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Abstract: Conventional global navigation satellite system receivers typically employ a two-step
positioning procedure (2SP) by first independently estimating the synchronization parameters and
then using these parameters to solve a system of superdeterministic equations derived from multi-
lateration to accomplish positioning. Direct position estimation (DPE) has emerged as a promising
alternative that utilizes a single-step procedure to obtain the maximum likelihood estimate of a posi-
tion. This approach has been shown to effectively mitigate biases incurred by the second estimation
step in 2SP. However, for code-division multiple-access systems, the pseudo-orthogonality of the
spreading codes causes the estimation problem not to be mapped to a perfectly orthogonal space.
Additionally, the cross-correlation interference between satellites renders the maximum likelihood
invariant theory untenable in the first estimation step of the 2SP. This study presents the derivation of
the Cramér–Rao bound constraint for both the 2SP and DPE, evaluating the performance degradation
of the 2SP compared to that of the DPE with the consideration of cross-correlation. Furthermore, a
more stringent result is proven, indicating that the 2SP is not as asymptotically efficient as the DPE in
all scenarios. The derived bounds are validated using realistic scenarios, and the root-mean-square
error performance of the respective maximum likelihood estimators is compared.

Keywords: direct position estimation (DPE); Cramér–Rao bound (CRB); maximum likelihood estimation;
cross-correlation; satellite navigation systems

1. Introduction

Positioning approaches can be either direct or indirect. Global navigation satellite
systems (GNSSs) rely on the same indirect estimation approach, which is a two-step proce-
dure (2SP): the signals received by the GNSS receiver from satellites enter an independent
processing channel to obtain the corresponding synchronization parameters, and these
parameters are used to estimate the position–velocity–time (PVT) state of the receiver
through a multilateration procedure. The first step is to perform a two-dimensional search
for the actual time delay and Doppler shift of each satellite separately by correlating the
received signals with the known orthogonal direct-sequence spread spectrum emitted by
each satellite. This is typically accomplished with two modules for acquisition and tracking.
Subsequently, the second step involves solving a nonlinear least square (LS) minimization
problem, which is commonly performed by iteratively linearizing the cost function around
an initial estimate. While 2SP-based receivers are widely utilized for their near-optimal per-
formance in open-sky environments, their accuracy is usually limited in complex scenarios
characterized by jamming, multiple paths, and channel fading. These effects pose a greater
challenge for positioning accuracy and are not easily mitigated with conventional methods,
such as employing differential measurements or assisted error modeling.

Direct position estimation (DPE), conversely, uses a single-step procedure to estimate
the PVT state from the received GNSS signal and has emerged as an attractive alternative
to the 2SP. It was first introduced for locating narrowband radio-frequency transmitters
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and handling multiple radio signals [1]. This concept known as DPE for GNSS receivers
was presented in [2] for the single-antenna case, and it was extended to the array antenna
receiver case in [3]. The DPE exploits the fact that the signals emitted by satellites are
all received from the same PVT state. Hence, all channels are processed simultaneously,
enabling the sharing of information among them. In contrast, the 2SP handles each channel
separately, potentially leading to incompatible parameter combinations and erroneous
estimates. Avoiding the intermediate estimation step has proven to be effective in mitigating
some of the inherent limitations of the 2SP and improving performance in challenging
scenarios [4,5]. Directly incorporating PVT estimation through a single-step procedure also
facilitates the integration of prior information within a natural framework, as it involves
the direct manipulation of the PVT state of the receiver. Hence, the DPE has been extended
to incorporate prior information within the Bayesian paradigm [6,7]. Several DPE-based
GNSS receivers have been proposed [8–10], and various extended applications have been
explored [11–15].

However, the potential benefits of the DPE do not come without costs. The opti-
mal direct estimation processing of the DPE entails a significant computational burden,
hindering its application. The nonlinear multi-dimensional optimization problem can
be computationally intensive. To address this challenge, various approaches have been
proposed. The most intuitive method is to employ the method of exhaustion, evaluating
the function on a grid to identify the global minimum. A multi-resolution grid method
involving a three-level search is proposed in [16] to reduce the number of computational
points required. Additionally, Ref. [17] analyzes the features of a multi-resolution search
algorithm and proposes an optimization-based 3D dichotomous search scheme to improve
the overall efficiency of the multi-resolution grid method. Moreover, heuristic algorithms
offer a promising approach for optimizing the relative position vector of the user with
good resolution and without exhaustively searching the entire search space [18,19]. Indeed,
while these methods are effective for lower-dimensional problems, they become imprac-
tical for high-dimensional scenarios due to the exponential growth of the grid of points
required to evaluate the cost function. Another solution is to decompose multi-dimensional
optimization into a series of recursive and simpler searches. Based on the expectation
maximization principle, the space-alternating generalized expectation maximization op-
timization algorithm is introduced as an effective method in [20]. Nevertheless, despite
these advancements, methods such as these still impose heavy computational costs and are
challenging to implement in real-time applications. As mentioned by the authors of [21],
more computationally efficient optimization algorithms still need to be developed.

The theoretical results in [22] prove that DPE-based localization shows a performance
improvement compared to that of 2SP. For GNSS receivers, the Cramér–Rao bound (CRB),
which is an essential tool for the analysis of the performance of localization systems, is
used to show the asymptotic performance of each approach, as derived for both the 2SP
and DPE in [23], with the latter exhibiting superior performance. In particular, the 2SP
can achieve the same performance as that of the DPE only when the Fisher information
matrix (FIM) of the time of arrival is known [24]. The results from [25] show that the
DPE can obtain a lower root-mean-square error (RMSE) than that of the 2SP. They also
point out that if the received signal strength is a part of the estimation parameters and is
used as a weighted matrix, then the 2SP is asymptotically effectively the same as the DPE.
In summary, these studies compare the asymptotic performance of the DPE and 2SP by
evaluating their covariance matrices. It is pointed out that the maximum likelihood (ML)
invariant can not be satisfied when independently estimated synchronization parameters
are used in the second estimation step of the 2SP, and it is shown that the estimates remain
ML-invariant only when the intermediate parameters are estimated with an appropriately
weighted matrix for the weighted least square (WLS) [26]. The appropriately weighted
matrix corresponds to the FIM of the considered model, which is calculated from the time
delays and Doppler shifts. This explanation is related to the extended invariance principle
(EXIP) [27], which aims to simplify the ML criterion by reparameterizing the estimation
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problem so that intermediate estimates are obtained, and their refinement through an
appropriate WLS minimization achieves the same asymptotic performance as that of the
initial model. In the context of GNSSs, the positioning problem is parameterized into a
framework for the independent processing of the time delay and Doppler shift for each
satellite, streamlining the PVT estimation process, and the EXIP also holds [28]. Overall, the
EXIP provides a theoretical method for comparing the asymptotic performance of the 2SP
and DPE, demonstrating that the 2SP can achieve the same asymptotic performance as that
of the DPE through an appropriate WLS procedure. However, the previous works neglected
the effect of the cross-correlation in GNSSs, leading to the false conjecture that the 2SP is
asymptotically efficient, i.e., the covariance matrix of the estimates tends toward the CRB.
It is crucial to note that the pseudo-orthogonality of pseudo-random noise (PRN) codes
causes the estimation problem of synchronization parameters to be unable to be mapped
into a completely orthogonal space or be decomposed into independent subproblems for
each satellite. This is due to the existence of cross-correlation errors, rendering the theory of
ML invariance inapplicable. Instead, the DPE provides a way to process all signals jointly,
which can be seen as equipping the receiver with abilities to mitigate cross-correlation
errors [21,23,24], but corresponding theoretical analyses and quantitative comparisons are
still missing.

