
two other modes, the proposed method always has an approximated result. These results
verify that the proposed method can be used as an effective tool for IF extraction from the
weak components within a signal.
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4.5. Vibration Signal

In this section, a vibration signal recorded from a beam excited using a hammer is
employed, as shown in Figure 9a. As we know, identifying the parameters of modes is
important in structural engineering. In Figure 9b, we can see that the features of the modal
signals have some transient properties, and the accurate parameters for each mode are
difficult to determine based only on this spectrum. Herein, we use the TFR for the frequency
and damping extraction of each mode of the structure.

The corresponding results are shown in Figure 10. In Figure 10a–c, the TF features
of weak modes are displayed incompletely and are thus not suitable for retrieving all
modes to study the corresponding modal parameters. However, from the result obtained
using the proposed method, the IF features of each mode are revealed clearly, as shown
in Figure 10d. Therefore, we can obtain the TF localizations to reconstruct each mono-
component individually. Figure 11 presents modes M1–M5, which can be used to estimate
the frequency and damping parameters conveniently. Based on the proposed method, the
amplitudes of the reconstructed results are consistent with Figure 9. From Figure 9b, it can
be seen that modes M1 and M3 are with weak energies, which are also well retrieved. Based
on the absolute errors (Figure 12b) between the vibration signal and the reconstructed signal
(Figure 12a), it can be seen that the proposed method retrieves almost all the components
within the vibration signal. In fact, in Figure 10d, there are some frequency features that
are not revealed in Figure 9b, which may include a desired signal with weak amplitude.
This practical example fully demonstrates the potential of the proposed method.
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5. Conclusions

In this paper, we showed that the IF can be extracted using the fixed points of the
frequency reassignment operator ω̂(ω, t) with respect to the variable ω. A novel method
based on the fixed-point iteration algorithm was used to adaptively obtain the IF for the
chirp-like signals. The numerical experiments verified that the proposed technique has
good robustness and high estimation accuracy; does not need the number of modes; and
can adaptively detect IFs, even for weak components. It is worth mentioning that the
proposed method uses a simple mathematical theory based on the original frequency
estimation operator, and it can easily be generalized to other higher-order methods. IFs
and other parameters of targets are determined using each mode of a structure. Therefore,
how to better extract the IF of each mode and retrieve the corresponding structure needs to
be studied more deeply in the future.
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