This study shows that the 2SP cannot reach the same asymptotic performance as
that of the DPE due to the presence of cross-correlation. It is demonstrated that the
optimization problems for the DPE and 2SP are maximization in the projection space and
direct maximization with the received signal, respectively. The latter is a transformation of
the approximation trick for the former without considering the cross-correlation effects;
therefore, a performance degradation exists. The derivation of the CRBs for the 2SP and
DPE is presented, and the performance degradation of the 2SP compared to the DPE is
evaluated by considering the cross-correlation errors. Furthermore, a more strict result is
proved: the 2SP is not asymptotically efficient in GNSSs, and the DPE outperforms the 2SP
in all scenarios. The remainder of this paper is organized as follows. Section 2 describes the
signal model. Sections 3 and 4 present an analysis of the asymptotic performance of the
DPE and 2SP, respectively. In Section 5, the numerical results are reported, and they are
discussed in Section 6. Finally, Section 7 concludes the paper.

2. Signal Model

A GNSS comprises a constellation of satellites with accurately known orbits transmit-
ting predefined messages to their users. The primary purpose of a GNSS is navigation, as
users employ receivers to compute correct position, velocity, and time estimates using the
known positions of the satellites and the signals received by an antenna. This yields a PVT
state representation:

γ ≜ [p, v, δt] ∈ Γ,

where p = [x, y, z] describes the 3-dimensional position vector of the receiver, which, in this
study, is assumed to be a geographic and Cartesian coordinate system, i.e., Earth-centered
and Earth-fixed. v = [ẋ, ẏ, ż] denotes the velocity vector of the receiver, which is equal to
the partial derivative of p, and δt is the clock bias of the receiver. Without loss of generality,
we assume that γ in the space of possible states Γ ∈ R7.

The received measurements are considered to be a superposition of plane waves with
a known signal structure; they are interfered with by noise and are potentially corrupted by
interference and multiple paths. Each plane wave corresponds to the line-of-sight signal of
a visible satellite. Assuming that there are M satellites, the received GNSS signal sampled
at time tk can be written as [29]

y(tk) =
M

∑
i=1

aici(tk)gi(tk − τi) cos
(
2π( fc + fdi

)tk + ϕi
)
+ n(tk),
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where the subindex i ∈ {1, · · · , M} denotes the number of visible satellites. ai, ci, and gi
are the signal amplitude, the navigation bit, and the known PRN codes of the i-th satellite,
respectively. fc is the carrier frequency. ϕi is the initial carrier phase shift of the i-th satellite,
which is considered to be known from the carrier-phase loop. n(tk) is zero-mean additive
white Gaussian noise (AWGN) with variance σ2. τi and fdi

denote the time delay and
Doppler shift of the i-th satellite, respectively, which can be expressed as functions of the
PVT state from the pseudorange and the pseudorange rate models [30]:

τi =
∥pi − p∥

c
+ δt − δti + ϵi, (1)

fdi
= − fc

c
(vi − v)

(pi − p)⊤

∥pi − p∥ + ϵ f , (2)

where pi = [xi, yi, zi] and vi = [ẋi, ẏi, żi] are the position and velocity of the i-th satellite,
respectively, which can be computed from the known ephemeris. The operator ∥ · ∥ denotes
the Euclidean norm of a vector. ∥pi − p∥ represents the Euclidean distance between the
receiver and the i-th satellite. δti is the clock bias of the i-th satellite, and it is known
from the navigation message. ϵi contains errors arising from diverse sources, including
atmospheric delays, multipath biases, ephemeris mismodeling, and relativistic effects,
among other contributing factors. ϵ f refers to noise in the phase rate measurement due to
non-modeled terms [31]. c is the speed of light.

If the receiver observes K snapshots, the signal model can be expressed in a compact
form as [2]

y = aD(ω) + n, (3)

with the following definitions:

• y = [y(t1), · · · , y(tK)] ∈ R1×K is the observed signal vector;
• a = [a1, · · · , aM] ∈ R1×M is a vector whose elements are the amplitudes of the M

received signals;
• ω = [τ, fd] ∈ R1×2M is a vector containing the time delay and the Doppler shift of

each satellite;
• D(ω) = [d⊤(ω1), · · · , d⊤(ωM)]⊤ ∈ RM×K is referred to as the basis function ma-

trix, where ωi = [τi, fdi
] is the synchronization parameter for the i-th satellite, and

d(ωi) = [d(t1, ωi), · · · , d(tK, ωi)]; each component is defined by the delayed Doppler-
shifted signal envelope d(tk, ωi) = gi(tk − τi) cos

(
2π( fc + fdi

)tk + ϕi
)
;

• n = [n(t1), · · · , n(tK)] ∈ R1×K represents K snapshots of the AWGN vector, where
σ21K is the invariable covariance matrix of n during the observation interval, and 1K
is a K × K identity matrix.

Based on a collection of K snapshots, the probability density function (pdf) of the
received signal conditioned on the unknown parameters a and ω is given by

p(y|a, ω) =
1

(2πσ2)
K
2

exp
{
− 1

2σ2

(
y − aD(ω)

)(
y − aD(ω)

)⊤}. (4)

Their log-likelihood function, Ly, is defined as

Ly(a, ω) = ln p(y|a, ω).

It follows that [32]

Ly(a, ω) = −K
2

ln(2πσ2)− 1
2σ2

(
y − aD(ω)

)(
y − aD(ω)

)⊤. (5)

In essence, the primary objective of positioning algorithms in GNSSs is to calculate the
PVT state γ by maximizing the log-likelihood function shown in Equation (5) according to
the parameterized probability distribution model shown in Equation (4). The PVT state γ
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can be directly estimated from the observation vectors y using the DPE or, alternatively, can
be estimated through the 2SP by first determining the synchronization parameter ω and
then using this estimate to compute γ. The objective of this study is to assess and compare
the asymptotic performance of these two methods. When K tends to infinity, the covariance
matrices of γ for the DPE and 2SP are denoted by C1 and C2, respectively.

3. Asymptotic Performance Analysis for the DPE

The DPE is based on the fact that the synchronization parameters of each satellite
correspond uniquely to the receiver PVT state. Given that the number of visible satellites
is generally larger than the dimension of the PVT state, the relationship between the
synchronization parameter and the PVT state ensures that for every γ, there is a unique
ω. This relationship can be expressed as an injection function, signifying that a given PVT
state can only be associated with a single pair consisting of a time delay and a Doppler
shift for each satellite. It is easy to identify that

ω = h(γ), ∀γ ∈ Γ. (6)

The time–frequency parameterization model can be represented by the parameters γ. It
is worth noting that D(γ) is used instead of D

(
h(γ)

)
for simplicity in notation. The DPE

counterpart of the model in Equation (3) is

y = aD(γ) + n,

with the same definitions, including the constant assumption of γ and the remaining
unknown parameters.

The DPE incorporates the measurement model by obtaining the ML estimate of the
PVT state from y and reconstructs the signal by parameterizing the time delay and Doppler
shift for each satellite. It is important to note that the DPE is a single-step procedure for
estimating γ from all observations. This implies that the search is performed within the
known space Γ. The ML estimation appears as follows:

â, γ̂ = arg max
γ∈Γ

Ly(a, γ),

where the joint log-likelihood function Ly(a, γ) is given by

Ly(a, γ) = ln p
(
y|a, h(γ)

)
.

The ML estimate of γ is given by maximizing the likelihood function or, equivalently,
minimizing the following nonlinear LS problem:

â, γ̂ = arg max
γ∈Γ

1
K
∥y − aD(γ)∥2, (7)

where the operator ∥ · ∥2 denotes the L2-norm of a vector. After applying the orthogonality
principle to Equation (7), the ML estimate of the amplitude vector a is

âML = yD⊤(γ)
(
D(γ)D⊤(γ)

)−1.

It is intuitive that the ML estimate of a is the LS solution of the difference between the
reconstructed signal and the received signal y. By substituting this result into Equation (7)
and expanding it, we obtain

γ̂ML = arg min
γ∈Γ

∥y∥2 − âMLD(γ)y⊤.
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The resulting ML cost function can be expressed in relation to a projection onto the signal
subspace as

γ̂ML = arg max
γ∈Γ

∥∥∥yD⊤(γ)
(
D(γ)D⊤(γ)

)−1D(γ)y⊤
∥∥∥. (8)

As the projection matrix is idempotent, the optimization problem of the DPE is actually
finding a parameter γ such that y has the maximum effective projection onto the column
space of D(γ).

Equation (8) is a well-known, intuitive, and conceptually simple method that is
recognized as an ML estimate that is asymptotically efficient [33]. The multiple-parameter
CRB indicates that the inverse of the FIM serves as a lower bound on the variance of any
unbiased estimator. In this case, the FIM is a function of a and γ with the (M + 7)× (M + 7)
block matrix, and it is expressed in terms of submatrices as[

I(a) I⊤(γ, a)
I(γ, a) I(γ)

]
, (9)

where I(a) is the FIM of a, I(γ) is the FIM of γ, and I(γ, a) is the cross-FIM of γ and a.
The elements of each submatrix can be computed with the Slepian–Bang formula [34]. For
u, v ∈ {1, · · · , M} and p, q ∈ {1, · · · , 7}, we have

[I(a)]u,v =
1
δ2

∂a
∂[a]u

D(γ)D⊤(γ)
∂a⊤

∂[a]v
,

[I(γ, a)]p,v =
1
δ2 a

∂D(γ)

∂[γ]p
D⊤(γ)

∂a⊤

∂[a]v
,

[I(γ)]p,q =
1
δ2 a

∂D(γ)

∂[γ]p

∂D⊤(γ)

∂[γ]q
a⊤, (10)

where the symbol [·]u denotes the u-th element of the vector, ∂a/∂[a]u is an all-zero 1 × M
vector, except for a 1 in the u position. Applying basic linear algebra, the derivative
∂D⊤(γ)/∂[γ]p is found as follows:

∂D⊤(γ)

∂[γ]p
=

[
∂d⊤(ω1)

∂ω1
· · · ∂d⊤(ωM)

∂ωM

]
∂ω⊤

∂[γ]p
, (11)

where ∂d⊤(ωi)/∂ωi stands for the derivative with respect to the element of ωi as follows: −ci(t1)ġi(t1 − τi) cos(2π( fc + fdi
)t1 + ϕi) 2πt1ci(t1)gi(t1 − τi) sin(2π( fc + fdi

) + ϕi)
...

...
−ci(tK)ġi(tK − τi) cos(2π( fc + fdi

)tK + ϕi) 2πtKci(tK)gi(tK − τi) sin(2π( fc + fdi
) + ϕi)

. (12)

In the first column in Equation (12), ġi(tk) is the derivative of time of the waveform gi(tk).
Finally, the derivative ∂ω/∂[γ]p is the p-th row of ∂ω/∂γ⊤ and can be calculated using
Equation (1):

∂ω⊤

∂γ
=


∂τ⊤

∂p
∂τ⊤

∂v
∂τ⊤

∂δt
∂ f⊤d
∂p

∂ f⊤d
∂v

∂ f⊤d
∂δt

. (13)

The FIM is completely defined by using Equations (10)–(13); therefore, the CRB for all of
the parameters can be directly computed by inverting Equation (9).

The DPE takes advantage of the fact that the signals emitted by the satellites are all
received from the same PVT state, and the mutual information is shared across channels.
It is recognized for its asymptotic efficiency and unbiasedness. This implies that the
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covariance matrix of the PVT state γ approaches the lower error bound as determined by
the inverse of the FIM. Thus, we obtain

C1 = I−1(γ) =

[
1
σ2

∂aD(γ)

∂γ⊤
∂D⊤(γ)a⊤

∂γ

]−1

. (14)

By applying the chain rule, we have

∂Ly

∂γ⊤ =
∂ω

∂γ⊤
∂Ly

∂ω⊤ . (15)

Substituting Equation (15) into Equation (14), we can extend the derivative as follows:

C1 =

[
∂ω

∂γ⊤ I(ω)
∂ω⊤

∂γ

]−1

, (16)

where I(ω) is the FIM of ω and is given by

I(ω) =
1
σ2

∂aD(ω)

∂ω⊤
∂D⊤(ω)a⊤

∂ω
.

The expression on the right side of Equation (16) is recognized as the CRB for unbiased
estimators of the parameter γ.

4. Asymptotic Performance Analysis for the 2SP

The primary objective of the 2SP is to establish a mapping that simplifies the process
compared to that of the DPE. A natural reparameterization that comes to mind in GNSSs
is to use the time delay and Doppler shift. By relaxing the constraints in Equation (6),
this approach enables the decomposition of a single multivariate non-convex optimization
problem into lower-dimensional counterparts by exploiting the near orthogonality of PRN
codes. Receivers based on the 2SP typically initiate the estimation of synchronization
parameters through scalar tracking, followed by computing the PVT estimate using the
principle of multilateration.

Thanks to the independence provided by the reparameterization, the pdf p
(
y|a, ω

)
can be decomposed into

p
(
y|a, ω

)
=

M

∏
i=1

p
(
y|ai, ωi

)
.

In fact, ai and ωi are only related to the signals from the i-th satellite. Let us define xi(tk) as
the observation at sampling time tk while excluding signals from other satellites:

xi(tk) = aici(tk)gi(tk − τi) cos
(
2π( fc + fdi

)tk + ϕi
)
+ n(tk),

then, the pdf p
(
y|ai, ωi

)
can be written in the form of a marginal distribution:

p
(
y|ai, ωi

)
=
∫

p
(
y|xi

)
p
(
xi|ai, ωi

)
dxi,

where xi = [xi(t1), · · · , xi(tK)]. Due to the invariance principle of the ML estimate with
the injective function in Equation (6) [35], the pdf p

(
y|ai, ωi

)
can be decomposed into

two estimation problems by first estimating xi using

x̂i = arg max ln p
(
y|xi

)
.

Then, the pdf of x̂i conditioned on the unknown parameters ai and ωi is given by
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p(x̂i|ai, ωi) =
1

(2πσ2)
K
2

exp
{
− 1

2σ2

(
x̂i − aid(ωi)

)(
x̂i − aid(ωi)

)⊤}.

When Lx̂i (ai, ωi) = ln p(x̂i|ai, ωi) is defined as the log-likelihood function, it follows that

Lx̂i (ai, ωi) = −K
2

ln(2πσ2)− 1
2σ2

(
x̂i − aid(ωi)

)(
x̂i − aid(ωi)

)⊤.

Then, the ML estimates of ai and ωi are defined by

âi, ω̂i = arg maxLx̂i (ai, ωi). (17)

This can be equated to solving a cost function of size 1/M that is similar to that in Equa-
tion (7), yielding a solution of the same form as that of

ω̂i = arg max
∥∥∥x̂id⊤(ωi)

(
d(ωi)d⊤(ωi)

)−1d(ωi)x̂⊤i
∥∥∥,

where the elements obtained by multiplying d(ωi) and d(ωi)
⊤ are the sum of the corre-

sponding elements in the two sampled signals. By applying d(ωi)d(ωi)
⊤ = K, we obtain

ω̂i = arg max
1
K

∥∥∥x̂id⊤(ωi)d(ωi)x̂⊤i
∥∥∥. (18)

This corresponds to the maximization of the correlation involving the time delay and
Doppler shift of each satellite. It represents the ideal correlation procedure employed in the
processing of a GNSS receiver.

Estimating ω̂ is equivalent to simultaneously maximizing M subproblems:

ω̂ = arg max
M

∑
i=1

1
K

∥∥∥x̂id⊤(ωi)d(ωi)x̂⊤i
∥∥∥. (19)

It is important to note that no assumptions are made about the space in the estimation
process of ω̂. However, the geometric relationship between the satellites and the receiver
imposes constraints on the time delays and Doppler shifts of the received signals. It is
crucial to recognize that not every vector comprising time delays and Doppler shifts can
be uniquely associated with the PVT state γ through the inverse function of h alone. In
other words, h operates as an injection function but not necessarily as a bijection function.
This implies that the mapping defines a subset denoted as Ω = {ω : ω = h(γ), γ ∈ Γ}, for
which a unique inverse mapping exists

γ = h−1(ω), ∀ω ∈ Ω.

Obviously, since the estimate ω̂i is obtained individually without knowing the other
{ω̂j}j ̸=i, there is no guarantee that the estimated vector ω̂ consisting of ω̂i belongs to the
subset Ω. Therefore, the desired parameter γ cannot be obtained directly from ω̂ using the
inverse function h−1.

The common practice uses the LS method to compute the position and clock bias of the
receiver based on the pseudorange model from Equation (1), which provides a nonlinear
relation among the position, clock bias, and time delay estimates of each satellite:

τ̂i + δti − ϵi = ri + δt, (20)

where ri =
1
c ∥pi − p∥ denotes the propagation time for the geometric distance between

the receiver and the i-th satellite. This results in a nonlinear and overdetermined system
for M ≥ 4 that is usually solved with a linearized method and approximated with a
Taylor series with respect to an initial position–time guess [po, δto]⊤ = [xo, yo, zo, δto]⊤. The
linearized equation is
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τi ≈
xi − xo

ro
i c

δx +
yi − yo

ro
i c

δy +
zi − zo

ro
i c

δz + δt + τo
i ,

where δx = xo − x, δy = yo − y, δz = zo − z, δt = δto − δt, and τo
i = 1

c ∥pi − po∥+ δto − δti
is the pseudorange scaled by c between the initial position guess of the receiver and the
i-th satellite. In this case, the system can be formulated as the following LS problem:

∆ = arg min
{
||δτ − H1∆||2

}
, (21)

where

δτ =

 τ1 + δt1 − ϵ1 − τo
1

...
τM + δtM − ϵM − τo

M

,

H1 =


x1 − xo

ro
1c

y1 − yo

ro
1c

z1 − zo

ro
1c

1

...
...

...
...

xM − xo

ro
Mc

yM − yo

ro
Mc

zM − zo

ro
Mc

1

,

∆ = [δx, δy, δz, δt]
⊤,

and the solution of the problem in Equation (21) is given by

∆̂ =
(

H1
⊤H1

)−1
H1

⊤δτ.

In this study, we consider the PVT state γ; both time delays and Doppler shifts
are used in the estimation process. As shown in Equation (2), the Doppler shifts also
provide information on the receiver position, i.e., through the pseudorange rate model.
This nonlinear equation can be linearized with respect to the initial PVT state guess γo =
[po, δto, vo]⊤ as follows:

fdi
≈ fc

c

[(
ẋi − ẋo

ro
i

+
xi − xo

(ro
i )

3

)
δx +

(
ẏi − ẏo

ro
i

+
yi − yo

(ro
i )

3

)
δy +

(
żi − żo

ro
i

+
zi − zo

(ro
i )

3

)
δz
]

+
fc

c

[
xi − xo

ro
i

δẋ +
yi − yo

ro
i

δẏ +
zi − zo

ro
i

δż
]
+ f o

di
,

where vo = [ẋo, ẏo, żo], δẋ = ẋo − ẋ, δẏ = ẏo − ẏ, and δż = żo − ż.

f o
di
= − fc

c
(vi − vo)⊤

pi − po

∥pi − po∥

represents the Doppler shift of the i-th satellite calculated from the initial state guess. As an
improvement, each observation can be weighted according to the received signal quality
using a weighted matrix W, which is real, positive definite, and symmetric. Therefore,
the measurements and the desired parameter γ can be linearized and formulated as a
WLS problem:

∆γ̂ = arg min
{
(δω − H∆γ)W(δω − H∆γ)⊤

}
, (22)

where
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δω = [δρ⊤, δ fd
⊤]⊤,

δ fd =


fd1 − ϵ f − f o

d1
...

fdM − ϵ f − f o
dM

,

H =

[
H1 0
H2 H3

]
,

∆γ = [δx, δy, δz, δt, δẋ, δẏ, δż]⊤.

The definitions of matrices H2 and H3 are given by

H2 =
fc

c


ẋi − ẋo

ro
i

+
xi − xo

(ro
i )

3
ẋi − ẋo

ro
i

+
xi − xo

(ro
i )

3
ẋi − ẋo

ro
i

+
xi − xo

(ro
i )

3 0

...
...

...
...

ẋi − ẋo

ro
i

+
xi − xo

(ro
i )

3
ẋi − ẋo

ro
i

+
xi − xo

(ro
i )

3
ẋi − ẋo

ro
i

+
xi − xo

(ro
i )

3 0

,

H3 =
fc

c


x1 − xo

ro
1

y1 − yo

ro
1

z1 − zo

ro
1

...
...

...
xM − xo

ro
M

yM − yo

ro
M

zM − zo

ro
M

,

and the solution to the WLS problem is

∆γ̂ =
(

H⊤WH
)−1

H⊤Wδω. (23)

Therefore, we have that γ̂ = γo + ∆γ̂ is the estimation provided by the 2SP.
Following the derivation presented in [36], when γ̂ is located at a reasonable proximity

to the ideal solution of γ, we have ∂ω⊤/∂γ = H|γo=γ. This transformation leads to a
covariance matrix of γ̂ that is lower-bounded as follows:

lim
K→+∞

C(γ̂) =

[
∂2ℓ

∂γ2

]−1
∂ω

∂γ⊤ WC(ω̂)W
∂ω⊤

∂γ

[
∂2ℓ

∂γ2

]−1

, (24)

where C(γ̂) is the covariance matrix of γ̂ for the 2SP with a generic weighted matrix, and
C(ω̂) is the covariance matrix of ω̂ obtained in Equation (19).

Recall that ω̂i is estimated under the ML principle with xi, and it is known that
for a sufficiently large sample of data and certain regularity conditions, ω̂i is normally
distributed with mean ωi and the following covariance matrix:

lim
K→+∞

C(ω̂i) = I−1(ω̂i) =

[
ai

2

σ2
∂d(ωi)

∂ω⊤
i

∂d⊤(ωi)

∂ωi

]−1

. (25)

Thus, we find that the covariance matrix of the estimated vector ω̂ consisting of ω̂i con-
verges to the inverse of I(ω). In many cases of interest (see Appendix A), C(γ̂) has the
same performance as that of the DPE, and we have

lim
K→∞

C(γ̂) =

[
∂ω

∂γ⊤ I(ω)
∂ω⊤

∂γ

]−1

. (26)

Equation (26) shows that γ̂ is an efficient estimator in the sense that each step of the
estimation is ML and is called an unbiased indirect estimation. This result is similar to that
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of the EXIP [26], which indicates that the 2SP can not outperform the DPE, but the two
methods are approximately equal when choosing an appropriately weighted matrix for the
second step of WLS in the 2SP.

However, the estimation process above does not precisely align with the actual pro-
cedure followed by the 2SP. The problem of estimating the parameter ωi in Equation (17)
involves the signal component xi. However, the determinism of the pdf p

(
y|xi

)
contradicts

the randomness of the PRN codes, thereby preventing the correctness of processing each
satellite individually. To address this problem, the 2SP-based receivers exploit the near
orthogonality in xi, using y instead of xi in the correlation step in Equation (18). This leads
to the following optimization:

ω̃i = arg max
1
K

∥∥∥yd⊤(ωi)d(ωi)y⊤
∥∥∥,

which is the actual correlation step for 2SP-based GNSS receiver processing. It is straight-
forward to obtain

ω̃ = arg max
∥∥∥yD⊤(ω)D(ω)y⊤

∥∥∥. (27)

where ω̃ denotes the synchronization parameter of the i-th satellite obtained through the
2SP. Following the same derivation as that in Equation (17) to Equation (26), we have that
the variance of γ̃ is

C2 =

[
∂ω

∂γ⊤ I(ω̃)
∂ω⊤

∂γ

]−1

. (28)

Comparing Equation (28) with Equation (26), the distinction between the CRBs of
unbiased indirect estimation and those of the 2SP lies in the two distinct optimization
problems corresponding to different FIMs, as represented in Equation (19) and Equation (27).
Indeed, the approximation trick allows the relaxation of the relationship that exists between
the different values of ωi, enabling the estimation problem to work in a larger space, thus
simplifying the procedure [26]. However, this simplification comes at the cost of a reduction
in accuracy due to the deviation of yd⊤(ωi) from xid⊤(ωi), which is denoted as

ξi = yd⊤(ωi)− xid⊤(ωi),

which represents the cross-correlation error and can be expressed as [37]

ξi =
M

∑
j=1,j ̸=i

aiK
2

ci(tk)Ri,j(∆τi,j) cos
(

2π∆ fdi,j
tk + ∆ϕi,j

)
,

where ∆τi,j = τ̂i − τj denotes the relative delay between gi and gj. ∆ fdi,j
= f̂di

− fdj
denotes

the relative Doppler shift between the i-th satellite and j-th satellite. ∆ϕi,j = ϕi − ϕj denotes
the deviation of the carrier phase between the i-th satellite and the j-th satellite. Ri,j(∆τi,j) =
1
K ∑K

k=1 gi(tk − τ̂i)gj(tk − τj) denotes the cross-correlation function between gi and gj.
To quantify the magnitude of variance of ξi, we investigate the cross-correlation

function Ri,j. As we know, GNSSs generally use Gold code sequences; there are three
possible peak values for Gold codes of length 2n − 1 during synchronization [30]:

Ri,j ∈
{

2⌊
n+2

2 ⌋ − 1
2n − 1

,
−1

2n − 1
,
−2⌊

n+2
2 ⌋ − 1

2n − 1

}
,

where n is the number of the shift register stage, and the operator ⌊·⌋ denotes rounding
to the nearest integer towards negative infinity. The probabilities corresponding to the
three values of Ri,j are {0.25, 0.5, 0.25} and {0.125, 0.75, 0.125} for odd and even values of n,
respectively. In both cases, the variance of Ri,j has a uniform expression:
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D(Ri,j) =
2n

(2n − 1)2 ,

where D(·) denotes the variance.
As the 2SP processes each satellite channel individually, the differences between

synchronization parameters from different satellites cannot be exploited. Therefore, a
reasonable assumption is that the deviation of the time delay ∆τi,j and the deviation of the
carrier phase ∆ϕi,j can be considered as random variables that are uniformly distributed on
one period of the PRN code and [0, 2π], respectively. Neglecting the effect of the navigation
bit ci, the variance of ξi can be expressed as

D(ξi) =
M

∑
j=1,j ̸=i

a2
j K2P0,

where P0 = 2n−2/(2n − 1)2 is a constant with respect to n. The variance of ξi is positive
with respect to the signal structure, received amplitude, and the processing length of the
signal. In each of the independent estimation problems in Equation (18), using y can be
approximated as a degradation of the observation x̂i, indicating an increase in AWGN [38].
Removing the effects of measurement length, the variance of the equivalent AWGN, includ-
ing the cross-correlation error, for a single snapshot signal of the i-th satellite is

σ2
i = σ2 +

M

∑
j=1,j ̸=i

a2
j P0.

Remark 1. Notice that although the PRN codes carry certain properties of a random sequence, they
are entirely deterministic, leading to predictable cross-correlation values. Consequently, for each Ri,j,
the occurrence probability does not align with the estimation based on the cross-correlation of random
sequences [39]. For given i and j, their cross-correlation function Ri,j, relative time delay ∆τi,j, and
relative Doppler shift ∆ f d

i,j are computable, meaning that the cross-correlation error can be calculated
and eliminated through the cross-correlation function between satellites. This offset renders the 2SP
estimate suboptimal, and ω̃ is strictly biased. Furthermore, these errors do not follow a standard
Gaussian distribution [40,41]. For the purpose of comparing the estimation performance between the
2SP and the DPE, only the magnitude of the variance is considered. Therefore, the cross-correlation
errors are considered as AWGN and represent a reduction in the quality of the desired satellite
signal [42].

Using y in the correlation step of the i-th channel is equivalent to considering x̂i + ξi
as the observation. This equivalence results in an unavoidable performance degradation
for the 2SP. This results in a decrease in I(ω̃):

I(ω̃) = Q−1 ∂aD(ω)

∂ω⊤
∂D⊤(ω)a⊤

∂ω
, (29)

where Q = diag(δ̃) is a 2M × 2M diagonal matrix whose diagonal elements are given by
the 1 × 2M vector

δ̃ = [σ2
1 , · · · , σ2

M, σ2
1 , · · · , σ2

M].

By substituting Equation (29) into Equation (28) and comparing it with Equation (16), it is
obvious that σ2

i > σ2, thus proving that C2 > C1. The conclusion holds even if ∂γ/∂ω⊤ is
invertible, if the weighted matrix W is an identity matrix, and in any other cases mentioned
in Appendix A.

Remark 2. In the above results, these increases in variance cannot be theoretically eliminated by a
2SP-based receiver, although the loops similar to the delay lock loop can mitigate them below some
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thresholds. This study focuses on discussing the magnitude of the errors. More extended research on
the bounds of the code-tracking error is described in [43].

5. Simulation Results

In this section, we present the numerical and simulation results. The variances of
the position estimators obtained with the 2SP and DPE are compared. The former was
computed by first computing estimates of synchronization parameters and transforming
them with the WLS procedure, which is the common choice in 2SP-based GNSS receivers.
The diagonal entries in the weighted matrix W were set to the carrier-to-noise density ratios
(C/N0) of the corresponding satellites. The latter was obtained by solving the ML estimator
of the position. This was performed by using the grid search method, with the search step
size set to be less than half of the sampling distance.

We focused on a civilian GPS L1 signal, a spread-spectrum signal transmitted at a
chip rate of 1.023 MHz on a carrier frequency of fc = 1575.42 MHz. The received signals
were filtered with a 1 MHz bandwidth filter and sampled at an intermediate frequency of
fs = 8.184 MHz. The reconstructed scenario from real ephemeris data corresponded to a
realistic constellation geometry involving M = 12 satellites while considering an elevation
mask of 5°. The corresponding PRN code numbers, azimuth angles, and elevation angles
of the satellites are summarized in Table 1.

Table 1. The degrees of the azimuth and elevation angles of satellites.

PRN 2 3 4 6 9 14 16 23 25 26 29 31

Azimuth 62.4 190.1 254.6 108.7 128.1 276.2 230.7 158.5 10.8 244.7 338.7 297.5
Elevation 29.9 17.8 46.4 20.3 15.7 39.7 11.2 12.7 32.1 38.3 41.4 53.1

To simplify the plotting, we computed the CRB of the position vector as follows:

εp =

√
E(∥p − p̂∥2) =

√
ε2

x + ε2
y + ε2

z,

where ε2
x, ε2

y, ε2
z are the CRBs for each coordinate and were obtained with the corresponding

CRB at the true position.
With this setup, we compared the RMSEs of both position estimators against their

respective theoretical lower bounds provided by the CRBs.
Figure 1 shows the curves plotted against the C/N0 of the satellites, and all were

assumed to be equal in this simulation. The blue curve, which is connected by stars,
represents the RMSE of the DPE, and its corresponding bound is the black curve denoted
as CRBd. The red curve, which is connected by circles, represents the RMSE of the 2SP with
WLS, and its corresponding bound from Equation (28) is the green curve denoted as CRBa

w.
As a contrast, the yellow curve represents the CRB from [23] and is shown to account for
the 2SP; it is denoted as CRBb

w. Note that in this scenario, all satellites had the same C/N0,
and the optimal weighted matrix was the identity matrix, which implies that CRBb

w and
CRBd are the same in Figure 1. Regarding the RMSEs, both estimators exhibited similar
performance for C/N0 values larger than 20 dB-Hz, and both approximations approached
their corresponding CRBs. In the low C/N0 region, between 15 to 20 dB-Hz, WLS yielded
a higher RMSE. Notably, the DPE estimator demonstrated greater robustness to high-energy
noise, with a break-point that was approximately 6 dB-Hz lower than that of WLS. Concerning
the derived CRBs, CRBa

w and CRBb
w mostly overlapped. In this case, the transmitted noise was

the main source of error, and the cross-correlation errors were low when all satellite signals
had the same C/N0. Although the difference between their bounds was small, a closer look
at the enlarged portion of Figure 1 reveals that CRBa

w was slightly higher than CRBb
w in the

high C/N0 region, between 50 to 55 dB-Hz, where the power of cross-correlation errors could
reach a magnitude comparable to that of the noise. In comparison, the CRBa

w proposed in this
study aligned more consistently with the RMSE of WLS.
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Figure 1. RMSE and CRB with respect to the C/N0 values (dB-Hz) of all satellites.

To assess the performance with varying received signal energies, we considered a
scenario where all satellites, except one, had the same C/N0 at 30 dB-Hz, while one varying
satellite altered its C/N0 value. The RMSE was calculated by averaging different satellites,
treating each satellite as a varying one to eliminate the impact of geometry. Following the
configuration of the curves in Figure 1, we considered another estimator, the ideal least
square (ILS), an unrealistic estimator in which the true FIM is used as the weighted matrix;
it is shown to account for the 2SP with the cyan curves connected by crosses. It is worth
noting that the bound of the ILS, which is denoted as CRBb

I in [23], is the same bound as
that of CRBd in the DPE. The bounds on the estimators and their corresponding RMSEs are
presented in Figure 2. In terms of the RMSE, in the C/N0 region between 25 and 55 dB-Hz,
it is observed that the DPE and ILS exhibited similar performance, outperforming the WLS.
The WLS achieved comparable performance to that of the other methods only when the
varying satellite had a C/N0 value of 35 dB-Hz. For this specific C/N0, all satellites had the
same energy; the appropriately weighted matrix was the identity matrix, and in this case,
the WLS and ILS were equivalent, and all estimators could reach their respective bounds.
In the low C/N0 region, between 15 to 20 dB-Hz, both the WLS and ILS experienced a
slight performance degradation. This degradation was attributed to the interference from
other satellites affecting the signals of the varying satellite. Similarly, when the C/N0 of
the varying satellite exceeded 50 dB-Hz, the varying satellite introduced interference to the
rest, leading to significant performance degradation in both the WLS and ILS. The variance
of cross-correlation errors, which was related to the energies of the received signals, had a
more pronounced impact in the region with a large C/N0 gap. Both of these performance
degradations were reflected in CRBa

w, but not in CRBb
w and CRBb

I . On the contrary, the DPE
provides an optimal approach where the effects of cross-correlation errors have already
been taken into account. As a result, optimal performance is achieved, approaching the
CRB in all ranges of C/N0.

Although the signal energies of the satellites are not the same as those in Figure 2, this
scenario is still considered ideal, and various approaches can be employed to eliminate
individual anomalous observations, ensuring that the estimation accuracy is not signif-
icantly degraded. Comparing Figure 2 with the results in [23], the degradation of one
satellite does not significantly affect the overall results. To further validate this concept, a
more challenging scenario was tested. The received energy was described by a log-normal
distribution, which is typically applied to land mobile channels [44]; the C/N0 value of
the satellites was configured to follow a normal distribution with a variable mean and a
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variance of 3. The bounds on the estimators and the corresponding RMSEs are presented in
Figure 3. In terms of RMSEs, the WLS exhibited the most significant performance degrada-
tion, while the ILS, despite experiencing a smaller degradation, failed to match the CRBb

I ,
as presented in Figures 1 and 2. The RMSE of the ILS suggests that the estimation error
cannot be reduced even with an optimal weighted matrix provided for the 2SP. On the
other hand, the DPE demonstrated the best performance, maintaining a flat trajectory close
to the CRB in all C/N0 ranges. Concerning the CRBs, CRBb

w and CRBb
I did not account for

the deterioration caused by the cross-correlation errors, thus failing to accurately represent
the performance bounds. These bounds were lower than CRBa

w and CRBa
I , even though the

WLS and ILS were not achievable. In contrast, CRBa
w and CRBa

I more accurately represented
the performance boundaries of the WLS and ILS, especially in the high C/N0 region.

15 20 25 30 35 40 45 50 55
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Figure 2. RMSE and CRB with respect to the C/N0 values (dB-Hz) of the varying satellite.
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Figure 3. RMSE and CRB with respect to the C/N0 values (dB-Hz); the C/N0 values of the satellites
are normally distributed with a mean C/N0 variance of 3.
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6. Discussion

Previous studies on the asymptotic performance of the 2SP can be seen as simplifying
the joint time delay and Doppler shift estimation problem in GNSSs through the EXIP,
which relaxes the constraints on the structure of the synchronization parameter vector; then,
by using a diagonal weighted matrix to determine the confidence of these intermediate
estimates, the performance of the approximate initial model is achieved by refining them
through WLS minimization. As shown by the curves of the WLS in Figure 1, this allows the
approximation of the CRB in certain C/N0 intervals. The improvement can be illustrated
from the point of view of information theory; the 2SP discards all but the most likely
code phases and associated signal-to-noise ratios after the acquisition stage and then
performs positioning [45]. In contrast, the DPE uses all of the information of the signal
for positioning. This allows the DPE to find the best solution only from the space of
possible states, so the erroneous peaks in the correlation function will most likely never
be aligned, which improves the noise resistance [46]. Specifically, the 2SP can achieve
the same asymptotic performance as that of the DPE when the weighted matrix is equal
to the FIM of the time delay and Doppler shift [22], as shown by the curves of the ILS
in Figure 2. Consequently, these studies converge on the same conclusion: the 2SP can
achieve equivalent asymptotic performance to that of the DPE when an appropriately
weighted matrix is employed [23,25]. However, these conclusions are derived under the
condition that the estimation of the synchronization parameter in the first step is unbiased
and asymptotically effective. In a GNSS, the cross-correlation error is non-negligible and is
correlated with the synchronization parameters of other satellites, which leads to a bias in
the synchronization parameters obtained from the first step of the individual estimation
with the 2SP.

This study focuses on analyzing the asymptotic performance of the 2SP compared to
that of the DPE while taking the effect of cross-correlation errors into account. Specifically,
it fills the analysis of the first step for the 2SP, which has been previously overlooked. Theo-
retically, the difference in asymptotic performance can be obtained by comparing different
optimization problems, as shown in Equations (8) and (27). It is evident that the 2SP solves
the synchronization parameters by maximizing the norms of y and D(γ). This represents a
special case of the DPE where the multiplication D(γ)D⊤(γ) is approximated as a diagonal
matrix. However, the pseudo-orthogonality of PRN codes causes the off-diagonal elements
of the multiplication D(γ)D⊤(γ) to represent non-zero cross-correlations, making it a
non-diagonal matrix. In this case, a simple scaled diagonal weighing matrix does not
suffice [47]. In contrast, the DPE performs an ML estimation of the PTV state, which is
calculated from all visible satellites’ signals, with the aim of maximizing the norm of the
projection of signal y onto the column space of matrix D(γ). The projection matrix plays
the role of correcting for cross-correlation interference; then, the corrected received signals
have the maximum effective projection in the signal structure matrix, thus eliminating the
cross-correlation errors. Therefore, a scenario with a larger number of visible satellites
with varying signal energies is provided, and the simulation results demonstrate that the
cross-correlation errors cause an additional RMSE, which is even more pronounced in
the high C/N0 region. The simulation experiments validate that the joint processing of
satellites can bring mitigation capabilities to the DPE. Although many researchers have
explored how to eliminate and predict the cross-correlation errors of signals [48], receivers
need access to a number of parameters in order to fully predict the cross-correlation [40].
The DPE provides a perfect opposite direction of thinking that fundamentally solves the
cross-correlation errors. Although real GNSS scenarios may not have such a large difference
in the C/N0 values between the signals, the cross-correlation is inherently constrained by
the relative Doppler shift. This study is relevant for future GNSS positioning accuracy
studies, such as those of ground-based augmentation systems [49], pseudolite positioning
systems [50], or passive localization based on low-Earth-orbit satellites [51]. Nonetheless,
this study still holds potential for further development. One potential avenue for further
development involves incorporating the spatial geometry of the satellites to improve the
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modeling of cross-correlation errors. Additionally, considering that cross-correlation errors
are often associated with multipath errors, extending the bounds to multipath channels
presents a valuable direction. Future research will focus on these issues.

7. Conclusions

This study presents a comprehensive analysis of the asymptotic performance of the
2SP and DPE while considering cross-correlation errors. The results show that the pseudo-
orthogonality of PRN codes leads to a degradation in the pdf of each synchronization
parameter for the 2SP. Consequently, the initial estimate of the synchronization parameter
in the 2SP is not the ML. Quantitative results are presented to evaluate the performance
enhancements achieved by the DPE when treating cross-correlation errors as AWGN. Theo-
retical expressions for the estimated variances of both approaches are derived, providing
a more strict result that shows that the 2SP is not asymptotically efficient, and the DPE
consistently outperforms the 2SP in GNSSs. Simulation tests further validate the superior
performance of the DPE, highlighting its ability to resist cross-correlation errors through
the joint processing of satellite signals. This key feature positions the DPE as a robust
solution that is capable of addressing challenges related to multi-access interference and
near–far effects.
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Appendix A. Cases of C(γ̂) Converging to C1

The results presented in [22,24] demonstrate that the 2SP can achieve equivalent
asymptotic properties to those of the DPE when W = I−1(ω) or when the energy of the
received signals is completely known [25]. Here, two additional equivalent cases are
considered. From Equation (25), the covariance matrix of γ with a large sample is given by

lim
K→+∞

C(γ̂) =

[
∂2ℓ

∂γ2

]−1
∂ω

∂γ⊤ WI−1(ω)W
∂ω⊤

∂γ

[
∂2ℓ

∂γ2

]−1

. (A1)

Using Equation (22), we obtain

∂ℓ

∂γ
= −2

∂ω

∂γ⊤ W
(
ω̂ − W(γ)

)⊤,

∂2ℓ

∂γ2 = 2
∂ω

∂γ⊤ W
∂ω⊤

∂γ
. (A2)

Substituting Equation (A2) into Equation (A1) yields

lim
K→+∞

C(γ̂) =

[
∂ω

∂γ⊤ W
∂ω⊤

∂γ

]−1
∂ω

∂γ⊤ WI−1(ω)W
∂ω⊤

∂γ

[
∂ω

∂γ⊤ W
∂ω⊤

∂γ

]−1

.
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When all visible satellites have the same value of C/N0, i.e., W is an identity matrix, we have

lim
K→+∞

C(γ̂) =

(
∂ω⊤

∂γ

)†

I−1(ω)

(
∂ω

∂γ⊤

)†
, (A3)

where (·)† denotes the Moore–Penrose pseudo-inverse. Since the number of satellites is
greater than that of the unknown parameters and ∂ω/∂γ⊤ is a full row rank, we have
C(γ̂) = C1.

Another special case is that γ and ω have equal dimensions, and ∂ω/∂γ⊤ is invertible.
In this case, C(γ̂) can be expressed as

lim
K→∞

C(γ̂) =

[
∂ω

∂γ⊤ I(ω)
∂ω⊤

∂γ

]−1

.

In both cases above, C(γ̂) is equal to C1 as K tends to infinity.

References
1. Weiss, A. Direct Position Determination of Narrowband Radio Frequency Transmitters. IEEE Signal Process. Lett. 2004, 11, 513–516.
2. Closas, P.; Fernández-Prades, C.; Fernández-Rubio, J.A. Maximum Likelihood Estimation of Position in GNSS. IEEE Signal

Process. Lett. 2007, 14, 359–362.
3. Closas, P.; Fernández-Prades, C.; Fernández-Rubio, J.A.; Ramírez-González, A. On the Maximum Likelihood Estimation of

Position. In Proceedings of the 19th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION
GNSS 2006), Fort Worth, TX, USA, 26–29 September 2006; pp. 1800–1810.

4. Bialer, O.; Raphaeli, D.; Weiss, A.J. Maximum-Likelihood Direct Position Estimation in Dense Multipath. IEEE Trans. Veh. Technol.
2013, 62, 2069–2079.

5. Eric, M.; Vucic, D. Direct Position Estimation of UWB Transmitters in Multipath Conditions. In Proceedings of the 2008 IEEE
International Conference on Ultra-Wideband, Hannover, Germany, 10–12 September 2008; Volume 1, pp. 241–244.

6. Closas, P.; Fernandez-Prades, C.; Bernal, D.; Fernandez–Rubio, J.A. Bayesian Direct Position Estimation. In Proceedings of the
21st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2008), Savannah, GA,
USA, 16–19 September 2008; pp. 183–190.

7. Closas, P.; Fernández-Prades, C. Bayesian Nonlinear Filters for Direct Position Estimation. In Proceedings of the IEEE Aerospace
Conference Proceedings, Big Sky, MT, USA, 6–13 March 2010.

8. Peretic, M.; Gao, G.X. Design of a Parallelized Direct Position Estimation-Based GNSS Receiver. Navig. J. Inst. Navig. 2021,
68, 21–39.

9. Daniel, O.; Lohan, E.S.; Nurmi, J. Relaxed Direct Position Estimation as Strategy for Open-Loop GNSS Receivers. In Proceedings
of the 2015 International Conference on Localization and GNSS, ICL-GNSS 2015, Gothenburg, Sweden, 22–24 June 2015.

10. Dampf, J.; Frankl, K.; Pany, T. Optimal Particle Filter Weight for Bayesian Direct Position Estimation in a GNSS Receiver. Sensors
2018, 18, 2736.

11. You, M.Y.; Lu, A.N.; Ye, Y.X.; Huang, K. Direct Position Determination Using Compressive Sensing Measurements without
Reconstruction. IEEE Trans. Aerosp. Electron. Syst. 2022, 59, 1–8.

12. Huang, J.; Sun, R.; Yang, R.; Zhan, X.; Chen, W. Navigation Domain Multipath Characterization Using GNSS Direct Position
Estimation in Urban Canyon Environment. In Proceedings of the 35th International Technical Meeting of the Satellite Division of
The Institute of Navigation, Denver, CO, USA, 19–23 September 2022; pp. 2606–2617.

13. Liu, X.; Yao, Z.; Wang, T.; Lu, M. Direct Position Acquisition for Pseudolites Positioning System with Near-far Resistance. In
Proceedings of the 2022 International Technical Meeting of The Institute of Navigation, Long Beach, CA, USA, 25–27 January
2022; pp. 957–966.

14. Strandjord, K.; Axelrad, P.; Akos, D.M.; Mohiuddin, S. Improved Urban Navigation with Direct Positioning and Specular
Matching. In Proceedings of the ION 2020 International Technical Meeting Proceedings, San Diego, CA, USA, 21–24 January
2020; Volume 1, pp. 787–800.

15. Chu, A.H.P.; Chauhan, S.V.S.; Gao, G.X. GPS Multireceiver Direct Position Estimation for Aerial Applications. IEEE Trans. Aerosp.
Electron. Syst. 2020, 56, 249–262.

16. Axelrad, P.; Bradley, B.K.; Donna, J.; Mitchell, M.; Mohiuddin, S. Collective Detection and Direct Positioning Using Multiple
GNSS Satellites. Navig. J. Inst. Navig. 2011, 58, 305–321.

17. Li, L.; Cheong, J.W.; Wu, J.; Dempster, A.G. Improvement to Multi-Resolution Collective Detection in GNSS Receivers. J. Navig.
2014, 67, 277–293.

18. Jia, Z. A Type of Collective Detection Scheme with Improved Pigeon-Inspired Optimization. Int. J. Intell. Comput. Cybern. 2016,
9, 105–123.



Remote Sens. 2024, 16, 1407 19 of 20

19. Ni, L.; Wu, R.; Yang, J.; Chen, J.; Wan, Q. Fast Direct-Position-Determination Based on PSO. In Proceedings of the IGARSS 2022–
2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 7–22 July 2022; pp. 1971–1974.

20. Closas, P.; Fernandez-prades, C.; Fernkndez-rubiot, J.A.; Nord, C. ML Estimation of Position in a GNSS Receiver Using the SAGE
Algorithm. Acoust. Speech Signal Process. 2007, 1, 1045–1048.

21. Closas, P.; Galileo, E. Direct Position Estimation of GNSS Receivers: Analyzing Main Results, Architectures, Enhancements, and
Challenges. IEEE Signal Process. Mag. 2017, 34, 72–84.

22. Amar, A.; Weiss, A.J. New Asymptotic Results on Two Fundamental Approaches to Mobile Terminal Location. In Proceedings of
the 2008 3rd International Symposium on Communications, Control and Signal Processing, Washington, DC, USA, 27–30 May
2008; pp. 1320–1323.

23. Closas, P.; Fernández-Prades, C.; Fernández-Rubio, J.A. Cramér - Rao Bound Analysis of Positioning Approaches in GNSS
Receivers. IEEE Trans. Signal Process. 2009, 57, 3775–3786.

24. Closas, P.; Fernández-Prades, C.; Fernández-Rubio, J.A. Direct Position Estimation Approach Outperforms Conventional
Two-Steps Positioning. In Proceedings of the European Signal Processing Conference, Glasgow, UK, 24–28 August 2009;
pp. 1958–1962.

25. Amigo, A.G.; Closas, P.; Mallat, A.; Vandendorpe, L. Cramer-Rao Bound Analysis of UWB Based Localization Approaches. In
Proceedings of the 2014 IEEE International Conference on Ultra-WideBand, Paris, France, 1–3 September 2014; pp. 13–18.

26. Vincent, F.; Chaumette, E.; Charbonnieras, C.; Israel, J.; Aubault, M.; Barbiero, F. Asymptotically Efficient GNSS Trilateration.
Signal Process. 2017, 133, 270–277.

27. Stoica, P.; Söderström, T. On Reparametrization of Loss Functions Used in Estimation and the Invariance Principle. Signal Process.
1989, 17, 383–387.

28. Antreich, F.; Nossek, J.A.; Seco-Granados, G.; Swindlehurst, A.L. The Extended Invariance Principle for Signal Parameter
Estimation in an Unknown Spatial Field. IEEE Trans. Signal Process. 2011, 59, 3213–3225.

29. Seco-Granados, G.; Fernandez-Rubio, J.; Fernandez-Prades, C. ML Estimator and Hybrid Beamformer for Multipath and
Interference Mitigation in GNSS Receivers. IEEE Trans. Signal Process. 2005, 53, 1194–1208.

30. Spilker Jr., J.J.; Axelrad, P.; Parkinson, B.W.; Enge, P. (Eds.) Global Positioning System: Theory and Applications, Volume I; American
Institute of Aeronautics and Astronautics: Washington, DC, USA, 1996.

31. Kaplan, E.D.; Hegarty, C. Understanding GPS/GNSS: Principles and Applications; Artech House: Norwood, MA, USA, 2017.
32. Van Trees, H.L. Detection, Estimation, and Modulation Theory, Part I: Detection, Estimation, and Linear Modulation Theory; John Wiley

& Sons: Hoboken, NJ, USA, 2004.
33. Scharf, L. Statistical Signal Processing: Detection, Estimation, and Time Series Analysis; Addison-Wesley: Reading, MA, USA;

Wokingham, UK; Amsterdam, The Netherlands, 2002.
34. Kay, S.M.; Kay, S.M. Fundamentals of Statistical Signal Processing. 1: Estimation Theory, 20th ed.; Prentice Hall PTR: Upper Saddle

River, NJ, USA, 2013.
35. Proakis, J. Probability, Random Variables and Stochastic Processes. IEEE Trans. Acoust. Speech Signal Process. 1985, 33, 1637–1637.
36. Cheung, K.; So, H. A Multidimensional Scaling Framework for Mobile Location Using Time-of-Arrival Measurements. IEEE

Trans. Signal Process. 2005, 53, 460–470.
37. Lu, B.; Zhong, J.; Zhao, M.; Li, L. A near-far effect canceller for GPS high sensitivity receiver. In Proceedings of the 2012

IEEE/ION Position, Location and Navigation Symposium, Myrtle Beach, SC, USA, 23–26 April 2012; pp. 341–346.
38. Caffery, J.; Stuber, G. Effects of Multiple-Access Interference on the Noncoherent Delay Lock Loop. IEEE Trans. Commun. 2000,

48, 2109–2119.
39. Zhu, Z.; van Graas, F. Implications of C/A Code Cross Correlation on GPS and GBAS. In Proceedings of the 2014 IEEE/ION

Position, Location and Navigation Symposium, Monterey, CA, USA, 5–8 May 2014; pp. 282–293.
40. Zhu, Z.; Van Graas, F.; Pelgrum, W. C/A Code Cross-Correlation at a High Doppler Offset. IEEE Trans. Aerosp. Electron. Syst.

2015, 51, 1826–1838.
41. Mahmood, K.; Asad, S.M.; Moinuddin, M.; Zerguine, A.; Cheded, L. Multiple Access Interference in MIMO-CDMA Systems

under Rayleigh Fading: Statistical Characterization and Applications. EURASIP J. Adv. Signal Process. 2016, 2016, 43.
42. Hong, S.E.; Yoon, S.Y.; Lee, H.S.; Ahn, J. Performance Analysis of Non-coherent Delay-Locked Loop in Multiple Access

Interference. IEICE Trans. Commun. 1995, E78-B, 935–941.
43. Betz, J.W.; Kolodziejski, K.R. Generalized Theory of Code Tracking with an Early-Late Discriminator Part I: Lower Bound and

Coherent Processing. IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 1538–1556.
44. Lutz, E.; Cygan, D.; Dippold, M.; Dolainsky, F.; Papke, W. The Land Mobile Satellite Communication Channel-Recording,

Statistics, and Channel Model. IEEE Trans. Veh. Technol. 1991, 40, 375–386.
45. Beuchert, J.; Rogers, A. SnapperGPS: Algorithms for Energy-Efficient Low-Cost Location Estimation Using GNSS Signal

Snapshots. In Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems. Association for Computing
Machinery, Coimbra, Portugal, 15–17 November 2021; SenSys’21, pp. 165–177.

46. Bissig, P.; Eichelberger, M.; Wattenhofer, R. Fast and Robust GPS Fix Using One Millisecond of Data. In Proceedings of the 2017
16th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), Pittsburgh, PA, USA, 18–21
April 2017; pp. 223–234.

47. Bona, P. Precision, Cross Correlation, and Time Correlation of GPS Phase and Code Observations. GPS Solut. 2000, 4, 3–13.



Remote Sens. 2024, 16, 1407 20 of 20

48. Van Dierendonck, A.J.; Erlandson, R.; McGraw, G.; Coker, R. Determination of C/A Code Self-Interference Using Cross-
Correlation Simulations and Receiver Bench Tests. In Proceedings of the 15th International Technical Meeting of the Satellite
Division of The Institute of Navigation (ION GPS 2002), Portland, OR, USA, 24–27 September 2002; pp. 630–642.

49. Zhu, Z.; family=Graas, given=F., p.u. C/A Code Cross Correlation Error with Carrier Smoothing—The Choice of Time Constant:
30 s vs. 100 s. In Proceedings of the 2011 International Technical Meeting of The Institute of Navigation, Portland, OR, USA,
20–23 September 2011; pp. 464–472.

50. Fascista, A.; Coluccia, A.; Ricci, G. A Pseudo Maximum Likelihood Approach to Position Estimation in Dynamic Multipath
Environments. Signal Process. 2021, 181, 107907.

51. Yang, Z.; Wang, D.; Yang, B.; Wei, F. Robust Direct Position Determination against Sensor Gain and Phase Errors with the Use of
Calibration Sources. Multidimens. Syst. Signal Process. 2020, 31, 1435–1468.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Signal Model
	Asymptotic Performance Analysis for the DPE
	Asymptotic Performance Analysis for the 2SP
	Simulation Results
	Discussion
	Conclusions
	Cases of C() Converging to C1
	References 

